
1 Nisnevich topology

Let U → X be a morphism of schemes and let x ∈ X . Call U → X completely decomposed at
x if there exists u ∈ U lying above x such that the residual field extension k(x) → k(u) is an
isomorphism. Such points u are in bijection with lifts in the diagram

U

Spec k(x) X ,

(1)

the lift Spec k(x) → U corresponding to u being induced by OU,u → k(u) ∼= k(x). From this we
deduce that for a cartesian square

V U

Y
f

X

with f(y) = x, if U → X is completely decomposed at x, then V → Y is completely decomposed
at y.

A family of morphisms of schemes {fi : Ui → X}i∈I is called a Nisnevich covering if I is
finite, each morphism fi is étale of finite type, and for every x ∈ X there exists i ∈ I such
that fi is completely decomposed at x. Any Zariski covering is thus a Nisnevich covering, while
any Nisnevich covering is an étale covering. It is clear that a finite family {fi : Ui → X}i∈I is
a Nisnevich covering if and only if the single induced morphism

∐
i∈I Ui → X is a Nisnevich

covering (considered as a singleton family). Using the fact about pullbacks established above,
we get:

Proposition 1.1. Let S be a scheme and C a full subcategory of Sch/S such that the pullback
in Sch/S of a diagram

U

p

Y X

in C in which p is étale of finite type is in C. Then Nisnevich coverings form a basis for a
topology on C.

The induced topology on C is called the Nisnevich topology. It is finer than the Zariski topol-
ogy on C but coarser than the étale one. In particular, the Nisnevich topology is subcanonical.
We shall use the notations CZar, CNis, and Cét to denote the sites whose underlying category
is C and whose topology is respectively the Zariski topology, the Nisnevich topology, and the
étale topology. The identity functor on C is thus a morphism of sites Cét → CNis as well as a
morphism of sites CNis → CZar. These are in fact ringed sites by faithfully flat descent.

If X is any scheme over S, we shall always make the abuse of denoting by X the functor
HomSch/S(?, X) on C◦, considered as an object of Shv(CNis) (the category C itself being fixed by
the context). Note that X need not be an object of C for this functor to be defined and to be a
sheaf. Given a monomorphism of schemes Y →֒ X , the notationX/Y is always used in that sense:
it denotes the (pointed) sheaf associated to the presheaf U 7→ HomSch/S(U,X)/HomSch/S(U, Y ).

Proposition 1.2. Let U → X be an étale morphism and let x ∈ X. Then the following are
equivalent:

1. U → X is completely decomposed at x;

2. the morphism U ×X SpecOh
X,x → SpecOh

X,x has a section.
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2 nisnevich topology 1.1

Proof. 1 ⇒ 2. The morphism U ×X SpecOh
X,x → SpecOh

X,x is again étale and completely
decomposed at the closed point of SpecOh

X,x. It follows from [Mil80, Theorem 4.2(d)] that it
has a section.

2 ⇒ 1. By extending the scalars along Oh
X,x → k(x), we see that the map U ×X Spec k(x) →

Spec k(x) has a section. This is clearly equivalent to the existence of a lift in (1).

A cartesian square
U ×X V V

p

U
i

X

(2)

is called an elementary distinguished square if i is an open immersion, p is étale, and p−1(X −
i(U)) → X− i(U) is an isomorphism for the reduced structures (or equivalently, for some closed
subscheme structures).

We will often use the fact that the square

V

p

p−1(Z)

X Z

is cartesian whenever p is étale, Z ⊆ X is a closed subset, and both Z and p−1(Z) are endowed
with the reduced structures. Indeed, the pullback V ×X Z → V is a closed immersion whose
underlying closed subset is p−1(Z), and V ×X Z is also reduced since an étale scheme over a
reduced scheme is reduced (ref). Thus, by the uniqueness of reduced subschemes on a given
closed subset, the map p−1(Z) → V ×X Z induced by this square is an isomorphism.

Proposition 1.3. Let S be a scheme and let C be a full subcategory of Sch/S as in Proposi-
tion 1.1. Then elementary distinguished squares in C are cocartesian in Shv(CNis).

Proof. Consider the elementary distinguished square (2), and let Z = X − i(U), Z ′ = p−1(Z).
Let F be a sheaf and let u : U → F and v : V → F be maps agreeing on U ×X V . We have
to show that there is a unique map X → F through which both u and v factor. Since F is a
sheaf and {U → X,V → X} is a Nisnevich covering of X , maps X → F are in bijection with
matching pairs of maps U → F and V → F , i.e., maps that agree on the four intersections
U ×X U , U ×X V , V ×X U , and V ×X V . Any map X → F having the desired property will
correspond through this bijection to u and v, so it is necessary and sufficient to show that u and
v form a matching family. They clearly match on U ×X V and V ×X U by hypothesis. Also
obvious is that u matches with itself on U ×X U , because the two projections U ×X U ⇒ U
coincide (the immersion U →֒ X being a monomorphism in C).

