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Abstract

Let S be an essentially smooth scheme over a field and ` 6= charS a prime number.

We show that the algebra of bistable operations in the mod ` motivic cohomology of

smooth S-schemes is generated by the motivic Steenrod operations. This was previously

proved by Voevodsky for S a field of characteristic zero. We follow Voevodsky’s proof

but remove its dependence on characteristic zero by using étale cohomology instead of

topological realization and by replacing resolution of singularities with a theorem of

Gabber on alterations.
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1 Introduction

The Steenrod algebra and its dual [Mil58] are among the most influential tools in algebraic

topology. One of the innovations in Voevodsky’s solution of the Milnor and Bloch–Kato con-

jectures on Galois cohomology [Voe03b, Voe11] was the construction of the motivic Steenrod

algebra [Voe03a], making it possible to import some topological techniques into an algebro-

geometric setting. Two fundamental questions that were left unanswered in [Voe03a] are

whether the motivic Steenrod operations generate the whole algebra of bistable operations,

and whether this algebra can be identified with the algebra of endomorphisms of a motivic

Eilenberg–Mac Lane spectrum. These questions were settled in [Voe10b] in the case of a

base field of characteristic zero. In this paper we answer these questions affirmatively for an

arbitrary base field, and more generally for any base scheme that is essentially smooth over

a field.

Let k be a perfect field and ` 6= char k a prime number. We denote by M∗∗ the algebra of

bistable operations in the motivic cohomology of smooth k-schemes with coefficients in Z/`

introduced in [Voe03a, §2]. Examples of such operations are the reduced power operations

P i ∈ M2i(`−1),i(`−1) for i ≥ 1, the Bockstein operation β ∈ M1,0, and the operations given

by multiplication by cohomology classes in H∗∗(k,Z/`); we denote by A∗∗ the subalgebra

of M∗∗ generated by these operations. The structure of the algebra A∗∗ was completely

determined in [Voe03a]. On the other hand, motivic cohomology with coefficients in Z/` is

represented, in the stable motivic homotopy category SH(Smk), by the motivic Eilenberg–

Mac Lane spectrum MZ/`. It follows that any morphism MZ/` → Σp,qMZ/` in SH(Smk)

induces a bistable operation of bidegree (p, q), and in fact that every operation arises in this

way. We therefore have the following situation:

A∗∗ ↪→M∗∗ � MZ/`∗∗MZ/`.

Everything just described can be extended to essentially smooth schemes over fields (see

Definition 2.8). Our main results are gathered in the following theorem.

Theorem 1.1: Suppose S is a Noetherian scheme of finite Krull dimension that is essentially

smooth over a field, and let ` 6= charS be a prime number.

(1) The operations

{βεrP ir . . . βε1P i1βε0 | r ≥ 0, ij > 0, εj ∈ {0, 1}, ij+1 ≥ `ij + εj}

form a basis of M∗∗ as a left H∗∗(S,Z/`)-module. In particular, A∗∗ = M∗∗.

(2) The map MZ/`∗∗MZ/`→M∗∗ is an isomorphism.
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(3) There is an equivalence of MZ/`-modules

MZ/` ∧MZ/` '
∨
α

Σpα,qαMZ/`

where (pα, qα) are the bidegrees of the operations in (1).

In characteristic zero, Theorem 1.1 is a consequence of the results of [Voe03a] and [Voe10b].

We emphasize that the identification of the mod ` motivic cohomology of MZ/` with M∗∗ is

nontrivial, and it is a new result for fields of positive characteristic. It implies that the mod

` motivic cohomology of any motivic spectrum over S has a well-defined left A∗∗-module

structure.

One crucial step in the proof of Theorem 1.1 makes use of base change arguments. It

reduces the proof to the case when S is a perfect field k.

Voevodsky’s proof of Theorem 1.1 (1) for fields of characteristic zero ([Voe10b, §3.4])

proceeds by realizing the inclusion A∗∗ ↪→ M∗∗ as the cohomology of a map of split proper

Tate motives M→ A [Voe10b, Lemma 3.50]. Since field extensions are conservative for split

proper Tate motives [Voe10b, Corollary 2.70], one reduces to the case when k is the field of

complex numbers. The calculations concluding the proof use a topological realization functor

to compare M∗∗ with the classical Steenrod algebra. The main problems with attempting

this proof in positive characteristic are:

(a) There is no topological realization functor.

(b) The only known technique for proving that motives of motivic Eilenberg-Mac Lane

spaces are split proper Tate motives uses symmetric products, a construction which

takes us out of the category Smk of smooth schemes. Resolution of singularities is then

used to bridge the gap between the motivic homotopy category and its non-smooth

analog, and likewise for the category of motives.

We solve these problems by replacing the topological realization functor with a coho-

mological étale realization functor (§3.3), and resolution of singularities with a theorem of

Gabber on alterations [Ill, ILO12] (see Theorem 4.4). To apply the latter we use the `dh-

topology introduced in [Kel13]. The `dh-topology is a refinement of the cdh-topology that

allows finite flat surjective maps of degree prime to ` as coverings (see Definition 4.1). While

the cdh-topology is designed to make schemes locally smooth in the presence of resolutions

of singularities, Gabber’s theorem implies that every separated scheme of finite type over a

perfect field admits an `dh-covering by smooth schemes.

In §2 we first present some results on presheaves with transfers. We proceed by explaining

our base change arguments for motivic Eilenberg-Mac Lane spaces and operations in motivic

cohomology. Theorem 1.1 is proved in §3 modulo the commutativity of the “fundamental

square” formulated in Theorem 3.1, whose proof is deferred to §4. Our proof of the latter

relies on the central result of [Kel13, §5] which states that MZ(`)-modules satisfy `dh-descent.
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For completeness, we repeat in §4.2, with minor modifications, the proof of this result from

[Kel13, §5].

In §5 we gather some applications of our results and of Gabber’s theorem. As a direct

consequence of Theorem 1.1, we show that for any motivic spectrum E over S, MZ/`∗∗E is a

left comodule over the dual motivic Steenrod algebra A∗∗. This fact is essential for adapting

Adams spectral sequence techniques to motivic homotopy theory [DI10], [HKO11]. Secondly,

we generalize the main result of [RØ08] by showing that Voevodsky’s category of motives

DM(Smk,Z(`)) is equivalent to the homotopy category of MZ(`)-modules when k is perfect

and ` is invertible in k.

The results of this paper are used in [AF13] to study Euler classes and splittings of vector

bundles, and in [Hoy13] to prove the Hopkins–Morel equivalence relating algebraic cobordism

to motivic cohomology as well as the computation of the slices of Landweber exact motivic

spectra and of the motivic sphere spectrum. Further applications are being developed in work

on Morel’s π1-conjecture [OØ13] and on Milnor’s conjecture on quadratic forms [RØ13].

Acknowledgements: It is our pleasure to thank Andrei Suslin for useful suggestions during

the preparation of this paper, and Chuck Weibel for pointing out the reference [Lev00]. The

third author received partial support from the Leiv Eriksson mobility programme and RCN

ES479962. He would also like to thank the MIT Mathematics Department for its kind

hospitality.

2 Background

2.1 Main categories and functors

Let S be a Noetherian scheme of finite Krull dimension. We refer to such schemes as base

schemes for short. In this section we set notation by reviewing the homotopy theories of

motivic spaces, spaces with transfers, spectra, and spectra with transfers over S, and the

various adjunctions between them. We refer to [RØ08, §2] and [Voe10b, §1.1] for more

detailed expositions.

Let SchS be the category of separated schemes of finite type over S. A full subcategory

C of SchS is called an admissible category if the following conditions hold [Voe10b, §0]:

(1) S ∈ C and A1
S ∈ C.

(2) If X ∈ C and U → X is étale with U affine, then U ∈ C.

(3) C is closed under finite products and finite coproducts.

The most important example is the admissible category SmS of separated smooth S-schemes

of finite type, which we will simply call smooth schemes.

If C is an admissible category, let Cor(C) be the category with the same objects as C but

whose morphisms are the finite S-correspondences. In the notation of [CD12, §9.1.1], the
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set of morphisms from X to Y in Cor(C) is the abelian group c0(X ×S Y/X,Z).1 This is a

subgroup of the free abelian group generated by the closed integral subschemes Z of X ×S Y
such that the induced morphism Z → X is finite and dominates an irreducible component of

X. If X is regular, then c0(X ×S Y/X,Z) is the entire free abelian group ([SV00b, Corollary

3.4.6]) but in general it is a proper subgroup ([SV00b, Example 3.4.7]). The category Cor(C) is

additive, with direct sum given by disjoint union, and it has a symmetric monoidal structure

such that the graph functor Γ: C→ Cor(C) is symmetric monoidal.

We denote by sPre∗(C) the category of pointed simplicial presheaves on C. If R is any

commutative ring, we denote by sPretr(C, R) the category of additive presheaves of simplicial

R-modules on Cor(C). By left Kan extension, we obtain an adjunction

Rtr : sPre∗(C) � sPretr(C, R) : utr, (1)

where the right adjoint is the obvious forgetful functor. By the Dold–Kan correspondence,

sPretr(C, R) is equivalent to the category of nonnegatively graded (homological) chain com-

plexes of additive presheaves of R-modules on Cor(C), but the simplicial description gives

the functor Rtr a symmetric monoidal structure. In fact, the adjunction (1) is a symmetric

monoidal Quillen adjunction for the usual projective model structures (i.e., the model struc-

tures where weak equivalences and fibrations are determined schemewise). The associated

homotopy categories will be denoted by H∗(C) and Htr(C, R), respectively.

If τ is a Grothendieck topology on C, consider the classes of maps

WA1 = {(A1 ×X)+ → X+ |X ∈ C},
Wτ = {X+ → X+ |X ∈ C and X→ X is a τ -hypercover}

in sPre∗(C). If E is any set of maps in sPre∗(C), we can consider the left Bousfield localization

(see [Hir09]) of sPre∗(C) at E (resp. of sPretr(C, R) at RtrE). Although the class Wτ is not

essentially small, it is well-known that there exists a set S ⊂ Wτ such that an object in

H∗(C) is Wτ -local if and only if it is S-local. It follows that the left Bousfield localization of

sPre∗(C) at Wτ (resp. of sPretr(C, R) at RtrWτ ) also exists.

The left Bousfield localization of the projective structure on sPre∗(C) at WA1 ∪ WNis

(resp. of sPretr(C, R) at Rtr(WA1 ∪WNis)) is called the motivic model structure and its weak

equivalences are the motivic weak equivalences. The associated motivic homotopy categories

will be denoted by H∗Nis,A1(C) and Htr
Nis,A1(C, R), respectively. Occasionally we will consider

intermediate localizations or other topologies, in which case we will use self-explanatory

notations for the associated homotopy categories, e.g., H∗ét(C), Htr
cdh,A1(C, R), etc.

In general, Htr
τ (C, R) is not equivalent to the unstable derived category of the additive

category of τ -sheaves of R-modules with transfers on C. The following lemma provides

necessary and sufficient conditions for this to be true.

Lemma 2.1: Let C ⊂ SchS be an admissible category, R a commutative ring, and τ a

topology on C. The following assertions are equivalent.

1In [SV00b] this group is denoted by cequi (X ×S Y/X, 0), cf. [CD12, §D.3].
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(1) utrRtr : sPre∗(C)→ sPre∗(C) sends Wτ to Wτ -local equivalences.

(2) A morphism f in sPretr(C, R) is an RtrWτ -local equivalence if and only if utr(f) is an

Wτ -local equivalence.

(3) The square

Htr(C, R) Htr
τ (C, R)

H∗(C) H∗τ (C)

L id

L id

Rutr Rutr

is commutative.

