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Introduction

�e reader is invited to read Chapter 1 of Joe Shoen�eld’s bookMathematical Logic for a remarkable intro-
duction to the subject. Here I will only explain in what respects this text di�ers from the numerous other
texts on mathematical logic.

�e distinguishing particularity of this text is that it is exclusively concerned with what Shoen�eld
calls the syntactical study of �rst-order axiom systems, and herein only with those results that deal with
concrete objects and can be proved in a constructive manner. We use the adjective �nitary to describe
such objects and such proofs. Without exceptions, all the de�nitions and theorems in this text fall into
this category.
Following is a quick review each chapter.

I First-Order�eories

�ere is not much to say about this chapter whose content is completely standard (except, as explained
above, that all the semantic notions are absent). �e presentation o�en follows Shoen�eld’s closely, and
with few exceptions I have used the same terminology so as not to confuse readers that are familiar with
his book.

II �e Question of Consistency

�is chapter is roughly the equivalent of Shoen�eld’s Chapter 4 (again, minus the semantic part), to which
I owe many of the proofs. One apparent di�erence is the early treatment of extensions by de�nitions.
�is is made possible by a new direct proof of the conservativity of extensions by de�nitions of function
symbols, which is more e�cient than Shoen�eld’s. In the section on interpretations some more material
will be found, such as the concepts of isomorphism of interpretations and absoluteness, here presented in
a general setting.

�e proofs of the consistency theorem and Herbrand’s theorem in the next section are those from
Shoen�eld, but I have made explicit some interesting corollaries that do not appear in Shoen�eld’s book,
such as the Herbrand–Skolem theorem which implies that Shoen�eld’s version of Herbrand’s theorem
is true of arbitrary �rst-order theories (not only of those without nonlogical axioms) and the fact that
any �rst-order theory has a conservative Skolem extension, i.e., an extension in which every instantiation
has a witnessing term. For the latter result a new proof of the conservativity of the Henkin extension
has been devised that generalizes easily to the Skolem extension. Finally, a constructive proof of Craig’s
interpolation lemma is given.

III �e Incompleteness�eorem

�is chapter gives two detailed proofs of the (�rst) incompleteness theorem. �e �rst relies on the no-
tion of recursive function and Church’s theorem on undecidability, and the second uses Rosser’s explicit
construction of an undecidable formula. I have taken great care to make it apparent that either approach
is completely constructive. In the �rst case, this requires a slight deviation from the usual proof, analo-
gous to Rosser’s improvement of Gödel’s original argument to remove the hypothesis of ω-consistency,
but happening on the metamathematical level.
Finally, in the last section, minimal arithmetic is introduced and it is proved that any �rst-order theory

in which minimal arithmetic has an interpretation satis�es the hypotheses of both versions of the incom-
pleteness theorem. It is also proved, using the �nitary methods of Chapter ii, that minimal arithmetic
itself is consistent.

IV First-Order Number�eory

In the �rst section a syntactical analogue to recursiveness is introduced, based on the notion of RE-formula
(which is very close to the more standard notion of Σ1-formula). I then prove a generalization of the so-
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4 introduction

called Σ1-completeness of minimal arithmetic, which is an e�ective tool to derive representability condi-
tions and serves as a substitute for the Hilbert–Bernays method of formalizing primitive recursive def-
initions (primitive recursive functions are not discussed in this text). �e reader is warned that several
notions introduced at this point, such as that of recursive extension, may not be equivalent to those de�ned
in other texts.
In the rest of this chapter, Peano arithmetic, PA, is discussed. Beside basic number-theoretic results,

sequences and de�nitions by recursions are developped in PA, paralleling the number-theoretic develop-
ments of Chapter iii.

V Arithmetical �eories

�e main goal of this chapter is to arrive at a precise and appropriately general statement of the result
known as “Gödel’s second incompleteness theorem”. I call it instead the “theorem on consistency proofs”,
following Shoen�eld. To my knowledge only two published texts contain a proof of some form of this
result: Hilbert and Bernay’s Grundlagen der Mathematik of 1934 and Volume 1 of Tourlakis’ Lectures in
Logic and Set �eory of 2003. �e version given here is more general than either of them.