It remains to show that vp1 = vp2 where p1 and p2 are the two projections V ×X V ⇒ V .
Consider the diagonal morphism ∆: V → V ×XV and the projection π : U×XV ×XV → V ×XV ;
∆ is an open immersion because p is unramified, and π is also an open immersion as a pullback
of i. We claim that these two maps form a covering of V ×X V . Since the maps U →֒ X and
Z →֒ X cover X , their pullbacks along V ×X V → X cover V ×X V . It will thus suffice to show
that the pullback of Z →֒ X factors through ∆. In fact, the square

V ×X V Z ′

∼=

X Z,

in which the top arrow is the composition of the closed immersion Z ′ → V and the diagonal ∆,
is seen to be cartesian by direct inspection.
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Thus, since F is a sheaf, to prove that vp1 = vp2, it is sufficient to prove that vp1∆ = vp2∆
and that vp1π = vp2π. The former is obvious and the latter is seen to hold by examination of
the contour of the commutative diagram

U ×X V ×X V
π
V ×X V

p2p1

U ×X V V

v

U u F .

Corollary 1.4. Let C be a full subcategory of Sch/S as in Proposition 1.1. If (2) is an elementary
distinguished square in C and if F is a sheaf of abelian groups on CNis, then there is a long exact
sequence

· · · → Hi
Nis

(X,F ) → Hi
Nis

(U, F )⊕Hi
Nis

(V, F ) → Hi
Nis

(U ×X V, F ) → Hi+1
Nis

(X,F ) → · · ·

in which all maps are natural in F .

Proof. For X ∈ C, we let Z[X ] denote the free abelian sheaf on HomC(?, X). Then Hi
Nis

(X, ?) =
Exti(Z[X ], ?), so the long exact sequence comes from the short exact sequence

0 → Z[U ×X V ] → Z[U ]⊕ Z[V ] → Z[X ] → 0.

The exactness in the middle and on the right is a consequence of Proposition 1.3, while exactness
on the left follows from the fact that U ×X V → V is a monomorphism.

Lemma 1.5. Let p : U → X be an étale morphism between Noetherian schemes. If p is com-
pletely decomposed at every generic point of X, then U → X has a rational section, i.e., there
exists a dense open subset X ′ ⊆ X such that p : p−1(X ′) → X ′ has a section.

Proof. To give a rational section X → U is equivalent to giving a rational section Xi → U for
each irreducible component Xi of X ([EGA1, 7.1.7]), so we may assume that X is irreducible.
Let x be its generic point. Since U is Noetherian, p is of finite type. It follows that rational
sections of p are in bijection with pairs (u, s) where u ∈ U lies above x and s : OU,u → OX,x

is a local section of pu : OX,x → OU,u ([EGA1, 7.1.13]). Take u such that k(x) → k(u) is an
isomorphism. Because p is étale, OU,u is essentially étale over OX,x ([EGA4, 18.4.12]), and
therefore there exists a local lift in the diagram

OX,x O
h
X,x

OU,u

([EGA4, 18.6.2]). But OX,x is an Artinian local ring ([EGA1, 7.1.5]) and in particular is
complete, so OX,x → Oh

X,x is an isomorphism. This gives the desired section.

Proposition 1.6. Let p : U → X be a Nisnevich covering with U and X Noetherian. Then
there exists a sequence

∅ = Zn ⊆ Zn−1 ⊆ · · · ⊆ Z0 = X

of closed subsets of X such that, for each i, p−1(Zi − Zi+1) → Zi − Zi+1 has a section (where
for i ≥ 1, Zi and p−1(Zi) are endowed with the reduced structures).

Proof. By Lemma 1.5, there exists a dense open subset X ′ ⊆ X such that p : p−1(X ′) → X ′ has
a section, so we can let Z1 = X −X ′. Then p−1(Z1) → Z1 is again a Nisnevich covering since it
is the pullback of such a covering, so we can repeat the construction with p−1(Z1) → Z1 instead
of U → X . We thus construct a descending sequence X = Z0, Z1, Z2, . . . of closed subsets of X
with the desired property and with Zi 6= Zi+1 unless Zi = ∅. But the sequence must stabilize
since X is Noetherian, so Zn = ∅ for some n.
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Theorem 1.7. Let S be a scheme and let C be a full subcategory of Sch/S as in Proposition 1.1
and moreover consisting of Noetherian schemes. Let D be any category. Then a functor F : C◦ →
D is a sheaf for the Nisnevich topology on C if and only if the following conditions hold:

1. F (∅) is terminal in D;

2. for any X ∈ C and any elementary distinguished square (2), the induced square

F (X) F (U)

F (V ) F (U ×X V )

is cartesian in D.

Proof. Since F is a sheaf if and only if HomD(d, ?) ◦ F is a sheaf of sets for every d ∈ D, and
since the two conditions hold of F if and only if they hold of HomD(d, ?) ◦ F for every d ∈ D,
we can assume that D = Set. Propostion 1.3 and the Yoneda lemma take care of the “only if”
direction. Conversely, assume that the presheaf F satisfies the two conditions. If U, V ∈ C, then

∅ V

U U ∐ V

is an elementary distinguished square, and using conditions 1 and 2 we deduce that F (U ∐V ) →
F (U)× F (V ) is an isomorphism. By induction, we get that the map