Proof. The implication (2) ⇒ (1) is obvious, and the equivalence (2) ⇔ (3) is essentially

formal. Let us prove (1)⇒ (2). Assume (1) and let f be a morphism in sPretr(C, R). Since

the functor utr : sPretr(C, R)→ sPre∗(C) takes values in the subcategory of simplicial raddi-

tive functors on C+, [Voe10c, Theorem 4.20] shows that, if f is an RtrWτ -local equivalence,

then utr(f) is an Wτ -local equivalence. Conversely, suppose that utr(f) is an Wτ -local equiv-

alence. Choose a map f̃ between RtrWτ -local objects in sPretr(C, R) which is RtrWτ -locally

equivalent to f . Since we already proved that the functor utr preserves equivalences, utr(f̃)

is Wτ -locally equivalent to utr(f), and since the source and target of utr(f̃) are Wτ -local,

utr(f̃) is a projective equivalence. Therefore, f̃ is a projective equivalence, and hence f is an

RtrWτ -local equivalence as desired.

Definition 2.2: Let C ⊂ SchS be an admissible category and let R be a commutative ring.

A topology τ on C is compatible with R-transfers if the equivalent conditions of Lemma 2.1

are satisfied.

This definition agrees with [CD12, Definition 10.3.2]. By [CD12, Proposition 10.3.3], the

Nisnevich topology is compatible with transfers on any admissible category C, and by [CD12,

Proposition 10.4.8 and Proposition 10.3.17], the cdh-topology is compatible with transfers

on SchS . Both facts are also proved in [Voe10b, §1].

An object of H∗(C) is called A1-local (resp. τ -local) if it is WA1-local (resp. Wτ -local)

in the sense of [Hir09, Definition 3.1.4 (1) (a)]. Since S is Noetherian and of finite Krull

dimension, a simplicial presheaf F is Nisnevich-local if and only if F (∅) is contractible and

F (Q) is homotopy cartesian for any cartesian square

Q =

W V

U X
i

p

in C, where i is an open immersion, p is étale, and p induces an isomorphism Z ×X V ∼=
Z for some closed complement Z of i(U); we will call such a square a Nisnevich square.
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By the general principles of left Bousfield localization, H∗Nis,A1(C) can be identified with

the full subcategory of H∗(C) spanned by the A1- and Nisnevisch-local objects. Similarly,

Htr
Nis,A1(C, R) is the full subcategory of Htr(C, R) spanned by the A1- and Nisnevich-local

objects (i.e., those objects F such that utrF is A1- and Nisnevich-local).

We note that the forgetful functor utr : sPretr(C, R) → sPre∗(C) detects motivic weak

equivalences. Indeed, utr sends RtrWNis to equivalences since the Nisnevich topology is

compatible with R-transfers, and it is an easy exercise to show that it also sends RtrWA1 to

A1-local equivalences (see [Voe10b, Theorem 1.7]). As a result, we will also denote by utr

the induced functor Htr
Nis,A1(C, R)→ H∗Nis,A1(C), right adjoint to LRtr.

An inclusion of admissible categories i : C ↪→ D induces Quillen adjunctions (i!, i
∗) on

the model categories sPre∗(−) and sPretr(−, R) with any of the model structures considered,

where i∗ is the restriction functor. These adjunctions commute with the adjunctions (1) since

the right adjoints obviously commute. Since the functor i! is fully faithful, its derived functor

Li! will also be fully faithful provided that i∗ preserve weak equivalences. It is clear that i∗

always preserves A1-local equivalences. If τ is a topology on D, then i∗ : sPre∗(D)→ sPre∗(C)

preserves τ -local equivalences if and only if i is cocontinuous for τ [SGA72, III, Definition

2.1]. For i∗ : sPretr(D, R)→ sPretr(C, R) to preserve RtrWτ -local equivalences, we have the

following criterion.

Lemma 2.3: Let i : C ↪→ D be an inclusion of admissible subcategories of SchS, τ a topology

on D, and R a commutative ring. Suppose that i is cocontinuous for τ and that τ is compatible

with R-transfers on D. Then τ is also compatible with R-transfers on C and the restriction

functor i∗ : sPretr(D, R)→ sPretr(C, R) preserves RtrWτ -local equivalences.

Proof. For the first claim we must verify that utrRtr : sPre∗(C)→ sPre∗(C) sends τ -hypercovers

in C to τ -local equivalences. Since the functor i! is fully faithful, we have

utrRtr ∼= utri∗i!R
tr ∼= i∗utrRtri!.

Now utrRtri! sends τ -hypercovers in C to τ -local equivalences on D by the assumption that

τ is compatible with R-transfers on D, and since i is cocontinuous, i∗ preserves τ -local

equivalences. The second claim follows from the isomorphism i∗utr ∼= utri∗ and Lemma 2.1

(2).

The Nisnevich topology satisfies the hypotheses of Lemma 2.3 for any i : C ↪→ D, so

that the functors i∗ preserve motivic weak equivalences. In particular, the derived functors

Li! : H
∗
Nis,A1(C)→ H∗Nis,A1(D) and Li! : H

tr
Nis,A1(C, R)→ Htr

Nis,A1(D, R) are fully faithful.

We now turn to the stable theory. As (Gm, 1) is not projectively cofibrant, we choose a

projectively cofibrant replacement G (cf. [RØ08, Section 2.2]). If p ≥ q ≥ 0, define as usual

Sp,q = (S1)∧p−q ∧G∧q ∈ sPre∗(C).

According to the general principles of [Hov01], the motivic model structures induce symmetric

monoidal stable model structures on the category

Spt(C) = SpΣ(sPre∗(C), S2,1)
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of symmetric S2,1-spectra and on the category

Spttr(C, R) = SpΣ(sPretr(C, R), RtrS2,1)

of symmetric RtrS2,1-spectra. The fibrant objects are the levelwise motivically fibrant spectra

(E0, E1, . . . ) such that the maps Ei → Ω2,1Ei+1 adjoint to the bonding maps are motivic weak

equivalences ([RØ08, Definition 14]). The associated homotopy categories will be denoted

SH(C) and DM(C, R), respectively.

There is a commutative diagram of symmetric monoidal Quillen adjunctions

sPre∗(C) sPretr(C, R)

Spt(C) Spttr(C, R)

Rtr

utr

Rtr

utr

Σ∞ Ω∞ Σ∞ Ω∞ (2)

where the functors in the lower row are defined levelwise. We will denote by 1 the motivic

sphere spectrum Σ∞S+ in Spt(C). When there is no danger of confusion, we will sometimes

omit Σ∞ from the notations.

We make the following observation which is lacking from [RØ08, §2].

Lemma 2.4: The functor utr : Spttr(C, R)→ Spt(C) detects stable motivic weak equivalences.

Proof. It detects levelwise motivic equivalences since utr : sPretr(C, R) → sPre∗(C) detects

motivic equivalences. Define a functor Q : Spt(C) → Spt(C) by (QE)n = Hom(S2,1, En+1)

(with action of Σn induced by that of Σn+1), and let Q∞E = colimn→∞QnE. Similarly,

let Qtr : Spttr(C, R) → Spttr(C, R) be given by (QtrE)n = Hom(RtrS2,1, En+1). Then a

morphism f in Spt(C) (resp. in Spttr(C, R)) is a stable motivic equivalence if and only if

Q∞(f) (resp. Q∞tr (f)) is a levelwise motivic equivalence. The proof is completed by noting

that utrQ∞tr
∼= Q∞utr.

As a result, we simply denote by utr : DM(C, R)→ SH(C) the induced functor on homo-

topy categories.

2.2 Change of base scheme

In what follows we suppose given a class C of morphisms in the category of base schemes

which is stable under base change and such that, for any base scheme S, the category CS of

S-schemes whose structure map is in C forms an admissible category. Denote by E(−) any

of the model categories sPre∗(−), sPretr(−, R), Spt(−), Spttr(−, R). As S varies, E(CS) is

then a monoidal C-fibered model category over the category of base schemes, in the sense of

[CD12, §1.3.d]. In particular, a morphism of base schemes f : T → S induces a symmetric

monoidal Quillen adjunction

f∗ : E(CS) � E(CT ) : f∗,
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where f∗ is induced by the base change functors f∗ : CS → CT and f∗ : Cor(CS) → Cor(CT ).

If f belongs to CS , there is also a Quillen adjunction

f] : E(CT ) � E(CS) : f∗,

where f] is induced by the forgetful functors f] : CT → CS and f] : Cor(CT )→ Cor(CS). The

C-fibered structure of E(C) is moreover compatible with all the standard adjunctions between

the various choices of E, in the sense that the functors f∗ and f] commute with all left adjoints.

For the adjunction (Rtr, utr), this follows from the commutativity of the squares

CS Cor(CS)

CT Cor(CT )

Γ

f∗

Γ

f∗ and

CT Cor(CT )

CS Cor(CS)

Γ

f]

Γ

f]

from [CD12, Lemmas 9.3.3 and 9.3.7]. For the other adjunctions it is obvious.

Define a new class of morphisms Ĉ as follows. A map of base schemes T → S belongs to Ĉ

if it is the limit of a cofiltered diagram (Tα) in CS whose transition maps Tβ → Tα are affine

and dominant (the dominance condition is needed in the proof of Lemma 2.5 (2) below). If

U is any T -scheme of finite type, then by [Gro66, Théorème 8.8.2] it is the limit of a diagram

of schemes of finite type (Uα) over the diagram (Tα). Moreover, if the morphism U → T is

either

• separated,

• smooth or étale,

• an open immersion or a closed immersion,

then we can choose each Uα → Tα to have the same property (this follows from [Gro66,

Proposition 8.10.4], [Gro67, Proposition 17.7.8], and [Gro66, Proposition 8.6.3], respectively).

We shall assume that this is also true for C-morphisms: we require any U ∈ CT to be the

limit of schemes Uα with Uα ∈ CTα (by the above, this holds if C = Sm). It is then clear that

Ĉ is closed under composition.

From now on we fix a Ĉ-morphism of base schemes f : T → S, the cofiltered limit of

C-morphisms fα : Tα → S.

Lemma 2.5: Consider the categories sPre∗ and sPretr with the schemewise model structures.

Let X ∈ CT be a cofiltered limit of schemes Xα in CTα and let p ≥ q ≥ 0.

(1) For any F ∈ sPre∗(CS), the canonical map

hocolimα R Map(Σp,q(Xα)+,Lf
∗
αF )→ R Map(Σp,qX+,Lf

∗F )

is an equivalence.
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(2) For any F ∈ sPretr(CS , R), the canonical map

hocolimα R Map(LRtrΣp,q(Xα)+,Lf
∗
αF )→ R Map(LRtrΣp,qX+,Lf

∗F )

is an equivalence.

Proof. Note that Σp,qX+ can be obtained from copies of (G×nm ×X)+ using finite homotopy

colimits in a way which is compatible with base change. Since filtered homotopy colimits

commute with finite homotopy limits, we can assume that p = q = 0. Both sides then preserve

homotopy colimits in F , so we may further assume that F = Y+ (resp. that F = LRtrY+)

where Y ∈ CS . Then Lf∗F is represented by Y ×S T and the claim follows from [Gro66,

Théorème 8.8.2] (resp. from [CD12, Proposition 9.3.9]).

We now make the following observations.

• Any trivial line bundle in CT is the cofiltered limit of trivial line bundles in CTα .

• Any Nisnevich square in CT is the cofiltered limit of Nisnevich squares in CTα .

The former is obvious. Any Nisnevich square in CT is a cofiltered limit of cartesian squares

Wα Vα

Uα Xα
iα

pα

in CTα , where iα is an open immersion and pα is étale. Let Zα be the reduced complement

of iα(Uα) in Xα. It remains to shows that Zα ×Xα Vα → Zα is an isomorphism for large α.

By [Gro66, Corollaire 8.8.2.5], it suffices to show that Z = limα Zα as closed subschemes of

X. Now limα Zα ∼= Zα ×Xα X for large α, and so limα Zα is a closed subscheme of X with

the same support as Z. Moreover, it is reduced by [Gro66, Proposition 8.7.1], so it coincides

with Z.

Lemma 2.6: The functors Lf∗ : H∗(CS) → H∗(CT ) and Lf∗ : Htr(CS , R) → Htr(CT , R)

preserve A1-local objects and Nisnevich-local objects.

Proof. If f is in C this follows from the existence of the Quillen left adjoint f] to f∗ and the

observation that f] sends trivial line bundles to trivial line bundles and Nisnevish squares to

Nisnevich squares. Thus, each Lf∗α preserves A1-local objects and Nisnevich-local objects.