�e chapter starts with a discussion of the derivability conditions formulated by Löb to obtain a cri-
terion on �rst-order theories subject to the second incompleteness theorem. With this general result in
mind, the notions of arithmetical language, theory, and interpretation are introduced as formalizations
within PA of the corresponding metamathematical notions. I de�ne what it means for such an arithmeti-
cal object to describe a �rst-order language, theory, or interpretation. �e main result is then that an
arithmetical theory that describes a �rst-order theory T provides a provability predicate for T that satis-
�es the derivability conditions, and the theorem on consistency proofs is an immediate corollary. Another
less well-known result that is discussed is the arithmetical completeness theorem, which is a formalization
within PA of the arguments in the proof of the classical completeness theorem. It constructs an interpre-
tation of any reasonable �rst-order theory T in Peano arithmetic, supplemented with a suitable axiom
expressing the consistency of T . �e chapter ends with an application of the theorem on consistency
proofs to Zermelo–Fraenkel set theory.

VI First-Order Set�eory

�is chapter develops the basics of Zermelo–Fraenkel set theory in a standard way. It is heavily inspired
by Shoen�eld’s Chapter 9.

VII �e Consistency Proofs

In this chapter it is proved that the axiom of choice and the generalized continuum hypothesis are con-
sistent with ZF. �is is done as usual in two steps: �rstly an extension ZFL of ZF is constructed together
with an interpretation of ZFL in ZF and secondly it is proved that the axiom of choice and the generalized
continuum hypothesis are theorems of ZFL. Most of this chapter is again inspired by Shoen�eld’s Chap-
ter 9. In particular, the predicate of constructibility is de�ned as Gödel originally did and not using the
notion of de�nable subset: although the latter is closer to our intuition, perhaps even dangerously so, it
also requires muchmore work. A notable di�erence from Shoen�eld’s treatment is the internal cardinality
theoremwhich is here proved in ZFC and not just in ZFL: it says that one can conservatively add a “model”
of ZFC within itself of arbitrary in�nite cardinality.
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Chapter One
First-Order�eories

§1 Formal systems

1.1 Sequences.�enotion of sequence is omnipresent in the study of formal systems, so we establish some
terminology about sequences. A sequence determines and is determined by the following data: a natural
number n called the length of the sequence, and for each natural number i with 1 ≤ i ≤ n, an object called
the ith member of the sequence. In particular, there is exactly one sequence of length 0, called the empty
sequence. A sequence shall not be a collection. Sequences u1, . . . , un may be concatenated to yield a new
sequence which we denote by u1u2 . . . un . An occurrence in a sequence u, written [u1 , u2], consists of two
sequences u1 and u2 such that u is u1vu2 for some sequence v; the sequence v is then uniquely determined,
and we say that [u1 , u2] is an occurrence of v in u. A subsequence of u is a sequence of which there is an
occurrence in u. Let [u1 , u2] and [u′1 , u′2] be two occurrences in u. We say that [u1 , u2] happens within
[u′1 , u′2] if u′1 is a subsequence of u1 and u′2 is a subsequence of u2. If an occurrence of v1 happens within an
occurrence of v2, then v1 is a subsequence of v2. �e sequence obtained from u by replacing the occurrence
[u1 , u2] by v is de�ned to be the sequence u1vu2.
An appearance of an object will be synonymous with an occurrence of the sequence of length 1 whose

member is that object.

1.2 Languages. A sequence of length 1 whose only member is not a sequence will be called a symbol.
An alphabet is a collection of symbols. �e expressions of an alphabet A are de�ned inductively by the
following clauses: the empty sequence is an expression of A; if u is an expression of A and s is a symbol of
A, then su is an expression of A. From now on we use boldface letters exclusively to denote expressions of
some alphabet.
A language L consists of an alphabet A together with a collection of expressions of A, called the formu-

lae of L. Symbols and expressions of A are also called symbols and expressions of L. We let A, B, C, and
D vary through formulae. (By this we mean: from now on, the letters A, B, C, and D, possibly decorated
with subscripts or superscripts, will be used exclusively to denote formulae of some language, namely the
language being discussed.) A subformula of a formulaA of L is a subsequence ofAwhich is also a formula
of L.

1.3 Formal systems. Let L be a language. A rule of inference for L consists of a �nite collection of formulae
of L called the premises of the rule, and a single formula of L called the conclusion of the rule. A rule of
inference with no premises is also called an axiom, and we identify such a rule with its conclusion. �us
any formula of L is a rule of inference for L.
A formal system F consists of a language L(F) together with a collection of rules of inference for L(F),

called the rules of inference of F. Symbols, expressions, and formulae of L(F) are also called symbols,
expressions, and formulae of F. Let A be a formula of L(F) and Γ a collection of formulae of L(F). A
derivation of A from Γ in F is a sequence of formulae of L(F) ending with A, each of whose member is
either in Γ or the conclusion of a rule of inference of F whose premises appear previously in the sequence.
We say that A is derivable or inferrable from Γ in F, and we write Γ ∣−FA, when there exists a derivation
of A from Γ in F. A rule of inference for L(F) is said to be derivable in F if its conclusion is derivable in F
from its premises.