F (U1 ∐ · · · ∐ Un) → F (U1)× · · · × F (Un)

is an isomorphism for any schemes U1, . . . , Un in C. Thus, F will satisfy the sheaf condition
for an arbitrary Nisnevich covering {Ui → X}i if and only if it does for the Nisnevich covering∐

i Ui → X consisting of a single map.
To any Nisnevich covering p : U → X in C we associate the smallest integer n ≥ 0 such that

there exists a sequence
∅ = Zn+1 ⊆ Zn ⊆ · · · ⊆ Z0 = X

of closed subsets of X as in Proposition 1.6. We shall prove that the sequence

F (X) → F (U) ⇒ F (U ×X U) (3)

is exact by induction on n. If n = 0, then p has a section, and therefore (3) is split exact.
Suppose n ≥ 1, and let X ′ = X − Zn. Then X ′ ×X U → X ′ is a Nisnevich covering whose
associated integer is at most n− 1. By induction hypothesis, the sequence

F (X ′) → F (X ′ ×X U) ⇒ F (X ′ ×X U ×X U) (4)

is exact. Choose a section s : Zn → p−1(Zn) of p. By [EGA4, 17.9.3], s is an open immersion.
Let V = s(Zn) ∪ p

−1(X ′); this is an open subset of U . Then the square

X ′ ×X V V

p|V

X ′ X

is an elementary distinguished square: the morphism (p|V )−1(Zn) = s(Zn) → Zn is indeed left
inverse to s : Zn → s(Zn) which is an isomorphism since s is an open immersion. By condition 2,
the induced square

F (X) F (X ′)

F (V ) F (X ′ ×X V )

(5)



is cartesian.
Let us finally derive the exactness of (3). First, we observe that the square

F (X) F (X ′)× F (V )

F (U) F (X ′ ×X U)× F (V )

is commutative and that, by (4) and (5), the right arrow and the top arrow are injective. There-
fore, the left arrow, which is the first arrow in (3), is injective. Now suppose given an element
u ∈ F (U) such that p∗1(u) = p∗2(u) in F (U ×X U). Let v ∈ F (V ) and w ∈ F (X ′ ×X U) be
the restrictions of u. Then p∗1(w) = p∗2(w), so by exactness of (4), w comes from an element
x′ ∈ F (X ′). Now x′ and v have the same image in F (X ′ ×X V ), so by (5) we obtain an element
x ∈ F (X) which maps to u ∈ F (U). This concludes the proof of the exactness of (3) and of the
theorem.

2 Thom spaces

In this section S is a scheme and C is a fixed full subcategory of Sch/S as in Proposition 1.1.
All schemes considered are schemes over S and morphisms are S-morphisms.

Let X be a scheme and let E be a quasi-coherent X-module. We denote by V(E) the asso-
ciated vector bundle over X defined by V(E) = SpecS(E), where S(E) is the free commutative
X-algebra on E, and we denote by P(E) the associated projective bundle over X , defined by
P(E) = ProjS(E), where S(E) has the usual grading.

Any morphism u : E → F of quasi-coherent X-modules induces a morphism V(u) : V(F) →
V(E) over X making V into a functor. Moreover, if u is an epimorphism, V(u) is a closed
immersion. In this case, u also induces a closed immersion P(u) : P(F) → P(E) over X in a
functorial way. If f : Y → X is a morphism of schemes and E is a quasi-coherent X-module, we
have pullback squares

V(f∗(E)) V(E)

Y X ,

P(f∗(E)) P(E)

Y X .

We denote by Mod the category of pairs (X,E) where X is a scheme and E is a quasi-coherent X-
module. A morphism from (X,E) to (Y,F) in this category consists of a morphism of schemes
f : X → Y and a morphism of X-modules f∗(F) → E. If we only consider epimorphisms
f∗(F) → E, since functors of the form f∗ are left adjoint and hence preserve epimorphisms, we
obtain a subcategory Modepi of Mod. From the previous considerations we see that the category
Mod is the domain of the vector bundle functor V, while the projective bundle functor P is
well-defined on Modepi.

Proposition 2.1. Let X be a scheme and let E be a locally free X-module of finite rank. Then
p : V(E) → X is a strict A1

X-homotopy equivalence over X.

Proof. Let i : X → V(E) be the zero section of p, i.e., the closed immersion induced by E → 0.
Choose an open covering {Ui}i of X and trivializations p−1(Ui) ∼= Ui ×A

ni

Z
over Ui, and define

hi : p
−1(Ui)×A

1
Z
→ p−1(Ui) to be the composition

p−1(Ui)×A
1
Z

∼=
Ui ×A

ni

Z
×A

1
Z

id×µ
Ui ×A

ni

Z

∼=
p−1(Ui),

where µ corresponds to the map

Z[T1, . . . , Tni
] → Z[T1, . . . , Tni

]⊗ Z[T ], Ti 7→ Ti ⊗ T.

5



6 thom spaces 2.1

Because this map commutes with any automorphism of Z[T1, . . . , Tni
], the maps hi and hj

agree over Ui ∩ Uj . The morphisms hi can thus be glued to give a morphism h : V(E) ×A
1
Z
=

V(E) ×X A
1
X → V(E) over X which is clearly a homotopy from ip to the identity.

It will be convenient to introduce the category Imm of closed immersions. An object in Imm
is a closed immersion i : Z →֒ X , and a morphism from i′ : Z ′ →֒ X ′ to i : Z →֒ X is a cartesian
square

Z ′ i′

u

X ′

v

Z
i

X ,

also written (u, v) : i′ → i. A closely related category, denoted Id, has as objects the pairs (X, I)
where X is a scheme and I is a quasi-coherent X-ideal, and as set of morphism from (X ′, I′) to
(X, I) the subset of all morphisms f : X ′ → X satisfying f−1(I) = I′. Here f−1(I) denotes the
quasi-coherent X ′-module image of f∗(I) → f∗(OX) ∼= OX′ .