Since any trivial line bundle (resp. Nisnevich square) over T is a cofiltered limit of trivial line

bundles (resp. Nisnevich squares) over Tα, Lemma 2.5 shows that Lf∗ preserves A1-local

objects and Nisnevich-local objects in general.

Lemma 2.7: Consider the categories sPre∗ and sPretr with the motivic model structures.

Let X ∈ CT be a cofiltered limit of schemes Xα in CTα and let p ≥ q ≥ 0.
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(1) For any F ∈ sPre∗(CS), the canonical map

hocolimα R Map(Σp,q(Xα)+,Lf
∗
αF )→ R Map(Σp,qX+,Lf

∗F )

is an equivalence.

(2) For any F ∈ sPretr(CS , R), the canonical map

hocolimα R Map(LRtrΣp,q(Xα)+,Lf
∗
αF )→ R Map(LRtrΣp,qX+,Lf

∗F )

is an equivalence.

Proof. Combine Lemmas 2.5 and 2.6.

A morphism in Ŝm will be called essentially smooth:

Definition 2.8: A morphism of Noetherian schemes of finite Krull dimension T → S is said

to be essentially smooth if it is the limit of a cofiltered diagram (Tα) of smooth S-schemes

whose transition maps Tβ → Tα are affine and dominant.

For example, if X ∈ SmS and x ∈ X, the local schemes SpecOX,x, SpecOh
X,x, and

SpecOsh
X,x (corresponding to the Zariski, Nisnevich, and étale topologies, respectively) are

essentially smooth over S. The following lemma shows that an essentially smooth scheme

over a field is in fact essentially smooth over a finite field Fp or over Q, and in particular over

a perfect field. Together with the previous continuity results, this will allow us to extend

many results from perfect fields to essentially smooth schemes over arbitrary fields.

Lemma 2.9: Let k be a perfect field and L a field extension of k. Then the map SpecL→
Spec k is essentially smooth.

Proof. Since SpecL = limK SpecK where K ranges over the finitely generated field exten-

sions of k contained in L, we may assume that L = k(x1, . . . , xn) for some xi ∈ L. Since k is

perfect, Spec k[x1, . . . , xn] has a smooth dense open subset U ([Gro67, Corollaire 17.15.13]).

Then SpecL is the cofiltered limit of the nonempty affine open subschemes of U .

2.3 Eilenberg–Mac Lane spaces and spectra

Let C ⊂ SchS be an admissible category and let R be a commutative ring. Given p ≥ q ≥ 0

and an R-module A, the motivic Eilenberg–Mac Lane space K(A(q), p)C ∈ H∗Nis,A1(C) is

defined by

K(A(q), p)C = utr(LRtrSp,q ⊗L
R A),

cf. [Voe10b, §3.2]. Note that this space does not depend on the ring R since K(A(q), p)C =

utr(LZtrSp,q ⊗L
ZA). The motivic Eilenberg–Mac Lane spectrum MAC ∈ SH(C) is defined by

MAC = utr(LRtr1⊗L
R A).

11



More explicitly, MAC is given by the sequence of spaces K(A(n), 2n)C with bonding maps

Σ2,1K(A(n), 2n)C → K(A(n+ 1), 2n+ 2)C. Note that 1 ∈ Spt(C) is cofibrant and therefore

MRC is equivalent to the commutative monoid utrRtr1 in the symmetric monoidal model

category Spt(C). According to [RØ08, Proposition 38], there is a symmetric monoidal model

category MRC -mod of MRC-modules. In addition, since MAC ' utr(Rtr1⊗RÃ) where Ã→ A

is a cofibrant replacement of A in Spttr(C, R), the object MAC has a canonical structure of

MRC-module. When C = SmS , we will write K(A(q), p) for K(A(q), p)C and MA for MAC.

The symmetric monoidal adjunction (Rtr, utr) between Spt(C) and Spttr(C, R) lifts to a

symmetric monoidal adjunction

Φ: MRC -mod � Spttr(C, R) : Ψ

such that Φ(MRC ∧ −) = Rtr. This is in fact a symmetric monoidal Quillen adjunction (see

[RØ08, §2]). In §5.2 we will show that it is a Quillen equivalence when C = SmS and S is the

spectrum of a perfect field whose characteristic exponent is invertible in R. Here we recall

a weaker result which holds over any base. Call an MR-module cellular if it is an iterated

homotopy colimit of MR-modules of the form Σp,qMR with p, q ∈ Z. Similarly, an object in

DM(SmS , R) is cellular if it is an iterated homotopy colimit of objects of the form RtrΣp,q1

with p, q ∈ Z.

Lemma 2.10: The derived adjunction (LΦ,RΨ) between Ho(MR -mod) and DM(SmS , R)

restricts to an equivalence between the full subcategories of cellular objects.

Proof. The proof of [RØ08, Corollary 62] works with any ring R instead of Z.

Let C be a class of morphisms of schemes as in §2.2, and let f : T → S be a morphism of

base schemes. For any p ≥ q ≥ 0 and any R-module A there is a canonical map

Lf∗K(A(q), p)CS → K(A(q), p)CT , (3)

adjoint to the composition

LRtrLf∗utr(LRtrSp,qS ⊗
L
R A) ' Lf∗LRtrutr(LRtrSp,qS ⊗

L
R A)

→ Lf∗(LRtrSp,qS ⊗
L
R A) ' LRtrLf∗Sp,qS ⊗

L
R Lf∗A ' LRtrSp,qT ⊗

L
R A.

Similarly, by applying (3) levelwise we obtain a canonical map

Lf∗MACS → MACT . (4)

Theorem 2.11: Let U be a base scheme and let f : T → S a morphism in ĈU . Then (3)

and (4) are equivalences.

Proof. It suffices to show that (3) is an equivalence. We may clearly assume S = U , so that

f itself is a Ĉ-morphism. It suffices to show that the canonical map

Lf∗utr → utrLf∗ (5)
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is an equivalence. If f is in C, then the functors f∗ have Quillen left adjoints f] such that

Lf]LR
tr ' LRtrLf], and so (5) is an equivalence by adjunction. In the general case, let

f be the cofiltered limit of C-morphisms fα : Tα → S. Let F ∈ Htr
Nis,A1(CS , R). To show

that Lf∗utrF → utrLf∗F is an equivalence in H∗Nis,A1(CT ), it suffices to show that for any

X ∈ CT , the induced map

R Map(X+,Lf
∗utrF )→ R Map(X+, u

trLf∗F ) ' R Map(LRtrX+,Lf
∗F )

is an equivalence. Write X as a cofiltered limit of schemes Xα in CTα . Then by Lemma 2.7,

the above map is the homotopy colimit of the maps

R Map((Xα)+,Lf
∗
αu

trF )→ R Map(LRtr(Xα)+,Lf
∗
αF ),

which are equivalences since fα is in C.

Now we specialize to the case when C = SmS and S is essentially smooth over a field.

If k is a field and X is a smooth k-scheme, the motivic cohomology groups Hp,q(X,A) are

defined in [MVW06, Definition 3.4] for any abelian group A. By [MVW06, Proposition 3.8],

these groups do not depend on the choice of the field k. More generally, if X is an essentially

smooth scheme over a field k, cofiltered limit of smooth k-schemes Xα, we define

Hp,q(X,A) = colimα H
p,q(Xα, A).

This definition does not depend on the choice of the diagram (Xα) since it is unique as a pro-

object in the category of smooth k-schemes [Gro66, Corollaire 8.13.2]. Moreover, by [MVW06,

Lemma 3.9], it is also independant of the choice of k. Theorem 4.24 in [Hoy13] shows that

the motivic Eilenberg-Mac Lane spaces and spectra represent motivic cohomology:

Theorem 2.12: Assume that S is essentially smooth over a field. Let A be an R-module

and X ∈ SmS. For any p ≥ q ≥ 0 and r ≥ s ≥ 0, there is a natural isomorphism

Hp−r,q−s(X,A) ∼= [Σr,sX+,K(A(q), p)]

and the canonical maps

K(A(q), p)→ R Hom(Sr,s,K(A(q + s), p+ r)) (6)

are equivalences. For any p, q ∈ Z, there is a natural isomorphism

Hp,q(X,A) ∼= [Σ∞X+,Σ
p,qMA].

The following consequence of Theorem 2.12 summarizes the standard vanishing results

for motivic cohomology, cf. [Hoy13, Corollary 4.26].
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Corollary 2.13: Assume that S is essentially smooth over a field. Let X ∈ SmS and p, q ∈ Z

satisfy any of the following conditions:

(1) q < 0,

(2) p > q + d,

(3) p > 2q,

where d is the least integer such that X can be written as a cofiltered limit of smooth d-

dimensional schemes over a field. Then, for any abelian group A, [Σ∞X+,Σ
p,qMA] = 0.

2.4 Operations in motivic cohomology

Let S be essentially smooth over a field. We fix a prime number ` 6= charS and we abbreviate

K(Z/`(n), 2n) to Kn and MZ/` to M. Denote by M∗∗ the algebra of bistable operations on

the motivic cohomology of motivic spaces over S: an element φ ∈ Mp,q is a collection of

natural transformations

φr,s : H̃r,s(−,Z/`)→ H̃r+p,s+q(−,Z/`), r, s ∈ Z,

on H∗Nis,A1(SmS) such that, under the bistability isomorphisms, φr,sΣ
2,1 = φr−2,s−1. If

ιn ∈ H̃2n,n(Kn,Z/`) is the tautological class, it is clear that we have an isomorphism

M∗∗ ∼= limn≥0 H̃
∗+2n,∗+n(Kn,Z/`), φ 7→ (φ2n,n(ιn))n

(see [Voe03a, Proposition 2.7]). As a result, by Theorem 2.11, if S and T are both essentially

smooth over a field, a map f : T → S induces a map of algebras

f∗ : M∗∗S →M∗∗T . (7)

Note that any morphism M→ Σp,qM in SH(SmS) induces a bistable operation of bidegree

(p, q), which defines a canonical map

M∗∗M→M∗∗. (8)

In particular, any cohomology class α ∈ Hp,q(S,Z/`) defines an element of Mp,q. The Bock-

stein map M → Σ1,0M is the composition of the first and last maps in the distinguished

triangle

MZ/`→ Σ1,0MZ
`→ Σ1,0MZ→ Σ1,0MZ/`.

By (8), it induces an operation β ∈M1,0. We can also define the reduced power operations

P i ∈M2i(`−1),i(`−1)

as follows. If S is the spectrum of a perfect field, these are defined in [Voe03a, §9]. It is easy

to see by inspecting their definition that if f : Spec k′ → Spec k is an extension of perfect

fields, f∗(P i) = P i. Thus, if f : S → Spec k is essentially smooth where k is a perfect field,

the operation f∗(P i) ∈M∗∗S is independent of the choice of f .

Let A∗∗ ⊂M∗∗ be the subalgebra generated by
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• the reduced power operations P i for i ≥ 0,

• the Bockstein β,

• the operations u 7→ αu for α ∈ H∗∗(S,Z/`).

Clearly, the map (7) sends A∗∗S to A∗∗T , so that we have a commutative square of algebras:

A∗∗S A∗∗T

M∗∗S M∗∗T .

f∗

f∗

(9)

3 Main Results

3.1 The fundamental square

The following theorem is our key technical result. It will be proved in §4.

Theorem 3.1: Let k be a perfect field, ` 6= char k a prime number, R a Z(`)-algebra, and

i : C ↪→ D an inclusion of admissible subcategories of Schk with C ⊂ Smk. Then the square

H∗Nis,A1(D) H∗Nis,A1(C)

Htr
Nis,A1(D, R) Htr

Nis,A1(C, R)

i∗

LRtr

i∗

LRtr

commutes up to natural isomorphism. More precisely, the canonical natural transformation

LRtri∗ → i∗LRtr

is an isomorphism.

If k admits resolution of singularities in the sense of [FV00, Definition 3.4], this holds for

any commutative ring R by [Voe10b, Theorem 1.21]. However, resolution of singularities is

only known to hold for fields of characteristic zero.

3.2 Motives of Eilenberg–Mac Lane spaces

Let F be a field. Recall that a split proper Tate motive of weight ≥ n in Htr
Nis,A1(C, F ) is a

direct sum of object of the form LF trSp,q with p ≥ 2q and q ≥ n [Voe10b, Definition 2.60].