Proposition. If Γ ∣−FA and if ∆ ∣−FB for any formula B of Γ, then ∆ ∣−FA.

Proof. A derivation ofA from ∆ in F is obtained by replacing in a derivation ofA from Γ in F any appear-
ance of a formula B of Γ by a derivation of B from ∆ in F.

If Γ consists of B1, . . . , Bn , we also write B1 , . . . ,Bn ∣−FA instead of Γ ∣−FA. We write A 0F B when
A ∣−FB and B ∣−FA. When Γ is empty, we simply remove the reference to Γ in the above de�nitions and
we write ∣−FA instead of Γ ∣−FA. A theorem of F is a formula A of F such that ∣−FA, i.e., a formula of
which there is a derivation in F. Note that our convention of identifying formulae with rules of inference
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6 first-order theories i 1.4

is compatible with this terminology: a formula is derivable in F if and only if it is derivable in F as a rule
of inference.

1.4 Extensions. Let L be a language. A language L′ is an extension of L if the alphabet of L′ includes the
alphabet of L and if every formula of L is a formula of L′.
Let F be a formal system. A formal system F′ is an extension of F if L(F′) is an extension of L(F) and if

every theorem of F is a theorem of F′. It is a conservative extension if moreover any formula of L(F) which
is a theorem of F′ is a theorem of F. A simple extension of a formal system F is an extension of F whose
language is L(F). Two formal systems are equivalent if they are extensions of each other; this is easily seen
to be the case if and only if one is a simple conservative extension of the other. It follows immediatly from
these de�nitions that if F′′ is a (conservative; simple) extension of F′ and F′ is a (conservative; simple)
extension of F, then F′′ is a (conservative; simple) extension of F.
If R is a collection of rules of inference for L(F), we denote by F[R] the formal system whose language

is L(F) and whose rules of inference are those of F and those in R. Observe that F[R] is a simple extension
of F. With our identi�cation of formulae with rules of inference, we see that Γ ∣−FA if and only if ∣−F[Γ]A.
In this way the notion of formula derivable from Γ is reduced to the notion of theorem. Observe that if
F′ is an extension of F and if R is a collection of rules of inference for L(F), then F′[R] need not be an
extension of F[R]. �is is the case if however F′ is of the form F[R′].

1.5 Induction on theorems. To prove that all the theorems of a formal system F have a given property,
it su�ces to prove that whenever that property holds for the premises of a rule of inference of F (an
assumption called the induction hypothesis), it holds for the conclusion of the rule as well; this ensures
that all formulae appearing in some derivation in F have the given property. Such a proof will be called a
proof by induction on theorems in F.

1.6 Convention. �e remaining sections of this chapter are mostly devoted to proving assertions of the
form Γ ∣−FA. To gain space, in the proof of such an assertion, we shall use the sign ∣−F as an abbreviation
for Γ ∣−F (unless of course the context clearly indicates otherwise). See §3.2 for examples of applications
of this convention.

§2 First-order languages and theories

2.1 Logical symbols.We choose once and for all an in�nite collection of symbols,

x, y, z, w, x′, y′, z′, w′, x′′, . . .

whichwe call the variables. �e order inwhich they are listed above is called the alphabetical order. We also
choose four distinct symbols written ∨, ⌝, ∃, and = that are not variables. �e variables and the symbols
∨, ⌝, ∃, and = are called the logical symbols. �e symbol = is called the equality symbol. (We also use the
sign = in the usual way, as in a = b to signify that a and b are the same object. �e meaning of the sign =
will however always be clear from the context, just as it is clear that the sign y in symbol does not stand for
a variable.) We let x, y, z, and w vary through variables.
Instead of choosing in�nitely many symbols as variables, one can also use two symbols, say x and ′,

and de�ne the variables by induction to be the expressions x, ′x, ′′x, etc. �is is, however, merely a cosmetic
variation of the above de�nition.