Proposition 2.2. The categories Imm and Id are equivalent.

Proof. Of course, the functor Imm → Id sends i : Z →֒ X to the kernel of OX → i
·
(OZ), and

given the equivalence between closed subschemes of a given scheme X and its quasi-coherent
X-ideals, it remains to observe that if

Z ′ i′

u

X ′

v

Z
i

X

is cartesian, then v−1(I) = I′.

Using the fact that closed immersions are monomorphisms in Sch/S, we deduce categorically
the following result.

Proposition 2.3. The functor Imm → (Sch/S)2 sending i : Z →֒ X to (Z,X) creates pullbacks.
In particular, pullbacks exists in Imm.

Note however that in general products do not exist in Imm, since it has no final object.
A morphism (u, v) : i′ → i in Imm is called flat (resp. étale) if v (and hence u) is flat (resp.

étale) and it is called Nisnevich if it is étale and moreover u is an isomorphism; we also say that
i′ is flat, étale, or Nisnevich over i. The significance of the latter definition is of course that the
morphisms v : X ′ → X and X − i(Z) →֒ X form an elementary distinguished square if (u, v) is
Nisnevich.

Lemma 2.4. Let

Z1

u1

i1
X1

v1

Z
i

X,

Z2

u2

i2
X2

v2

Z
i

X

be étale morphisms in Imm. If u1 = u2, then i1 and i2 are related by a zigzag of Nisnevich
morphisms.

Proof. Let u = u1 = u2 and W = Z1 = Z2. We have a cartesian square

W ×Z W

i1×ii2

Z

i

X1 ×X X2 X .
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Since u is unramified, the diagonal ∆u : W →֒ W ×Z W is an open immersion. Let Y be the
closed subset of X1 ×X X2 image of the complement of ∆u(W ) in W ×Z W , and let j be the
closed immersion W →֒ X1 ×X X2 − Y . Then direct inspection shows that the squares

W
j
X1 ×X X2 − Y

W
iν

Xν

are cartesian for ν = 1, 2, and since v1 and v2 are étale they define Nisnevich morphisms j → i1
and j → i2.

We define a functor Q : Imm → Shv•(CNis) by Q(i : Z →֒ X) = X/(X−i(Z)). For a cartesian
square

Z ′ i′
X ′

f

Z
i

X ,

we have f(X ′ − i′(Z ′)) ⊂ X − i(Z), whence the map of pointed sheaves Q(i′) → Q(i).

Proposition 2.5. Let (f, u) : (Y,F) → (X,E) be a morphism in Modepi. Then the square

Y
iY

f

V(F)

V(f,u)

X
iX

V(E),

in which the horizontal maps are the zero sections, is cartesian.

Proof. This square is obviously commutative. By Proposition 2.1, it suffices to show that
V(f, u)−1(IX) = IY , where IX (resp. IY ) is the ideal of iX (resp. of iY ). This question is
local on X and Y , so we can assume that f = Specφ where φ : A → B is a morphism of rings
and u corresponds to a surjective map E⊗AB → F of B-modules. Then V(f, u) is associated to
the obvious map SA(E) → SB(F ) and IX corresponds the ideal SA(E)+ generated by elements
of positive degree, and similarly IY corresponds to SB(F )+. Then it is clear that the extension
of SA(E)+ in SB(F ) is SB(F )+, as was to be shown.

This proposition shows that we can consider V as a functor Modepi → Imm sending (X,E)
to the zero section X →֒ V(E). The Thom space functor Th is then the composition

Modepi
V

Imm
Q

Shv•(CNis).

That is, if X is a scheme over S and E is a quasi-coherent X-module, then

Th(E) = Th(X,E) = V(E)/(V(E) − iE(X)),

where iE : X →֒ V(E) is the zero section.
If E is a quasi-coherent X-module, the projection E ⊕ OX → OX induces a canonical closed

immersion X ∼= P(OX) →֒ P(E ⊕ OX).

Proposition 2.6. Let X ∈ C and let E be a quasi-coherent X-module. Then there is an
isomorphism

Th(E) ∼= P(E⊕ OX)/(P(E ⊕ OX)−X)

of pointed sheaves on CNis which is natural in (X,E) ∈ Modepi.
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Proof. The cartesian square

V(E) −X V(E)

P(E⊕ OX)−X P(E⊕ OX)

is an elementary distinguished square (all maps being open immersions), so by Proposition 1.3,
it is a cocartesian square in Shv(CNis). The lemma follows.

We recall some features and establish some notation about the blowup construction. Let
Idft (resp. Idinv) be the subcategory of Id spanned by pairs (X, I) in which I is an X-module
of finite type (resp. is an invertible X-module). Under the equivalence of Proposition 2.2, Idft
corresponds to the full subcategory Immlfp of Imm consisting of closed immersions locally of
finite presentation. The blowup construction provides a right adjoint to the inclusion Idinv →֒
Idft. Let X be a scheme and let I be a quasi-coherent X-ideal of finite type. Let SI denote
the quasi-coherent X-algebra

⊕
d≥0 I

d. Then we set B(X, I) = B(I) = Proj(SI). It comes
with a canonical map pX,I : B(X, I) → X such that the ideal p−1

X,I(I) is the invertible module
OB(X,I)(1), and which happens to be universal among morphisms f to X with the property
that f−1(I) is invertible. It is useful to have an explicit construction of the morphism B(f) for
f : (X ′, I′) → (X, I). In general there is a cartesian square

Proj(f∗(SI)) Proj(SI)

X ′

f
X ,

and the obvious epimorphism f∗(SI) → SI′ (which is an isomorphism if f is flat) induces a
closed immersion B(X ′, I′) →֒ Proj(f∗(SI)) over X ′, whence a morphism B(X ′, I′) → B(X, I)
over f , which necessarily equals B(f). From this we see that B(f) is a (closed) immersion if f
is a (closed) immersion.