Theorem 3.2: Let S be essentially smooth over a field of characteristic exponent c. Let A

be a finitely generated Z[1/c]-module, F a field of characteristic 6= c, and p ≥ 2q ≥ 0. Then

LF trK(A(q), p)SmS
is a split proper Tate motive of weight ≥ q in Htr

Nis,A1(SmS , F ).
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Proof. We abbreviate K(A(q), p)C to KC. By Theorem 2.11 we can assume that S is the

spectrum of a perfect field. The theorem is obvious if p = 0, so assume further that p > 0.

Let D ⊂ SchS be the admissible subcategory of normal quasi-projective S-schemes (see

[Voe10b, Lemma A.4]) and let i : SmS ↪→ D be the inclusion. Note that i∗KD ' KSmS
. By

Theorem 3.1, we have

i∗LF trKD ' LF tri∗KD ' LF trKSmS
. (10)

By [Voe10b, Corollary 3.28], LF trKD is split proper Tate of weight ≥ q. We conclude by

noting that the adjunction (Li!, i
∗) restricts to an equivalence between the subcategories of

split proper Tate motives of weight ≥ q since Li! is fully faithful.

We now fix a prime number ` 6= charS and we abbreviate MZ/` to M. The following

corollary is assertion (2) of Theorem 1.1:

Corollary 3.3: The canonical map M∗∗M→M∗∗ is an isomorphism.

Proof. Recall that we abbreviate K(Z/`(n), 2n) to Kn. This canonical map fits in the exact

sequence

0→ lim1 H̃p−1+2n,q+n(Kn,Z/`)→ Mp,qM→ lim H̃p+2n,q+n(Kn,Z/`)→ 0,

and we must show that the lim1 term vanishes. By Theorem 3.2, LZ/`trKn ' Σ2n,nMn

where Mn is split proper Tate of weight ≥ 0. All functors should be derived in the following

computations. Using standard adjunctions, we get

H̃p−1+2n,q+n(Kn,Z/`) ∼= [Σ∞Kn,Σ
p−1+2n,q+nM] ∼= [Σ∞Z/`trKn,Σ

p−1+2n,q+nZ/`tr1]

∼= [Σ2n,nΣ∞Mn,Σ
p−1+2n,q+nZ/`tr1] ∼= [Σ∞Mn,Σ

p−1,qZ/`tr1].

To show that lim1[Σ∞Mn,Σ
p−1,qZ/`tr1] = 0, it remains to show that the cofiber sequence⊕

n≥0

Σ∞Mn →
⊕
n≥0

Σ∞Mn → hocolimn→∞Σ∞Mn

splits in DM(SmS ,Z/`). If S is the spectrum of a perfect field, this follows from [Voe10b,

Corollary 2.71]. In general, let f : S → Spec k be essentially smooth where k is a perfect field.

Then by Theorem 2.11, the above cofiber sequence is the image by f∗ of the corresponding

cofiber sequence over k, and hence it splits.

Corollary 3.4: M ∧M is equivalent to an M-module of the form
∨
α Σpα,qαM.

Proof. By Theorem 3.2, LZ/`trKn ' Σ2n,nMn where Mn is split proper Tate of weight ≥ 0.

By [Voe10b, Corollary 2.71] and Theorem 2.11, hocolimn→∞Mn is again a split proper Tate

object of weight ≥ 0, i.e., can be written in the form

hocolimMn '
⊕
α

LZ/`trSpα,qα
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with pα ≥ 2qα ≥ 0. In the following computations, all functors must be appropriately derived.

We have the equivalences

Z/`trM ' Z/`tr colim Σ−2n,−nΣ∞Kn ' colim Σ−2n,−nΣ∞Z/`trKn

' colim Σ−2n,−nΣ∞Σ2n,nMn ' colim Σ∞Mn ' Σ∞ colimMn

' Σ∞
⊕
α

Z/`trSpα,qα ' Z/`tr
∨
α

Σ∞Spα,qα .

In particular, Z/`trM = Φ(M ∧M) is cellular. By Lemma 2.10, we obtain the equivalences

M ∧M ' M ∧
∨
α

Σ∞Spα,qα '
∨
α

Σpα,qαM.

3.3 Comparison with étale Steenrod operations

In this section we are interested in the case when k is an algebraically closed field. We will

denote by aét the localization functors

aét : H∗(Smk)→ H∗ét(Smk) and aét : D(Smk)→ Dét(Smk).

Here D(Smk) is the homotopy category of chain complexes of presheaves of abelian groups

on Smk, and Dét(Smk) is the full subcategory spanned by chain complexes satisfying étale

hyperdescent or, equivalently, the category obtained from D(Smk) by inverting maps inducing

isomorphisms on étale homology sheaves.

The shifted Suslin–Voevodsky motivic complex Z(1)[1] ∈ DNis(Smk) of weight one is

quasi-isomorphic, as a chain complex of Nisnevich sheaves, to the presheaf represented by

the multiplicative group scheme Gm [MVW06, Theorem 4.1]. By assuming 1/m ∈ k, the

Kummer short exact sequence of étale sheaves 0 → µm → Gm
m→ Gm → 0 produces a

quasi-isomorphism aétZ/m(1) ' µm, whence

aétZ/m(q)[p] ' µ⊗qm [p] (1/m ∈ k, p, q ∈ Z, q ≥ 0). (11)

This equivalence induces for every pointed simplicial presheaf X on Smk a canonical map

H̃p,q(X,Z/m) = H̃pNis(X,Z/m(q))→ H̃pét(X,µ
⊗q
m ) (12)

from motivic to étale cohomology. Moreover, it is easy to show that (12) is compatible with

cup products and the bigraded suspension isomorphisms. In étale cohomology the latter is

the canonical isomorphism

H̃p+2
ét (Gm ∧ ΣX,µ⊗q+1

n ) ∼= H̃pét(X,µ
⊗q
n ).

Lemma 3.5: Let X be a pointed simplicial presheaf on Smk. The canonical map (12)

H̃p,q(X,Z/`)→ H̃pét(X,µ
⊗q
` )

is an isomorphism when p ≤ q.
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Proof. The lemma holds for pointed simplicial smooth schemes by [Voe11, Theorem 6.17]. A

standard argument implies that it automatically holds for all simplicial presheaves. In more

details, consider the map

aét : R Map(ZX,Z/`(q)[p])→ R Map(ZX,µ⊗q` [p]) (13)

between derived mapping spaces, which on π0 gives the map of the lemma. If X = Z+ for

some Z ∈ Smk and K is any simplicial set, applying the functor [K,−] to (13) yields the

instance of (12) with the pointed simplicial smooth scheme (Z × K)+. Hence, (13) is a

weak equivalence for such X. Since an arbitrary simplicial presheaf is a homotopy colimit of

representable presheaves and both sides of (13) transform homotopy colimits into homotopy

limits, the general case follows.

Corollary 3.6: Let X be a pointed simplicial presheaf on Smk. The map (12) induces an

isomorphism

H̃∗∗(X,Z/`)[τ−1] ∼= H̃∗ét(X,µ
⊗∗
` ),

where τ ∈ H0,1(Spec k,Z/`) ∼= µ`(k) is a primitive `th root of unity.

Proof. By Lemma 3.5, the kernel and cokernel of H̃∗∗(X,Z/`) → H̃∗ét(X,µ
⊗∗
` ) are concen-

trated in bidegrees (p, q) with p > q. In particular, every element is annihilated by a power

of τ , whence the result.

Remark 3.7: In [Lev00] Levine constructs for X ∈ Smk an isomorphism H∗∗(X,Z/`)[τ−1] ∼=
H∗ét(X,µ

⊗∗
` ), assuming only that k contains a primitive `th root of unity. It is likely that this

isomorphism is the same as that of Corollary 3.6 for representable presheaves.

When p ≥ q ≥ 0, the chain complex Z/m(q)[p] ∈ DNis(Smk) is concentrated in non-

negative degrees and its underlying simplicial presheaf (via the Dold–Kan correspondence)

is, by definition, the motivic Eilenberg–Mac Lane space K(Z/m(q), p) ∈ H∗Nis(Smk) which

represents the functor H̃p,q(−,Z/m). The underlying simplicial presheaf of µ⊗qm [p] is the

Eilenberg–Mac Lane object K(µ⊗qm , p) ∈ H∗ét(Smk) which represents H̃pét(−, µ⊗qm ). In view of

the commutativity of the square

D
≤0
Nis(Smk) D

≤0
ét (Smk)

H∗Nis(Smk) H∗ét(Smk),

aét

aét

where the vertical arrows are the forgetful functors, we may restate (11) as an equivalence

aétK(Z/m(q), p) ' K(µ⊗qm , p) (1/m ∈ k, p ≥ q ≥ 0) (14)

in H∗ét(Smk). Using the shorthands Kn = K(Z/`(n), 2n) and K ét
n = K(µ⊗n` , 2n), we can

write aétKn ' K ét
n . Combining (14) and Corollary 3.6, we get:
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Corollary 3.8: Étale sheafification induces an isomorphism

H̃∗∗(Kn,Z/`)[τ
−1] ∼= H̃∗ét(K

ét
n , µ

⊗∗
` ).

Let M∗∗ét be the algebra of bistable étale cohomology operations on H∗ét(Smk) with twisted

µ`-coefficients. We then have a canonical isomorphism

M∗∗ét
∼= limn≥0 H̃

∗+2n
ét (K ét

n , µ
⊗∗+n
` )

where the transition map

H̃∗+2n+2
ét (K ét

n+1, µ
⊗∗+n+1
` )→ H̃∗+2n

ét (K ét
n , µ

⊗∗+n
` )

is induced by the canonical map Gm ∧ ΣK ét
n → K ét

n+1 and the suspension isomorphism

H̃∗+2n+2
ét (Gm ∧ ΣK ét

n , µ
⊗∗+n+1
` ) ∼= H̃∗+2n

ét (K ét
n , µ

⊗∗+n
` ).

From now on we assume that k is algebraically closed. Then µ` is a constant sheaf and so

K ét
n is equivalent to the constant simplicial presheaf with value K(µ`(k)⊗n, 2n) ∼= K(Z/`, 2n).

Moreover, if RΓ: Hét(Smk)→ Ho(sSet) is the derived global section functor, with left adjoint

c, then RΓ(F ) ' F (Spec k) since Spec k has no nontrivial étale hypercovers. Thus, the unit

id→ RΓ ◦ c is an isomorphism, i.e., c is fully faithful. It therefore induces an isomorphism

H̃∗(K(µ`(k)⊗n, 2n), A) ∼= H̃∗ét(K
ét
n , A)

for any abelian group A. In particular, there is a canonical isomorphism

χ : A∗
∼=→M

∗,0
ét

where A∗ is the topological Steenrod algebra, and multiplication by τ induces isomorphisms

M
∗,i
ét
∼= M

∗,i+1
ét . If we define

P iét = τ i(`−1)χ(P i) ∈M
2i(`−1),i(`−1)
ét

(note that τ `−1 is independent of the choice of τ), we obtain the following presentation of the

algebra M∗∗ét : it is generated by τ±1 ∈ M
0,±1
ét , the Bockstein βét ∈ M

1,0
ét , and the operations

P iét ∈ M
2i(`−1),i(`−1)
ét for i ≥ 1; if ` is odd, the relations are the usual topological Adem

relations, while if ` = 2 (in which case P i = Sq2i) we get the topological Adem relations with

additional τ -multiples dictated by the second grading.

Since (12) is compatible with the suspension isomorphisms and aét is a functor, it induces

an algebra map

φ : M∗∗ →M∗∗ét .

On the other hand, comparing the motivic and étale Adem relations and sending generators

to generators yields a well-defined algebra map

ψ : A∗∗ →M∗∗ét

identifying A∗∗ with the subalgebra M
∗,≥0
ét .
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Lemma 3.9: The following triangle commutes:

A∗∗ M∗∗

M∗∗ét .