2.2 Signatures. Suppose given, for each natural number n, a collection of symbols called n-ary function
symbols and a collection of symbols called n-ary predicate symbols. Assume that the following conditions
are satis�ed: a function symbol is not a predicate symbol; the arity of a function or predicate symbol is
uniquely determined; the symbol = is a binary predicate symbol, and other logical symbols are neither
function symbols nor predicate symbols. �is data is then said to de�ne a signature S. A 0-ary predicate
symbol is called a truth value, and a 0-ary function symbol is called a constant. We let p, q, and r vary
through predicate symbols, f , g, and h through function symbols, and e through constants.
A signature S has an underlying alphabet A(S) consisting of the logical symbols, the function symbols

of S, and the predicate symbols of S. To every symbol of A(S) we associate an index as follows:

(i) variables are symbols of index 0;
(ii) ∨ and ∃ have index 2, and ⌝ has index 1;
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(iii) an n-ary function symbol has index n;
(iv) an n-ary predicate symbol has index n.

2.3 First-order languages. Let S be a signature. We shall associate to it a language L(S) with alphabet A(S).
We �rst de�ne the terms of S inductively as follows:

(i) a variable is a term;
(ii) if a1, . . . , an are terms and f is an n-ary function symbol, then fa1 . . . an is a term.

�e atomic formulae of S are de�ned as follows:

(iii) if a1, . . . , an are terms and p is an n-ary predicate symbol, then pa1 . . . an is an atomic formula.

�e formulae of L(S) are then de�ned inductively by the following clauses:

(iv) an atomic formula is a formula;
(v) if A and B are formulae, ∨AB is a formula;
(vi) if A is a formula, ⌝A is a formula;
(vii) if A is a formula and x is a variable, ∃xA is a formula.
A language L is a �rst-order language if it is of the form L(S) for some signature S. We observe that

L determines S, for a nonlogical symbol s of L is an n-ary function symbol of S (resp. an n-ary predicate
symbol of S) if and only if the expression =ysx . . . x (resp. sx . . . x) with n occurrences of x is a formula of
L. �us we may speak of the n-ary function symbols of L, the n-ary predicate symbols of L, the index of a
symbol of L, the terms of L, and the atomic formulae of L. We can prove in the same way that given two
signatures S and S′, L(S′) is an extension of L(S) if and only if the n-ary function symbols of S are n-ary
function symbols of S′ and the n-ary predicate symbols of S are n-ary predicate symbols of S′.
It should be noted that the terms (resp. the formulae) of a �rst-order language are the theorems of the

formal systemwhose formulae are all expressions and whose rules of inference are de�ned by (i)–(ii) (resp.
by (iv)–(vii)). An important property of those two formal systems is that they have an obvious decision
method, i.e., an algorithm that will decide whether a formula is a theorem or not. �is is not the case in
general for an arbitrary formal system, not even for the very particular formal systems that we intend to
study.

2.4 Designators. Let L be a �rst-order language. A designator of L is either a term of L or a formula of L.
As we pointed out in §2.3, the designators are the theorems of some formal system. �is formal system has
two very pleasant properties: any designator has an “essentially unique” derivation in this formal system,
and a designator occurs in a designator u if and only if it appears in any derivation of u. �is is the content
of the two theorems of this paragraph. �ese are simple properties of the so-called Polish notation, and
we omit the proofs. By de�nition, any designator has the form su1 . . . un where s is a symbol of index n
and u1, . . . , un are designators.

Formation Theorem. Let v be a designator of L. If v can be written as su1 . . . un and as s′u′1 . . . u′m ,
where s is a symbol of index n, s′ is a symbol of index m, and u1, . . . , un , u′1, . . . , u′m are designators,
then n = m, s is s′, u1 is u′1, . . . , un is u′n .

Occurrence Theorem. Let su1 . . . un and v be distinct designators where s is a symbol of index n
and u1, . . . , un are designators. Any occurrence of v in u happens within an occurrence of the form
[su1 . . . ui−1 , ui+1 . . . un] for some i.

�e formation theorem implies that a term is either a variable or can be written in only one way as
fa1 . . . an where f is n-ary and a1, . . . , an are terms. Similarly, a formula is either atomic or can be written in
only one way as ∨AB, ⌝A, or ∃xA. �e occurrence theorem, applied to formulae, says that an occurrence
of a formula in ∨AB (resp. ⌝A; ∃xA) that is not the whole formula must happen within either [∨,B] or
[∨A, ] (resp. within [⌝, ]; within [∃,A] or [∃x, ]). �ese consequences of the formation and occurrence
theorems will most o�en be used tacitly.