Proposition 2.7. The inclusion Idinv →֒ Id creates pullbacks along flat morphisms.

Proof. This is clear since for f flat, f−1(I) = f∗(I) which is invertible if I is invertible.

Let i : Z →֒ X be a closed immersion with X-ideal I and let ZI be the closed subscheme of
B(X, I) defined by the ideal p−1

X,I(I). Then from Proposition 2.2 we know that ZI → Z is the
pullback of pX,I along i, so that ZI can be identified as a Z-scheme with Proj(i∗(SI)). Recall
that the conormal sheaf Ni of i is defined to be the Z-module i∗(SI)1 = i∗(I). Let

Z ′ i′

u

X ′

v

Z
i

X ,

be a commutative square where i and i′ are immersions with ideals I and I′. Then we have
morphisms of Z ′-modules

u∗(Ni) = u∗i∗(I) = (i′)∗v∗(I) → (i′)∗(v−1(I)) → (i′)∗(I′) = Ni′ ,

the first one induced by the epimorphism v∗(I) → v−1(I) and the second one by the inclusion
v−1(I) ⊂ I′. This gives a morphism (Z ′,Ni′ ) → (Z,Ni) in Mod. If our original square was
cartesian, then, since v−1(I) = I′, we obtain a morphism in Modepi. Thus we view the conormal
sheaf as a functor

N : Imm → Modepi.

Let Immfl be the subcategory of Immlfp with the same objects but in which a morphism is
a flat morphism.
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Theorem 2.8. Let i : Z →֒ X be a closed immersion and let Ni be the conormal sheaf of i.
Assume that S is Noetherian and that X and Z are smooth and of finite type over S. Then there
is an isomorphism

Th(Ni) ∼= X/(X − i(Z))

in the pointed homotopy category H•(CNis) which is natural for i ∈ Immfl.

Before turning to the proof we explain the claim of naturality. We shall in fact construct a
zigzag of natural transformations

Th ◦N P1
α

P2
β γ

Q̃ Q
δ (6)

between functors Immfl → Shv•(CNis), and we shall prove that all are A
1-equivalences when S

is Noetherian and X and Z are smooth and of finite type over S.
We first fix some notations that will be in effect throughout the proof. Given a closed

immersion i : Z →֒ X , we let j be the composition of i and the zero section iX0 : X →֒ X ×A
1.

Denote by I and J the ideals of i and j. Let pI : B(I) → X and pJ : B(J) → X × A
1 be the

blowups of X and X × A
1 with respect to these ideals, and let ZI (resp. ZJ) be the closed

subscheme of B(I) (resp. B(J)) defined by the ideal p−1
I

(I) (resp. p−1
J

(J)). The square

Z
i

X

iX0

Z
j

X ×A
1

is obviously cartesian and defines a morphism i→ j in Imm. In other words, by Proposition 2.2,
(iX0 )−1(J) = I. Also, for any morphism f : (X ′, I′) → (X, I) in Id, f × A

1 is a morphism
(X ′ ×A

1, J′) → (X ×A
1, J). In other words, the construction i 7→ j is a functor Imm → Imm.

Moreover, the morphism i→ j is a natural transformation from the identity to this functor.

Construction of P1. Applying the functor P ◦N to the morphism i→ j in Imm, we get a closed
immersion P(Ni) →֒ P(Nj). We let P1(i) = P(Nj)/P(Ni). Functoriality is defined using the
functoriality of P ◦N on Imm.

For future use, we note that Nj
∼= Ni ⊕ OZ . Indeed, j·(J) is the preimage of i·(I) by the

evaluation at 0 map i·(OX)[t] = j·(OX×A1) → i·(OX), so that j·(J) = i·(I) ⊕ (t) as ideals of
i·(OX)[t]. It follows that Nj

∼= Ni ⊕ i·(OX/I) ∼= Ni ⊕ OZ as Z-modules, and this identification
is easily proved to be natural in i. Furthermore, the epimorphism Nj → Ni corresponds to the
projection Ni ⊕ OZ → Ni.

Construction of P2. By the functoriality of B and Proposition 2.2 we have a cartesian square

ZI B(I)

ZJ B(J),

and since the right arrow is a closed immersion, so is ZI → ZJ. We define the functor P2 by

P2(i) = ZJ/ZI.

If f : (X ′, I′) → (X, I) is a morphism in Id, P2(f) is defined from f × A
1 in the same way as

ZI → ZJ was defined from (X, I) → (X ×A
1, J).