ψ
φ

Proof. It suffices to show that φ maps P i to P iét and β to βét. Since the identification of aétKn

with K ét
n is compatible with cup products, the motivic Cartan formula [Voe03a, Proposition

9.7] shows that the operations χ−1(τ−i(`−1)φ(P i)) ∈ A∗ satisfy the axioms (1)–(5) of [Ste62,

VI, §1] (if ` = 2, it shows that the operations χ−1(τ−bi/2cφ(Sqi)) satisfy the axioms (1)–(5)

of [Ste62, I, §1]). Therefore, by [Ste62, VIII, Theorems 3.9 and 3.10] and the definition of

P iét ∈M∗∗ét , φ(P i) = P iét.

It remains to show that φ(β) = βét. Let α denote the identification (14). The right

column in the diagram

ΩaétK(Z/`2(n), 2n+ 1) ΩK(µ⊗n`2 , 2n+ 1)

aétK(Z/`(n), 2n) K(µ⊗n` , 2n)

aétK(Z/`(n), 2n+ 1) K(µ⊗n` , 2n+ 1)

aétK(Z/`2(n), 2n+ 1) K(µ⊗n`2 , 2n+ 1)

Ωα

'

aétβ β

γ

'

α

'

α

'

is a fiber sequence, and so is the left column because aét preserves finite homotopy limits.

Since the bottom square commutes, there exists an equivalence γ rendering the diagram

commutative [Hov99, Proposition 6.3.5]. To show that φ(β) = βét, it suffices to show that

γ = α. Taking into account that the canonical equivalences

ΩaétK(Z/`2(n), 2n+ 1) ' aétK(Z/`2(n), 2n) and ΩK(µ⊗n`2 , 2n+ 1) ' K(µ⊗n`2 , 2n)

are compatible with α, we can identify the top square with:

aétK(Z/`2(n), 2n) K(µ⊗n`2 , 2n)

aétK(Z/`(n), 2n) K(µ⊗n` , 2n).

mod `

α

`

γ

Here all objects are Eilenberg–Mac Lane objects of degree 2n. The full subcategory of

H∗ét(Smk) spanned by these objects is equivalent, via π2n, to the category of étale sheaves
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of abelian groups on Smk [Lur09, Proposition 7.2.2.12]. Therefore there exists at most one

bottom horizontal map making the diagram commutative. Since this square commutes with

α instead of γ, we must have γ = α.

3.4 Proof of the main theorem

In this section we prove the remaining parts of Theorem 1.1, namely (1) and (3). Let S be

an essentially smooth scheme of a field and ` 6= charS a prime number.

We first prove (1) when S = Spec k for a perfect field k. We already know from the

computation of A∗∗ in [Voe03a] that the claimed basis of M∗∗ is a basis of A∗∗, so it will

suffice to prove that A∗∗ = M∗∗. Theorem 3.2 implies, cf. [Voe10b, Lemma 3.50], that

there exist split proper Tate motives A and M whose cohomology agrees with A∗∗ and M∗∗,

respectively, and a map M → A which is invariant under change of perfect base field and

induces the inclusion A∗∗ ↪→M∗∗. Thus, A∗∗ = M∗∗ if and only if M→ A is an equivalence.

By [Voe10b, Corollary 2.70 (2)] we may assume that k is algebraically closed. In this case,

M∗∗ ∼= Z/`[τ ] where τ ∈ H0,1(Spec k,Z/`) ∼= µ`(k) is a primitive `th root of unity.

We claim that (1) follows from the following statements:

(i) A∗∗/τA∗∗ →M∗∗/τM∗∗ is injective.

(ii) A∗∗[τ−1]→M∗∗[τ−1] is surjective.

Indeed, let x ∈M∗∗. By (ii), τnx belongs to A∗∗ for some n ≥ 0. If n > 0, τnx becomes zero

in M∗∗/τM∗∗. By (i) it is zero in A∗∗/τA∗∗. Thus, there exists y ∈ A∗∗ such that τnx = τy.

Since M∗∗ is the cohomology of a split Tate object, it has no τ -torsion. Hence, τn−1x = y

and so τn−1x belongs to A∗∗. Induction on n implies x ∈ A∗∗.

The injectivity of A∗∗/τA∗∗ → M∗∗/τM∗∗ is proved in [Voe10b, Proposition 3.56]. To

finish the proof we show that A∗∗[τ−1] → M∗∗[τ−1] is surjective. By Lemma 3.9, there is a

commutative diagram

A∗∗[τ−1] M∗∗[τ−1] H̃∗+2n,∗+n(Kn,Z/`)[τ
−1]

M∗∗ét H̃∗+2n
ét (K ét

n , µ`(k)⊗∗+n)

ψ

'
φ '

where the rightmost map is an isomorphism by Corollary 3.8. We are thus reduced to showing

that M∗∗[τ−1] → M∗∗ét is injective. If x = (x0, x1, . . . ) ∈ M∗∗ maps trivially to M∗∗ét then xn
maps trivially to H̃∗+2n,∗+n(Kn,Z/`)[τ

−1] for all n. By Theorem 3.2, LZ/`
tr
Kn is a split

proper Tate motive and in particular H̃∗+2n,∗+n(Kn,Z/`) has no τ -torsion. It follows that

xn = 0 for all n, whence x = 0. This concludes the proof of assertion (1) of Theorem 1.1

when the base is a perfect field.

We now turn to the proof of assertion (3). By Corollaries 3.3 and 3.4, we have

M∗∗ ∼= [M,Σ∗∗M] ∼= [M ∧M,Σ∗∗M]M ∼= [
∨
α

Σpα,qαM,Σ∗∗M]M ∼=
∏
α

M∗−pα,∗−qα . (15)
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To determine this family of bidegrees (pα, qα), we can again assume, by Theorem 2.11, that

S is the spectrum of an algebraically closed field, so that M∗∗ ∼= Z/`[τ ]. In this case we

also know by part (1) that M∗∗ ∼=
⊕

γ M
∗−rγ ,∗−sγ where the family of bidegrees (rγ , sγ)

is the desired one. In particular, Mp,q is finite for every (p, q) ∈ Z, which shows that the

product (15) is a direct sum. Thus, we find a bigraded isomorphism of free Z/`[τ ]-modules⊕
α

Σ−pα,−qαZ/`[τ ] ∼=
⊕
γ

Σ−rγ ,−sγZ/`[τ ],

(where Σi,j indicates shifting of the bidegree), and it follows that the indexing families (pα, qα)

and (rγ , sγ) coincide.

Finally, we prove (1) of Theorem 1.1 in general. Choose an essentially smooth morphism

f : S → Spec k where k is a perfect field. By Corollary 2.13, for any (p, q) ∈ Z, there are

at most finitely many α such that Mp+pα,q+qα
S 6= 0. It follows that the product in (15) is a

direct sum, and hence that the map

f∗ : M∗∗k →M∗∗S

induces an isomorphism of left M∗∗S -modules M∗∗S ⊗M∗∗k
M∗∗k

∼= M∗∗S . From the commutative

square (9), we obtain A∗∗S = M∗∗S . The more precise statement of assertion (1) is automatic

since f∗ : M∗∗k →M∗∗S is an algebra map.

4 Commutativity of the fundamental square

In this section we prove Theorem 3.1. Throughout, the base scheme is a perfect field k of

characteristic exponent c, and ` 6= c is a fixed prime number.

4.1 The `dh-topology

We start with the definition of the `dh-topology introduced in [Kel13]. The basic idea is to

enlarge the cdh-topology of Suslin–Voevodsky [SV96] by including finite flat surjective maps

of degree prime to `.

We say that a family of maps {Vj → X}j∈J is a refinement of another family {Ui → X}i∈I
if for each j ∈ J there exists an ij ∈ I and a factorization Vj → Uij → X.

Definition 4.1: Let ` 6= char k be a prime number.

(1) An fps`′-cover (fini-plat-surjectif-premier-à-`) is a finite flat surjective map f : U → X

such that f∗OU is a free OX -module of rank prime to `.

(2) An `dh-cover is a finite family of maps of finite type {Ui → X} which admits a

refinement {V ′j → Vj → X} where {Vj → X} is a cdh-cover and each V ′j → Vj is an

fps`′-cover.
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Definition 4.2: The `dh-topology on Schk is the topology generated by the `dh-covers. If

C ⊂ Schk is a subcategory, the `dh-topology on C is the topology induced by the `dh-topology

on Schk.

Remark 4.3: The `dh-topology is a “global” version of the topology of `′-alterations ap-

pearing in [Ill] and [ILO12].

Theorem 4.4 (Gabber [Ill, Theorem 1.3], [ILO12, IX, Theorem 1.1]): Let X ∈ Schk and let

Z ⊂ X be a nowhere dense closed subset. There exists a map f : Y → X in Schk such that:

(1) Y is smooth and quasi-projective over k.

(2) f is proper, surjective, and sends generic points to generic points.

(3) For each generic point ξ of X there is a unique point η of Y over it, and [k(η) : k(ξ)]

is finite of degree prime to `.

(4) f−1(Z) ⊂ Y is a divisor with strict normal crossings.

We shall make use of the following formulation of the Raynaud–Gruson flattening theorem

[RG71].

Theorem 4.5 ([SV00b, Theorem 2.2.2]): Let p : X → S be a map of Noetherian schemes and

U an open subscheme in S such that p is flat over U . Then there exists a closed subscheme

Z in S such that U ∩ Z = ∅, and the proper transform of X with respect to the blow-up

BlZ S → S with center in Z is flat over S.

Corollary 4.6: For every X ∈ Schk there exists an `dh-cover {Ui → X} where each Ui is

smooth and quasi-projective over k.

Proof. The proof uses Noetherian induction. Suppose the result holds for all proper closed

subschemes of X. We may assume that X is integral since the set of inclusions of irreducible

components is a cdh-cover. Let Y → X be the map provided by Theorem 4.4, so that

Y is smooth and quasi-projective over k. By Theorem 4.5, there exists a blowup with

nowhere dense center X ′ → X such that the proper transform Y ′ → X ′ of Y → X is

Zariski-locally an fps`′-cover. If Z ⊂ X is a proper closed subscheme such that X ′ → X

is an isomorphism outside of Z, then {Z → X,X ′ → X} is a cdh-cover. By the inductive

hypothesis, there exists an `dh-cover {Zj → Z}j∈J with each Zj quasi-projective and smooth

over k. We claim that {Zj → X}j∈J ∪ {Y → X} is an `dh-cover. Indeed, it is refined by

{Zj → X}j∈J ∪ {Y ′ → X} which is the composition of the cdh-cover {Z → X,X ′ → X}
with the `dh-covers {Zj → Z}j∈J and {Y ′ → X ′}.

It is easy to show that any presheaf of Z(`)-modules with transfers on Schk is an fps`′-

sheaf. In particular, such a presheaf is a cdh-sheaf if and only if it is an `dh-sheaf. More

generally, we have:
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Theorem 4.7 ([Kel13, Theorem 3.4.17]): Suppose F is a presheaf of Z(`)-modules with

transfers on Schk. Then for every X ∈ Schk, the canonical map

Hn
cdh(X, acdhF )→ Hn

`dh(X, a`dhF )

is an isomorphism for all n ≥ 0.

Recall the notion of a τ -local presheaf from §2.1.

Lemma 4.8: Let C be a small category, σ ≤ τ Grothendieck topologies on C, and F a

presheaf of spectra on C. Assume that:

(1) F is σ-local.

(2) every X ∈ C has finite σ-cohomological dimension.

(3) for every X ∈ C and every p, q ∈ Z, the canonical map Hp
σ(X, aσπqF )→ Hp

τ (X, aτπqF )

is an isomorphism.

Then F is τ -local.

Proof. Denote by Sp(C) the triangulated category of presheaves of spectra on C. It is endowed

with a t-structure for which the truncation functors τ≤n and τ≥n are defined objectwise. For

a topology ρ on C, let iρ : Spρ(C) ↪→ Sp(C) be the inclusion of the triangulated subcategory of

ρ-local presheaves and aρ : Sp(C)→ Spρ(C) its left adjoint. The subcategory Spρ(C) inherits

a t-structure whose truncation functors are aρτ≤niρ and aρτ≥niρ. Moreover, the functors aρ
and iρ are both left t-exact (see [Lur11, Remark 1.9]).