Construction of Q̃. The preimage of J under i ×A
1 is the sheaf of ideals corresponding to the

zero section iZ0 : Z →֒ Z ×A
1; on an affine piece U ×A

1 ∼= Spec(A[T ]) of Z ×A
1, this sheaf is

associated to the ideal (T ) of A[T ] which is a free A[T ]-module of rank 1, so it is an invertible
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Z × A
1-module. By the universal property of the blowup, there exists a unique lift fi in the

diagram
B(J)

pJ

Z ×A
1

fi

i×A
1
X ×A

1,

and it is a closed immersion. We define

Q̃(i) = B(J)/(B(J) − fi(Z ×A
1)).

To see that Q̃ is a functor on Immfl, let

Z ′ i′
X ′

Z
i

X

be a morphism in Immfl. By Proposition 2.3, the square

(Z ′ →֒ Z ′ ×A
1) (Z ′ →֒ X ′ ×A

1)

(Z →֒ Z ×A
1) (Z →֒ X ×A

1)

is cartesian in Immlfp. Applying the functor B, which is right adjoint, to this square, we obtain
the square

Z ′ ×A
1 f

i′

B(j′)

Z ×A
1

fi
B(j)

(7)

which is cartesian by Proposition 2.7, whence the morphism of sheaves Q̃(i) → Q̃(i′).

Proposition 2.9. The functors P2, Q̃, and Q commute with sums and pullbacks along flat
morphisms.

Proof. The fact that Q preserves sums and pullbacks reduces to the following easy fact: the
functor (A ⊂ B) 7→ B/A on the category of pairs of sets A ⊂ B, where a morphism f : B → B′

has to satisfy f−1(A′) = A, to the category of pointed sets preserves sums and pullbacks.
The functor Q̃ is the composition of i 7→ fi and Q, the former being a functor Immfl → Imm

by virtue of (7). We claim that i 7→ fi preserves sums and pullbacks along flat morphisms.
By Proposition 2.3, it suffices to check that the functors i 7→ Z × A

1 and i 7→ B(j) do; this
is obvious for the former, and the latter is the composition of i 7→ j, which obviously has the
desired property, and B : Immlfp → Imm, which preserves pulbacks along flat morphisms by
Proposition 2.7. That B preserves sums is clear from the Proj definition.

For P2, we first note that i 7→ ZI is a functor on Immlfp that preserves pullbacks along flat
morphisms, since ZI is the domain of B(i) when B is viewed as a functor Immlfp → Imm. It
also preserves sums by construction. Now for any i→ i′ in Immfl the square

i i′

j j′



2.1 11

is cartesian, and applying i 7→ ZI to this square, we deduce that i 7→ (ZI →֒ ZJ) is a well-
defined functor Immlfp → Imm, which preserves sums and pullbacks along flat morphisms by
Proposition 2.3. By the same set-theoretic property that we used for Q, we deduce that P2

preserves sums and pullbacks.

Construction of α. The closed immersions P(Ni) →֒ P(Ni⊕OZ) and Z = P(OZ) →֒ P(Ni⊕OZ)
induced by the two projections from Ni ⊕ OZ have disjoint images (see [EGA2, 4.3.6]), so by
Proposition 2.6 we obtain a map αi : P1(i) = P(Ni ⊕OZ)/P(Ni) → Th(Ni) which is natural for
i ∈ Imm.

Construction of β. The obvious epimorphism of graded Z-algebras S(Ni) → i∗(SI) is clearly
natural in i ∈ Imm: if (u, v) : i′ → i is a morphism in Imm, we have a commutative square

S(Ni′) (i′)∗(SI′)

u∗(S(Ni)) u∗i∗(SI)

in which the vertical maps are surjective maps between Z ′-algebras. In particular, for i→ j, we
get a commutative square of closed immersions

ZI P(Ni)

ZJ P(Nj),

whence the map βi : P2(i) = ZJ/ZI → P1(i) = P(Nj)/P(Ni), natural for i ∈ Imm.

Construction of γ. ZJ is a natural closed subscheme of B(J), so it suffices to prove that the image
of ZI →֒ ZJ →֒ B(J) is disjoint from the image of fi : Z×A

1 → B(J). If we consider the situation
over an affine open set Spec(A[t]) ∼= U×A

1 ⊂ X×A
1 and if I(U) = I ⊂ A, explicit computations

reveal that fi(i−1(U)×A
1) is the closed set V+(

⊕
d≥0(I)

d) of p−1
J

(U×A
1) ∼= Proj(

⊕
d≥0(I, t)

d),
while the image of ZI is the closed set V+(

⊕
d≥0(t)

d) which is obviously disjoint from the former.

Construction of δ. We consider the section iX1 : X →֒ X × A
1 at 1 ∈ A

1. Since iX1 (X) is
obviously disjoint from j(Z), (iX1 )−1(J) = OX is invertible. By the universal property of the
blowup, we obtain a unique lift gi in the diagram

B(J)

pJ

X

gi

j
X ×A

1,

which is again a closed immersion. As i−1(OX) = OZ , applying the universal property once more
we get fiiZ1 = gii, whence g−1

i (fi(Z ×A
1)) = i(Z). It follows that gi induces a monomorphism

δi : βi : X/(X − i(Z)) → B(J)/(B(J) − fi(Z ×A
1)).

Having completely defined (6), we now turn to the proof of Theorem 2.8.

Lemma 2.10. Let E be a locally free X-module of finite type. Then the morphism

P(E⊕ OX)/P(E) → P(E ⊕ OX)/(P(E⊕ OX)−X) ∼= Th(E)

is an A
1-equivalence in Shv•(CNis).
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Proof. By the left properness, it suffices to prove that the immersion P(E) →֒ P(E ⊕ OX) −X
is an A

1-equivalence. By [EGA2, 8.6.4], there is a commutative diagram

P(E) P(E ⊕ OX)−X

∼=

P(E) V(OP(E)(−1))

where the bottom arrow is the zero section of the tautological line bundle on P(E). The lemma
now follows from Proposition 2.1.

Proposition 2.11. If X and Z are smooth over S then βi is an isomorphism of pointed sheaves.
If moreover i is locally of finite presentation, then αi is an A

1-equivalence.

Proof. By [EGA4, 17.12.1], Ni is then locally free and S(Ni) → i∗(SI) is an isomorphism, and
similarly for j. It follows that the closed immersions ZI →֒ P(Ni) and ZJ →֒ P(Nj) are both
isomorphisms, so βi is an isomorphism. If i ∈ Immlfp then Ni is also of finite type, so by
Lemma 2.10 αi is an A

1-equivalence.

Lemma 2.12. Let i be the zero section Z →֒ A
n
Z for some n ≥ 0. Then there is a commutative

square
ZJ

∼=

B(J)

∼=

P
n
Z V(OPn

Z
(1))

(8)

in which the vertical arrows are isomorphisms and the lower arrow is the zero section and such
that the composition

A
n
Z

gi
B(J)

∼=
V(OPn

Z
(1)) P

n
Z (9)

is the canonical open immersion V(On
Z) →֒ P(On

Z ⊕ OZ) and furthermore the square

Z ×A
1 fi

B(J)

Z P
n
Z

(10)

is cartesian, where the lower arrow is the closed immersion Z →֒ P(On
Z ⊕ OZ) considered in

Proposition 2.6.

Proof. We assume first that Z is affine, Z = SpecA, and we omit the subscript Z from
the notations. Let Y = B(An+1, J) = ProjS, where S is the graded A[t1, . . . , tn+1]-algebra⊕

d≥0(t1, . . . , tn+1)
d. The surjective morphism A[t1, . . . , tn+1][s1, . . . , sn+1] → S of such alge-

bras sending si to ti in degree 1 induces a closed immersion Y →֒ P
n
An+1 = P

n × A
n+1 over

A
n+1. We shall use q to denote the morphism Y → P

n, and we claim that Y is isomorphic over
P

n to V(OPn(1)). First we note that q is affine since the preimage of the standard affine open
D+(si) of Pn−1 is the affine open D+(ti) of Y , where ti is in degree 1. By the equivalence be-
tween affine schemes and quasi-coherent algebras, we need to show that there is an isomorphism
of Pn-algebras

ψ : S(OPn(1)) ∼= q∗(OY ).

Thus we construct a morphism of Pn-modules φ : OPn(1) → q∗(OY ). On a standard open set
D+(si), φ is given by the map of A[s1, . . . , sn+1](si)-modules

φi : A[s1, . . . , sn+1](1)(si) → S(ti), sjsk/si 7→ tjtk/ti.
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These maps manifestly coincide over the intersections D+(si)∩D+(sj) and therefore induce our
map φ. Then over the affine patch D+(si), ψ is the morphism of rings

S(A[s1, . . . , sn+1](1)(si)) → S(ti)

adjoint to φi, which is easily seen to be an isomorphism. Moreover, the ideal of elements
of positive degrees on the left corresponds to the ideal I(ti) of S(ti), where I is the graded
ideal

⊕
d≥0(t1, . . . , tn+1)

d+1 of S. This is precisely the kernel of the map from S to its associ-
ated graded which corresponds to the closed immersion ZJ →֒ Y . This gives the commutative
square (8). The second claim is seen to hold by direct inspection: if we identify A

n with
B(An,OAn) = Proj(A[t1, . . . , tn][s]) as in the construction of gi, each map in (9) is the Proj of
a map of graded A-algebras, and their composition is the map A[s1, . . . , sn+1] → A[t1, . . . , tn][s]
sending si to tis for i 6= n + 1 and sn+1 to s. This clearly corresponds to the (n + 1)th affine
patch A

n of Pn. [proof of (10)]
Now, for general Z, we apply the previous construction over each affine open set U ⊂ Z, and

the obvious fact that the morphism φi is natural in A shows that the isomorphisms constructed
over U restricts to the ones over V if V ⊂ U are affine, so that they can be glued to give
isomorphisms B(J) → V(OPn

Z
(1)) and ZJ → P

n
Z . The commutativity of (8) and the other

claims automatically hold because they are local conditions on Z.

Proposition 2.13. If Z is smooth over S and i is the zero section Z →֒ A
n
Z for some n ≥ 0,

then γi and δi are A
1-equivalences.