By (1), we have F ∈ Spσ(C). We first prove the lemma under the assumption that F is

bounded below for the t-structure on Spσ(C), i.e., that F ' aστ≥kF for some k ∈ Z. By (2),

the t-structure on Spσ(C) is left complete (see [Jar97, §6.1]), so that F ' holimn→∞ aστ≤nF .

Since the inclusion Spτ (C) ↪→ Sp(C) preserves homotopy limits, it suffices to show that

aστ≤nF is τ -local for all n ∈ Z. Using the fiber sequences

(πnF )[n]→ τ≤nF → τ≤n−1F

and the fact that aστ≤nF = 0 for n < k, we are reduced to proving that aσ((πnF )[n]) is

τ -local for all n ≥ k, or equivalently that the canonical map aσ((πnF )[n]) → aτ ((πnF )[n])

induces an isomorphism on presheaves of homotopy groups. By definition of cohomology, we

have

π∗aσ((πnF )[n]) = Hn−∗
σ (−, aσπnF ),

so the desired result holds by (3).

For a general F , the previous proof applies to the presheaves of spectra aστ≥kF for all

k ∈ Z and shows that

aστ≥kF ' aττ≥kF.
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To complete the proof we observe that, for any topology ρ on C, the canonical map

colimk→−∞ iρaρτ≥kF → iρaρF

is an equivalence of presheaves of spectra. Its cofiber is colimk→−∞ iρaρτ<kF . Since both

iρ and aρ are left t-exact, iρaρτ<kF is a presheaf of (k − 1)-truncated spectra, and hence

colimk→−∞ iρaρτ<kF is a presheaf of spectra which are (k − 1)-truncated for all k ∈ Z, i.e.,

it is contractible.

Remark 4.9: We sketch a different proof of Lemma 4.8 assuming that the topologies σ and

τ have enough points, which holds for all the topologies we consider. The cosimplicial Gode-

ment resolutions give rise for every X ∈ C to spectral sequences {σE∗∗r }r≥1 and {τE∗∗r }r≥1

with

σE
p,q
2
∼= Hp

σ(X, aσπqF ) and τE
p,q
2
∼= Hp

τ (X, aτπqF ),

and to a morphism of spectral sequences from the former to the latter, which by (3) is

an isomorphism starting from the second page. By (2), σE
p,∗
2 = 0 for p � 0, so both

spectral sequences stabilize after finitely many steps. It follows from the second part of

[Tho85, Proposition 5.47] that ρE
∗∗
∞ is the associated graded of a complete, Hausdorff, and

(trivially) exhaustive filtration on π∗(aρF )(X), for ρ = σ, τ . This shows that the canonical

map π∗(aσF )(X) → π∗(aτF )(X) is an isomorphism for all X ∈ C, and hence that aσF '
aτF .

Proposition 4.10: Let R be a Z(`)-algebra.

(1) The `dh-topology on Schk is compatible with R-transfers.

(2) The `dh-topology on Smk is compatible with R-transfers.

(3) The functor i∗ : sPretr(Schk, R)→ sPretr(Smk, R) preserves RtrW`dh-local equivalences.

Proof. To prove (1) we must show that, for any `dh-hypercover f ∈ W`dh, utrRtr(f) is an

`dh-local equivalence; we will show that it is in fact a cdh-local equivalence. Since cdh is

compatible with transfers on Schk [Voe10b, Lemma 1.24], we know from Lemma 2.1 that

utrRtr(f) is a cdh-local equivalence if (and only if) Rtr(f) is an RtrWcdh-local equivalence,

and by assumption it is an RtrW`dh-equivalence. By adjunction, it will suffice to show that if

F ∈ sPretr(Schk, R) is RtrWcdh-local, then F is in fact RtrW`dh-local or, equivalently, utr(F )

is `dh-local.

We have a canonical identification of presheaves πqu
tr(F ) ∼= utrπq(F ) and since the latter

have a structure of presheaves with transfers, it follows from Theorem 4.7 that

Hp
cdh(X, acdhπqu

tr(F )) ∼= Hp
`dh(X, a`dhπqu

tr(F )).

Since the cdh-topology is cohomologically bounded [SV00a], Lemma 4.8 shows that utr(F )

is `dh-local (to apply the lemma, we view simplicial abelian groups as connective spectra).

This proves (1).

By Corollary 4.6, i : Smk ↪→ Schk is cocontinuous for the `dh-topology. Assertions (2)

and (3) now follow from (1) by virtue of Lemma 2.3.
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4.2 Descent for MZ(`)-modules

In this section we review the proof from [Kel13, §5] that MZ(`)-modules are `dh-local (see

Definition 4.23), which is a key ingredient in the proof of Theorem 3.1. The argument can

be summarized as follows. We know from Ayoub’s proper base change theorem that motivic

spectra are cdh-local. The notion of “structure of traces” (Definition 4.11) is designed to

bridge the gap between cdh-descent and `dh-descent. A first step is therefore to show that

the motivic cohomology spectrum MZ(`) ∈ SH(Smk) has a structure of traces. Roughly

speaking, this follows from the facts that homotopy algebraic K-theory KGL has a structure

of traces and that MZ(`) is the zeroth slice of KGL(`).

We first recall the notion of a structure of traces introduced in [Kel13].

Definition 4.11: Let E : Schk → Cat be a 2-functor (or equivalently, a cofibered category

over Schk) with values in additive categories and F an additive section of E (i.e., a section

of the associated cofibered category such that FXqY ∼= (i1)∗FX ⊕ (i2)∗FY ). A structure of

traces on F is a family of maps Trf : f∗FY → FX , defined for every finite flat surjective map

f : Y → X in Schk, subject to the following coherence conditions (where f and g are finite

flat surjective maps).

• (Additivity) Trfqg = (i1)∗Trf ⊕ (i2)∗Trg.

• (Functoriality) TridX = idFX , and if g : Z → Y and f : Y → Z, Trfg = Trf ◦ f∗Trg.

• (Base change) For every cartesian square

W Z

Y X

q

g

f

p

in Schk, we have Fp ◦ Trf = p∗Trg ◦ f∗Fq.

• (Degree) If f is globally free of degree d (i.e., f∗OY ∼= OdX), then Trf ◦ Ff = d · idFX .

When E is the constant functor with value Ab, this definition specializes to the notion

of presheaf with traces on Schk. The other example that we will use is the 2-functor X 7→
SH(SmX) on Schk, which takes values in triangulated categories. This is a stable homotopy

2-functor in the sense of [Ayo07]. In this context, we will simply write f∗, f
∗, and f] for the

derived functors Rf∗, Lf∗, Lf] associated to a change of base scheme f (see §2.2).

Suppose that the cofibered category E is bifibered, i.e., that for every f : Y → X in Schk
the functor f∗ : E(Y ) → E(X) has a left adjoint f∗. Then, to any object E ∈ E(Spec k), we

can associate a section X 7→ EX of E as follows: if a : X → Spec k is the structure map

of X ∈ Schk, then EX = a∗E, and given f : Y → X, the map EX → f∗EY is the unit of

the adjunction (f∗, f∗). Under some mild assumptions on E (for example, axioms 1 to 3 in

[Ayo07, §1.4.1]), this is an additive section of E. A structure of traces on E ∈ E(Spec k) is a

structure of traces on the corresponding section X 7→ EX .
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Remark 4.12: When E = MA ∈ SH(Smk) there is a conflict of notations in that, if X is

not smooth over k, the object EX is not known to coincide with the motivic Eilenberg–Mac

Lane spectrum MAX defined in §2.3. When we speak of a structure of traces on MA, we

mean a structure of traces on the cartesian section (a : X → Spec k) 7→ a∗MAk, not on the

section X 7→ MAX .

Remark 4.13: If φ : E1 → E2 is a 2-natural transformation and F is an additive section of

E1, it is clear that a structure of traces on F induces a structure of traces on φF . For example,

if F is a section of X 7→ SH(SmX) with a structure of traces, then for any E ∈ SH(Spec k),

X 7→ [EX , FX ] is a presheaf with traces on Schk.

We recall two important results on traces. The first one relates traces to transfers:

Theorem 4.14: Suppose F is a presheaf of Z(`)-modules with traces on Schk such that:

(1) F (X)→ F (Xred) is an isomorphism for every X ∈ Schk.

(2) aNisF |Smk
is unramified in the sense of [Mor12, Definition 2.1].

Then acdhF has a canonical structure of presheaf with transfers.

Proof. We will apply [Kel13, Theorem 3.8.1 (3)] to the Nisnevich sheaf aNisF . It has a

canonical structure of traces by [Kel13, Proposition 3.3.3]. It is clear that aNisF still satisfies

condition (1), hence it satisfies condition (Tri1)≤0 of loc. cit. by [Kel13, Lemma 3.3.6]. Finally,

the proof of [Kel13, Theorem 3.8.1] goes through if we replace the assumption that aNisF is

a Gersten presheaf with condition (2).

The second result on traces concerns the compatibility of traces with the slice filtration.

To state it we need a few preliminary definitions.

Definition 4.15: A weak structure of smooth traces on E ∈ SH(Smk) is a family of maps

Trf : f∗EY → EX , defined for every finite, flat, globally free, and surjective map f : Y → X

in Smk, such that, if f is of degree d, Trf ◦ Ef = d · idEX .

Clearly, a structure of traces on E induces a weak structure of smooth traces on E.

Definition 4.16: Let R ⊂ Q be a subring of the rational numbers. We say that a motivic

spectrum E ∈ SH(Smk) is R-local if the abelian group [E,E] is an R-module.

Theorem 4.17 ([Kel13, Proposition 4.3.7]): Suppose E ∈ SH(Smk) is Z[1/c]-local with a

structure of traces, and suppose that sqE has a weak structure of smooth traces for every

q ∈ Z. Then sqE has a structure of traces for every q ∈ Z.

Proposition 4.18 ([Kel13, Proposition 5.2.3]): The homotopy algebraic K-theory spectrum

KGL ∈ SH(Smk) has a structure of traces.
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Proof. Let f : Y → X be a finite flat surjective map in Schk. It induces an exact functor f∗
between the biWaldhausen categories of perfect complexes, whence a morphism of K-theory

spectra Trf : K(Y ) → K(X) in the sense of Thomason–Trobaugh. It follows from standard

properties of algebraic K-theory that this defines a structure of traces on the presheaf of

spectra X 7→ K(X): for additivity use [TT90, 1.7.2], for functoriality [TT90, 1.5.4], for base-

change [TT90, 3.18], and for degree [TT90, 1.7.3]. Given X ∈ Schk, let KX ∈ Ho(SptSmop
X )

be the restriction of K to SmX . The trace maps Trf×XU : K(Y ×X U) → K(U) define

morphisms of presheaves Trf : f∗KY → KX which endow X 7→ KX with a structure of

traces.

The Bass K-theory presheaf KB
X can be defined by

KB
X = K]

X = hocolimn R Hom(Σ∞(P1)∧n,KX),

(see [Cis13, end of paragraph 2.5, Proposition 2.7, Proposition 2.10]). For any morphism

f : Y → X in Schk, the derived pushforward functor f∗ : Ho(SptSmop
Y ) → Ho(SptSmop

X ) right

adjoint to f∗ commutes with homotopy colimits by abstract nonsense, and so f∗K
B
X '

(f∗KX)]. It follows that the structure of traces on the section X 7→ KX induces a structure

of traces on the section X 7→ KB
X .

The homotopy algebraic K-theory presheaf of spectra KHX : SmX → Spt is by definition

the A1-localization of the presheaf KB
X , that is,

KHX = LA1KB
X = hocolimn R Hom(Σ∞(∆n

X)+,K
B
X),

where ∆•X is the usual cosimplicial diagram in SmX with ∆n
X = An

X . As before, we have

f∗KHY ' LA1f∗K
B
Y and hence an induced structure of traces on the section X 7→ KHX .