Proof. Since OPn

Z
(1) is an invertible P

n
Z -module, the projection V(OPn

Z
(1)) → P

n
Z is an A

1-
equivalence by Proposition 2.1. By Lemma 2.12, the map q : B(J) → P

n
Z is an A

1-equivalence
and q−1(Pn

Z − Z) = B(J)− f(Z ×A
1), so that B(J)− f(Z ×A

1) → P
n
Z − Z is again a vector

bundle and hence an A
1-equivalence. By left properness, the induced morphism

ǫ : B(J)/(B(J) − f(Z ×A
1)) → P

n
Z/(P

n
Z − Z)

is an A
1-equivalence of Nisnevich sheaves. Since the composition P

n
Z

∼= Z ′ →֒ B(J) → P
n
Z is

the identity, ǫ ◦ γi is the map P
n
Z/P

n−1
Z → P

n
Z/(P

n
Z − Z) considered in Lemma 2.10 and was

shown there to be an A
1-equivalence. This shows that γi is an A

1-equivalence.
Also by Lemma 2.12, the composition of gi : X → B(J) and q is the inclusion A

n
Z →֒ P

n
Z

considered in Proposition 2.6, and this proposition shows that ǫ ◦ δi is an isomorphism. Thus,
δi is also an A

1-equivalence.

Lemma 2.14. Let

Z ′

u

i′
X ′

v

Z
i

X

be a Nisnevich morphism i′ → i in Immlfp. Then γi (resp. δi) is an A
1-equivalence if and only

if γi′ (resp. δi′) is.

Proof. By naturality of γ and δ, we have a commutative diagram

ZJ′/ZI′
γ
i′

B(J′)/(B(J′)− fi′(Z
′ ×A

1)) X ′/(X ′ − i′(Z ′))
δ
i′

ZJ/ZI γi

B(J)/(B(J)− fi(Z ×A
1)) X/(X − i(Z))

δi

(11)

and we claim that the three vertical maps are isomorphism of sheaves, which will prove the
lemma. Since v is flat, v∗(SI) = SI′ , so that

(i′)∗(SI′) = (i′)∗v∗(SI) = u∗i∗(SI),
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and hence (since u is an isomorphism) the morphism ZI′ = Proj((i′)∗(SI′)) → ZI = Proj(i∗(SI))
is an isomorphism. Similarly, using that v×A

1 is flat, we have that ZJ′ → ZJ is an isomorphism,
and so the first vertical map in (11) is an isomorphism. The equality (v ×A

1)∗(SJ) = SJ′ also
implies that the square

B(J′) B(J)

X ′ ×A
1 X ×A

1

is actually cartesian, and in particular B(J′) → B(J) is étale. Using that u is an isomorphism,
we see at once that

B(J′)− fi′(Z
′ ×A

1) B(J′)

B(J) − fi(Z ×A
1) B(J)

is an elementary distinguished square. By Proposition 1.3, the second vertical map in (11) is an
isomorphism. The last vertical map in (11) is taken care of similarly: the condition of the theorem
implies that the obvious square is elementary distinguished and we use Proposition 1.3.

Lemma 2.15. Let {U1, . . . , Un} be an open covering of X and assume that i ∈ Immlfp. If γi×XUν

(resp. δi×XUν
) is an A

1-equivalence for 1 ≤ ν ≤ n, then γi (resp. δi) is an A
1-equivalence.

Proof. Let X0 =
∐

i Ui and Z0 =
∐

i Ui ×X Z, and note that we have a cartesian square

Z0
i0

u

X0

v

Z
i

X

where v is flat. Let X
·

(resp. Z
·
) denote the Čech resolution of v (resp. of u). As a simplicial

scheme over X , X
·

is simply the 0-coskeleton of X0 ∈ Sch/X . By Proposition 2.3 the comma
category Immfl/i has finite limits and the forgetful functor Immfl/i → Sch/Z × Sch/X creates
them. It follows that the degreewise closed immersion i

·
: Z

·
→֒ X

·
induced by i0 : Z0 →֒ X0 is

a simplicial object in Immfl/i (the 0-coskeleton of i0). We can therefore apply to it degreewise
the functors in (6), and we obtain a commutative diagram of pointed simplicial sheaves

P2(i·)
γi.

Q̃(i
·
) Q(i

·
)

δi.

P2(i) γi

Q̃(i) Q(i).
δi

Invoking Proposition 2.9 and right properness, γi. and δi. are degreewise A
1-equivalences,

whence A
1-equivalences of simplicial sheaves. Proposition 2.9 also implies that these functors

commute with the formation of coskeletons, so that the three vertical maps are Čech resolutions
and in particular equivalences of simplicial sheaves. Thus, γi and δi are A

1-equivalences.

The following proposition concludes the proof of Theorem 2.8.

Proposition 2.16. If S is Noetherian and X and Z are smooth and of finite type over S, then
γi and δi are A

1-equivalences.

Proof. By [SGAI, II.4.9] (implicit in the hypotheses of this result is that all schemes are locally
Noetherian), there exists an open covering {U1, . . . , Un} of X such that each closed immersion
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iν : Uν ×X Z → Uν fits into a cartesian square

Uν ×X Z
iν

u

Uν

v

A
r
S A

r
S ×A

s

for some r, s ≥ 0, where v is étale and the lower map is the zero section. On the other hand, the
zero sections also form a cartesian square

Uν ×X Z
i′
ν

u

(Uν ×X Z)×A
s

u×A
s

A
r
S A

r
S ×A

s

by Proposition 2.5, and γi′
ν

and δi′
ν

are A
1-equivalences by Proposition 2.13. By Lemma 2.4, iν

and i′ν are related by a zigzag of Nisnevich morphisms, so by Lemma 2.14 γiν and δiν are also
A

1-equivalences. Now by Lemma 2.15, γi and δi are A
1-equivalences.
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