Denote by E(X) the homotopy category of P1-spectra in the category of presheaves of

spectra on SmX ; its objects are sequences (E0, E1, . . . ) of presheaves of spectra on SmX

together with equivalences Ei ' R Hom(Σ∞P1, Ei+1). The 2-functor X 7→ SH(SmX) can

then be identified with the sub-2-functor of E spanned by the A1- and Nisnevich-local ob-

jects. Under this identification, the motivic spectrum KGLX ∈ SH(SmX) is the P1-spectrum

(KHX ,KHX , . . . ) where the equivalences KHX ' R Hom(Σ∞P1,KHX) are given by Bott

periodicity. Thus, it remains to observe that the trace maps Trf : f∗KHY → KHX are

compatible with these equivalences, which follows easily from the definitions.

Proposition 4.19: For any E ∈ DM(Smk, R), utrE has a weak structure of smooth traces.

Proof. If f : Y → X is a finite flat surjective of degree d map in Smk, its transpose tf is a

finite correspondence X → Y such that f ◦ tf = d · idX in Cor(Smk). It therefore induces,

for any F ∈ sPretr(Smk, R), a map Trf : f∗FY → FX such that Trf ◦ Ff = d · idFX . Since

a : X → Spec k is smooth the functor La∗ : Htr(Smk, R) → Htr(SmX , R) preserves A1- and

Nisnevich-local objects and commutes with Ω2,1 (see §2.2), so we obtain trace maps for the

section (a : X → Spec k) 7→ La∗E of the 2-functor X 7→ DM(SmX , R) on Smk. Since utr

is a morphism of 2-functors which moreover commutes with La∗ for a smooth, there is an

induced weak structure of smooth traces on utrE.
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Corollary 4.20 ([Kel13, Corollary 5.2.4]): Let 1/c ∈ R ⊂ Q. Then the motivic cohomology

spectrum MR has a structures of traces in SH(Smk).

Proof. By [Lev08, Theorem 6.4.2] (or [GP12, Theorem 7.10]), the qth slice of KGL is Σ2q,qMZ.

As sq preserves homotopy colimits, the qth slice of KGL ⊗ R is Σ2q,qMR, which has a weak

structure of smooth traces by Proposition 4.19. Since KGL⊗R itself has a structure of traces

by Proposition 4.18, we may apply Theorem 4.17 to deduce that s0(KGL ⊗ R) ' MR has a

structure of traces.

Proposition 4.21: Let E ∈ SH(Smk) be a motivic spectrum with a structure of traces (resp.

a weak structure of smooth traces). Then for any F ∈ SH(Smk), E ∧ F has a structure of

traces (resp. a weak structure of smooth traces).

Proof. By [Ayo07, Theorems 2.3.40 and 1.7.17], if f : Y → X is a projective morphism in

Schk, E ∈ SH(SmY ), and F ∈ SH(SmX), the canonical map

f∗E ∧ F→ f∗(E ∧ f∗F) (16)

is an isomorphism. Thus, if f : Y → X is a finite flat surjective map, we can define Trf as

the composition

f∗(E ∧ F)Y ∼= f∗(EY ∧ f∗FX) ∼= f∗EY ∧ FX
Trf∧FX−−−−−→ EX ∧ FX ∼= (E ∧ F)X ,

where the second isomorphism is an instance of (16). It is then easy to verify that this

definition satisfies the axioms for a structure of traces (resp. a weak structure of smooth

traces).

Corollary 4.22: Let 1/c ∈ R ⊂ Q and E ∈ SH(Smk). Then MR ∧ E has a structure of

traces.

Proof. Combine Corollary 4.20 and Proposition 4.21.

We now turn to the proof that MZ(`)-modules are `dh-local.

Definition 4.23: Let τ be a Grothendieck topology on Smk. A motivic spectrum E ∈
SH(Smk) is τ -local if it is local with respect to the class of maps

{Σp,qΣ∞X+ → Σp,qΣ∞X+ | X→ X is a τ -hypercover and p, q ∈ Z}.

Since Spt(Smk) is a stable model category, SH(Smk) is canonically enriched in the sta-

ble homotopy category Ho(Spt). That is, for every E,F ∈ SH(Smk), we have a derived

mapping spectrum R Hom(E,F) such that Ω∞R Hom(E,F) ' R Map(E,F). By [CD12, The-

orem 3.2.15], there exists a presheaf of (symmetric) spectra E : Schop
k → Spt such that the

composition of E with the canonical functor Spt→ Ho(Spt) coincides with the functor

(a : X → Spec k) 7→ R Hom(1,Ra∗La
∗E).
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Note that the restriction of E to Smk is equivalent to X 7→ R Hom(Σ∞X+,E). We can thus

rephrase Definition 4.23 as follows: E ∈ SH(Smk) is τ -local if and only if, for every p, q ∈ Z,

the presheaf of spectra Σp,qE|Smk
satisfies τ -descent.

Theorem 4.24 ([Kel13, Theorem 5.3.7]): Every Z(`)-local motivic spectrum E ∈ SH(Smk)

with a structure of traces is `dh-local.

Proof. We must show that the presheaf of spectra Σp,qE|Smk
satisfies `dh-descent for every

p, q ∈ Z. We will even prove that Σp,qE satisfies `dh-descent. We may clearly assume that

p = q = 0 since the hypotheses on E are bistable.

As the cdh topology has finite cohomological dimension [SV00a, Theorem 12.5] and E is

cdh-local [Cis13, Proposition 3.7], Lemma 4.8 will show that E is `dh-local provided that the

canonical maps

Hs
cdh(X, acdhπtE)→ Hs

`dh(X, a`dhπtE)

are isomorphisms for all s, t ∈ Z. By Theorems 4.7 and 4.14, this will be the case if

(0) πtE is a presheaf of Z(`)-modules with traces,

(1) πtE(X)→ πtE(Xred) is an isomorphism for every X ∈ Schk,

(2) aNisπtE|Smk
is unramified.

Assertion (0) holds by assumption on E (see Remark 4.13) and assertion (1) is clear because

the restriction functor SH(SmX) → SH(SmXred
) is an equivalence of categories. The sheaf

aNisπtE|Smk
is strictly A1-invariant by [Mor03, Remark 5.1.13], and in particular is unramified

(see [Mor12, Example 2.3]).

Corollary 4.25: Every MZ(`)-module spectrum in SH(Smk) is `dh-local.

Proof. Let E be an MZ(`)-module spectrum. Then E is a retract of MZ(`) ∧ E in SH(Smk),

and so it suffices to show that MZ(`) ∧ E is `dh-local. This follows from Corollary 4.22 and

Theorem 4.24.

Corollary 4.26 ([Kel13, Corollary 5.3.8]): Let R be a Z(`)-algebra. If X → X is a smooth

`dh-hypercover of X ∈ Smk, then the induced map LRtrX+ → LRtrX+ is an isomorphism

in Htr
Nis,A1(Smk, R).

Proof. By [Voe10b, Theorem 1.15] and Voevodsky’s Cancellation Theorem [Voe10a], the sta-

bilization functor Σ∞ : Htr
Nis,A1(Smk, R) → DM(Smk, R) is fully faithful. Thus, it suffices

to show that any smooth `dh-hypercover gives rise to an isomorphism in DM(Smk, R). Re-

call from §2.3 that the functor LRtrΣ∞(−)+ factors through the functor MR ∧ Σ∞(−) :

H∗Nis,A1(Smk) → Ho(MR -mod) to the highly structured category of modules over MR, and

this reduces the problem to showing that the map MR ∧ Σ∞X+ → MR ∧ Σ∞X+ is an

isomorphism for every smooth `dh-hypercover X→ X. This follows from Corollary 4.25.
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Corollary 4.27: Let R be a Z(`)-algebra. Then the localization functor Htr(Smk, R) →
Htr

Nis,A1(Smk, R) factors through Htr
`dh(Smk, R).

Proof. This is just a rephrasing of Corollary 4.26.

4.3 End of the proof

We now give the proof of Theorem 3.1. As in [Voe10b, end of §1.3], we may assume that

C = Smk and D = Schk. Since the restriction functors i∗ : H∗(Schk) → H∗(Smk) and

i∗ : Htr(Schk, R)→ Htr(Smk, R) preserve A1-Nisnevich-local equivalences, it suffices to show

that for any F ∈ H∗(Schk) the canonical map

LRtri∗F → i∗LRtrF

in Htr(Smk, R) becomes an isomorphism in Htr
Nis,A1(Smk, R). In the commutative square

LRtri∗Li!i
∗ LRtri∗

i∗LRtrLi!i
∗ i∗LRtr,

the upper horizontal arrow and the left vertical arrow are isomorphisms since Li! is fully

faithful and commutes with LRtr. Thus, it suffices to show that the lower horizontal arrow

becomes an isomorphism in Htr
Nis,A1(Smk, R). Since Li!i

∗F → F is an isomorphism when

restricted to Smk, it is an `dh-local equivalence by Corollary 4.6. Thus, LRtrLi!i
∗F →

LRtrF is an RtrW`dh-local equivalence. By Proposition 4.10 (3), i∗LRtrLi!i
∗F → i∗LRtrF is

therefore an RtrW`dh-local equivalence in Htr(Smk, R). Finally, by Corollary 4.27, RtrW`dh-

local equivalences in Htr(Smk, R) become equivalences in Htr
Nis,A1(Smk, R), as was to be

shown.

5 Complements

In this section we record some complements of the results of this paper which were previously

only known for fields of characteristic zero.

5.1 The structure of the motivic Steenrod algebra and its dual

The goal of this paragraph is to generalize the structure theorems of Voevodsky for the motivic

Steenrod algebra over perfect fields to essentially smooth schemes over fields. Throughout,

the base scheme S is essentially smooth over a field, and ` 6= charS is a fixed prime number.

We abbreviate MZ/` to M, and we write A∗∗ for the motivic Steenrod algebra at `, which by

Theorem 1.1 is the algebra of all bistable operations in mod ` motivic cohomology of smooth

S-schemes, and also the algebra of bigraded endomorphisms of the motivic Eilenberg–Mac
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Lane spectrum M. Recall that A∗∗ is generated by the reduced power operations P i, the

Bockstein β, and the subalgebra H∗∗(S,Z/`). As usual, we write

Bi = βP i,

and if ` = 2,

Sq2i = P i and Sq2i+1 = Bi.

If ` = 2, let ρ be the image of −1 ∈ Gm(S) in

H1,1(S,Z/2) = H1
ét(S, µ2)

and let τ be the nonvanishing element of

H0,1(S,Z/2) = µ2(S) ∼= Hom(π0(S),Z/2)

(recall that charS 6= 2 if ` = 2).

Theorem 5.1 (The Adem relations):

(1) Assume ` 6= 2. If 0 < a < `b, then

P aP b =

ba/`c∑
t=0

(−1)a+t

(
(`− 1)(b− t)− 1

a− `t

)
P a+b−tP t.

If 0 < a ≤ `b, then

P aBb =

ba/`c∑
t=0

(−1)a+t

(
(`− 1)(b− t)

a− `t

)
Ba+b−tP t

+

b(a−1)/`c∑
t=0

(−1)a+t−1

(
(`− 1)(b− t)− 1

a− `t− 1

)
P a+b−tBt.

(2) Assume ` = 2 and 0 < a < 2b. If a and b are even, then

Sqa Sqb =

ba/2c∑
t=0

τ tmod 2

(
b− t− 1

a− 2t

)
Sqa+b−t Sqt .

If a is even and b is odd, then

Sqa Sqb =

ba/2c∑
t=0

(
b− t− 1

a− 2t

)
Sqa+b−t Sqt

+

ba/2c∑
t=0
t odd

(
b− t− 1

a− 2t

)
ρSqa+b−t−1 Sqt .
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If a is odd and b is even, then

Sqa Sqb =

ba/2c∑
t=0
t even

(
b− t− 1

a− 2t

)
Sqa+b−t Sqt

+

ba/2c∑
t=0
t odd

(
b− t− 1

a− 2t− 1

)
ρSqa+b−t−1 Sqt .

If a and b are odd, then

Sqa Sqb =

ba/2c∑
t=0
t odd

(
b− t− 1

a− 2t

)
Sqa+b−t Sqt .

Proof. If S is a perfect field, this was originally proved in [Voe03a, Theorems 10.2 and 10.3],

but with some typos that were corrected in [Rio12, Théorèmes 4.5.1 et 4.5.2]. In general,

choose an essentially smooth morphism f : S → Spec k where k is a perfect field. The theorem

follows from the fact that the base change map f∗ : A∗∗k → A∗∗S is an algebra homomorphism

which preserves P i and β, and, when ` = 2, τ and ρ.

Note that in the case ` = 2, the Adem relations for a odd are obtained from the ones for a

even by application of β, using that β is a derivation, that β(τ) = ρ, and that β(ρ) = 0. The

Adem relations (together with the relation β2 = 0) can be used to express any monomial

in the operations P i and β as a linear combination of the basis operations described in

Theorem 1.1. The only additional piece of information needed to obtain a presentation of

A∗∗ as an algebra is thus the action of A∗∗ on H∗∗(S,Z/l).

Let now A∗∗ be the dual motivic Steenrod algebra over S, that is,

A∗∗ = HomM∗∗(A
−∗,−∗,M∗∗).

By duality, A∗∗ has a structure of commutative Hopf algebroid which is described in details

in [Voe03a, §12] in the case where S is the spectrum of a perfect field. Our goal is now

to identify A∗∗ with the Hopf algebroid of co-operations in mod ` motivic cohomology, i.e.,

M∗∗M. This is achieved in Propositions 5.3 and 5.5 below. For the following lemma, recall

that Ho(M -mod) is a closed symmetric monoidal category.

Lemma 5.2: Let (pα, qα) be a family of bidegrees with pα ≥ 2qα ≥ 0 and such that, for

every q ∈ Z, there are only finitely many α with qα ≤ q. Let E =
∨
α Σpα,qαM ∈ Ho(M -mod).

Then the canonical map E → HomM(HomM(E,M),M) is an equivalence of M-modules, and

the pairing π∗∗HomM(E,M)⊗M∗∗ π∗∗E→ M∗∗ is perfect.
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Proof. The hypothesis on (pα, qα) together with Corollary 2.13 implies that

E =
∨
α

Σpα,qαM '
∏
α

Σpα,qαM,

HomM(E,M) '
∏
α

Σ−pα,−qαM '
∨
α

Σ−pα,−qαM.

This immediately implies the first statement and, taking homotopy groups, the second.

Proposition 5.3: There is a canonical isomorphism A∗∗ ∼= M∗∗M and the canonical map

A−∗,−∗ → HomM∗∗(A∗∗,M∗∗) is an isomorphism.

Proof. By Theorem 1.1, A∗∗ ∼= M∗∗M. Therefore it suffices to show there is a perfect pairing

M−∗,−∗M⊗M∗∗ M∗∗M→ M∗∗. This follows from Theorem 1.1 (3) and Lemma 5.2.

Lemma 5.4: Let R be a motivic E∞-ring spectrum and let E and F be R-modules. The

canonical map

π∗∗E⊗R∗∗ π∗∗F→ π∗∗(E ∧R F)

is an isomorphism under either of the following conditions:

(1) F is a cellular R-module and π∗∗E is flat over R∗∗.

(2) F '
∨
α Σpα,qαR as an R-module.

Proof. This is obvious if F ' Σp,qR. As both sides preserve coproducts in F, we deduce the

result under assumption (2). If π∗∗E is flat over R∗∗, then both sides also transform cofiber

sequences in F into long exact sequences, whence the result under assumption (1).

Proposition 5.5: Let E be an M-module. Then there is a canonical isomorphism

π∗∗E⊗M∗∗ A∗∗
∼= π∗∗(E ∧M).

In particular, A⊗i∗∗
∼= M∗∗(M

∧i) for all i ≥ 0 (where the tensor product is over M∗∗).

Proof. Since M∧M '
∨
α Σpα,qαM and M∗∗M ∼= A∗∗, this is a special case of Lemma 5.4.

Proposition 5.5 is of computational interest because it implies that for any E ∈ SH(SmS),

M∗∗E is a left comodule over A∗∗. For instance, the E2-page of the homological motivic

Adams spectral sequence is comprised of Ext-groups in the category of A∗∗-comodules. See

e.g., [DI10] and [HKO11] for precise statements concerning the construction and convergence

of the motivic Adams spectral sequence, which can be generalized to essentially smooth

schemes over fields by the above results.

We can now give a complete description of the Hopf algebroid A∗∗ = M∗∗M. First, define

a Hopf algebroid (A,Γ) as follows. Let

A = Z/`[ρ, τ ],

Γ = A[τ0, τ1, . . . , ξ1, ξ2, . . . ]/(τ
2
i − τξi+1 − ρτi+1 − ρτ0ξi+1).
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The structure maps ηL, ηR, ε, and ∆ are given by the formulas

ηL : A→ Γ, ηL(ρ) = ρ, ηL(τ) = τ,

ηR : A→ Γ, ηR(ρ) = ρ, ηR(τ) = τ + ρτ0,

ε : Γ→ A, ε(ρ) = ρ,

ε(τ) = τ,

ε(τr) = 0,

ε(ξr) = 0,

∆: Γ→ Γ⊗A Γ, ∆(ρ) = ρ⊗ 1,

∆(τ) = τ ⊗ 1,

∆(τr) = τr ⊗ 1 + 1⊗ τr +

r−1∑
i=0

ξl
i

r−i ⊗ τi,

∆(ξr) = ξr ⊗ 1 + 1⊗ ξr +

r−1∑
i=1

ξl
i

r−i ⊗ ξi.

The coinverse map c : Γ→ Γ is determined by the identities it must satisfy. Namely, we have

c(ρ) = ρ,

c(τ) = τ + ρτ0,

c(τr) = −τr −
r−1∑
i=0

ξl
i

r−ic(τi),

c(ξr) = −ξr −
r−1∑
i=1

ξl
i

r−ic(ξi).

We view M∗∗ as an A-algebra via the map A→ M∗∗ defined as follows: if ` is odd it sends

both ρ and τ to 0, while if ` = 2 it sends ρ and τ to the elements of the same name in M∗∗.

Theorem 5.6: A∗∗ is isomorphic to Γ⊗A M∗∗ with

|τr| = (2`r − 1, `r − 1) and |ξr| = (2`r − 2, `r − 1).

The map M∗∗ → A∗∗ dual to the left action of A∗∗ on M∗∗ is a left coaction of (A,Γ) on the

ring M∗∗, and the Hopf algebroid (M∗∗,A∗∗) is isomorphic to the twisted tensor product of

(A,Γ) with M∗∗, i.e.,

• ηL and ε are extended from (A,Γ),

• ηR : H∗∗ → A∗∗ is the coaction,

• ∆: A∗∗ → A∗∗ ⊗M∗∗ A∗∗ is induced by the diagonal of Γ and ηR to the second factor,

• c : A∗∗ → A∗∗ is induced by the coinverse of Γ and ηR.
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Proof. If S is the spectrum of a perfect field, this is proved in [Voe03a, §12]. In general,

choose an essentially smooth morphism f : S → Spec k where k is a perfect field. Note

that the induced map (Mk)∗∗ → (MS)∗∗ is a map of A-algebras. It remains to observe

that the Hopf algebroid A∗∗ is obtained from (Mk)∗∗Mk by extending scalars from (Mk)∗∗
to (MS)∗∗, which follows formally from the following facts: Lf∗ is a symmetric monoidal

functor, Theorem 2.11, and Corollary 3.4.

5.2 Modules over motivic cohomology

In this paragraph we generalize the main result in [RØ06], [RØ08]. Recall that there is a

symmetric monoidal Quillen adjunction

Φ: MR -mod � Spttr(SmS , R) : Ψ

which is a Quillen equivalence when S is a field of characteristic zero [RØ08, Theorem 1] or

when S is any perfect field and Q ⊂ R [RØ08, Theorem 68]. In the following, all functors

are derived by default.

Lemma 5.7: Let k be a perfect field, g : V → U an fps`′-cover in Smk, and R a Z(`)-algebra.

Then MR ∧ g+ has a section in the homotopy category of MR-modules.

Proof. Since Ho(MR -mod) is a triangulated category, it suffices to show that MR∧ g+ is an

epimorphism, i.e., that for every MR-module E,

[U+,E]→ [V+,E] (17)

is injective. If a : U → Spec k is the structure map, we have U+ = a]a
∗1 and V+ =

(ag)](ag)∗1. For any smooth map f , f]f
∗ is left adjoint to f∗f

∗. Using this adjunction,

we can identify (17) with the map

[1, a∗a
∗E]→ [1, (ag)∗(ag)∗E]

induced by the unit of the adjunction (g∗, g∗). Since E is a retract of MR∧E in SH(Smk), we

can assume that E is a free MR-module. By Propositions 4.19 and 4.21, E then has a weak

structure of smooth traces. Since R is a Z(`)-algebra, it follows that a∗a
∗E → (ag)∗(ag)∗E

has a retraction, namely 1
da∗(Trg) where d is the degree of g.

Theorem 5.8: Assume that S is the spectrum of a perfect field of characteristic p > 0 and

let R be a commutative ring in which p is invertible. Then (Φ,Ψ) is a Quillen equivalence.

Proof. As in [RØ08], it suffices to prove that the unit ηX+
: MR ∧X+ → ΨΦ(MR ∧X+) is

a weak equivalence for all quasi-projective and connected X ∈ SmS , knowing that this holds

if X is projective (more generally, ηE is an equivalence if E ∈ SH(SmS) is dualizable). A

map of MZ-modules is an equivalence if and only it induces equivalences of MZ(`)-modules

for every prime `, and since both Φ and Ψ preserve filtered homotopy colimits we can assume
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that R is a Z(`)-algebra for some prime ` 6= char k. In this case we follow the proof of the

rational result [RØ08, Theorem 68] but use Gabber’s theorem instead of de Jong’s theorem.

We proceed by induction on the dimension of X, the case d = 0 being taken care of

since X is then necessarily projective. Let SHd(k) be the localizing subcategory of SH(Smk)

generated by shifted suspension spectra of smooth connected k-schemes of dimension ≤ d.

By induction hypothesis, ηE is an equivalence for every E ∈ SHd−1(k). Choose an open

embedding j : X ↪→ Y into an integral projective k-scheme. Let f : Y ′ → Y be the map

given by Gabber’s Theorem 4.4, so that X ′ = f−1(X) is the complement of a divisor with

strict normal crossings. Let U ⊂ X be an open subset on which f restricts to an fps`′-cover

g : V = f−1(U) → U . Since Y ′ is smooth and projective, Y ′+ is dualizable in SH(Smk). By

homotopy purity and induction on the number of irreducible components of Y ′ rX ′ (cf. the

proof of [RØ08, Theorem 52]), X ′+ is dualizable in SH(Smk) and hence ηX′+ is an equivalence.

Consider the cofiber sequences

V+ ↪→ X ′+ → X ′/V,

U+ ↪→ X+ → X/U.

By [RØ08, Lemma 66], X ′/V and X/U belong to SHd−1(k). By induction hypothesis, ηX′/V
and ηX/U are equivalences. Thus, ηV+

is also an equivalence, and it remains to prove that

ηU+ is an equivalence. This follows from Lemma 5.7, since MR ∧U+ is a retract of MR ∧ V+

in Ho(MR -mod).

References

[AF13] A. Asok and J. Fasel, Motivic secondary characteristic classes and the Euler class,

2013, arXiv:1307.6831v1 [math.AG]

[Ayo07] J. Ayoub, Les six opérations de Grothendieck et le formalisme des cycles
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[Cis13] D.-C. Cisinski, Descente par éclatements en K-théorie invariante par homotopie,

Ann. of Math. (2) 177 (2013), no. 2, pp. 425–448

[DI10] D. Dugger and D. C. Isaksen, The motivic Adams spectral sequence, Geom. Topol.

14 (2010), no. 2, pp. 967–1014,

http://dx.doi.org/10.2140/gt.2010.14.967

37

http://arxiv.org/abs/1307.6831v1
http://arxiv.org/abs/0912.2110v3
http://dx.doi.org/10.2140/gt.2010.14.967


[FV00] E. M. Friedlander and V. Voevodsky, Bivariant cycle cohomology, Cycles, transfers,

and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ.

Press, Princeton, NJ, 2000, pp. 138–187

[GP12] G. Garkusha and I. Panin, On the motivic spectral sequence, 2012,

arXiv:1210.2242v1 [math.AG]
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