2.5 Abbreviations.We introduce some abbreviations for �rst-order languages:
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(i) x1, x2, x3, etc. abbreviate x′, x′′, x′′′, etc., and similarly for y, z, and w;
(ii) xn abbreviates x1 . . . xn , and similarly for y, z, and w (of course, x0 will be the empty sequence);
(iii) (A ∨ B) abbreviates ∨AB;
(iv) (A ∧ B) abbreviates ⌝(⌝A ∨ ⌝B);
(v) (A→ B) abbreviates (⌝A ∨ B);
(vi) (A↔ B) abbreviates ((A→ B) ∧ (B→ A));
(vii) ∀x abbreviates ⌝∃x⌝.
�is is to be understood as follows: whenever one of the symbols above appears, it must be expanded
using its de�nition in order to recover the actual formula. For example, =xy is a formula of any �rst-order
language, but (=xy ∧ =xy) is not: it only abbreviates an actual formula, namely ⌝∨⌝=xy⌝=xy.
At any given timewe allowourselves to introduce new abbreviations, either for any �rst-order language

or for a speci�c one. �is is in fact absolutely necessary, for otherwise we would be overwhelmed by the
length and complexity of expressions.

(viii) If p is binary, then (apb) abbreviates pab;
(ix) (a 1 b) abbreviates ⌝(a = b).

We also drop the parentheses in the above abbreviations whenever there can be no confusion about the
intended meaning. To be able to drop even more parentheses, we use the following convention: when
given a choice, a formula shall be of the form A → B or A ↔ B rather than of the form A ∨ B or A ∧ B,
and it shall be of any of those four forms rather than of the form ∃xA or ∀xA. Other ambiguous cases
are settled using association from the right. �us: A ∨ B → C ∧D is to be read as ((A ∨ B) → (C ∧D)),
A→ B↔ C as (A→ (B↔ C)), ∃xA→ B as (∃xA→ B) and not ∃x(A→ B), etc.
Another use of parentheses is the following. Suppose for instance that to each formula A we have

associated two formulae which we decided to denote by A∗ and A∗, then we may write (⌝A)∗, (A1)∗,
(A∗)∗, etc.

2.6 Some terminology. Let L be a �rst-order language. It is o�en useful to have names for some formulae
of L. �e formulaA1 ∨⋯∨An is called the disjunction ofA1, . . . ,An ;A1 ∧⋯∧An the conjunction ofA1, . . . ,
An ; ⌝A the negation of A; A1 → ⋯ → An → B the implication of B by A1, . . . , An ; A↔ B the equivalence
of A and B; ∃xA the instantiation of A by x; ∀xA the generalization of A by x.
An occurrence [u1 , u2] of a variable x in a designator u is not meaningful if u1 is of the form v∃; bound

if it happens within an occurrence of an instantiation; free if it is not bound. �e variable x itself is said
to be bound (resp. free) in u if some occurrence of x is bound (resp. free) in u. We say that a designator
is closed if no variable is free in it; open if ∃ does not occur in it. A formula which is either atomic or an
instantiation is called elementary. �e closure of A is the formula ∀x1 . . .∀xnA where x1, . . . , xn are the
variables free in A in reverse alphabetical order.

2.7 Substitution. Let x1, . . . , xn be variables and a1, . . . , an terms of a �rst-order language L such that
whenever ai and a j are distinct, xi and x j are distinct. We let b[x1 , . . . , xn ∣a1 , . . . , an] abbreviate the term
obtained from b by replacing each occurrence of the variable xi by the term ai , for all i simultaneously.
Similarly, we let A[x1 , . . . , xn ∣a1 , . . . , an] abbreviate the formula obtained from A by replacing each free
occurrence of the variable xi by the term ai , for all i simultaneously.† We say that a is substitutible for x
in A if for any variable y that occurs in a, no occurrence of x in A happening within an occurrence of
∃yB is free in A. We restrict the use of the abbreviation A[x1 , . . . , xn ∣a1 , . . . , an] to those A, x1, . . . , xn , a1,
. . . , an such that ai is substitutible for xi in A, for all i. �is ensures that any occurrence of a variable in ai
does not become bound in A[x1 , . . . , xn ∣a1 , . . . , an]. With this restriction, if y1, . . . , yn are not free in A,
then A[x1 , . . . , xn ∣y1 , . . . , yn][y1 , . . . , yn ∣a1 , . . . , an] is the same as A[x1 , . . . , xn ∣a1 , . . . , an]. Observe that a
closed term is substitutible for any variable in any formula.
Let A be a formula. A variant of A is a formula obtained from A by repeated replacements of occur-

rences of subformulae of the form ∃xB by ∃yB[x∣y] for some y not free in B. An instance ofA is a formula
of the formA[x1 , . . . , xn ∣a1 , . . . , an]. A version ofA is an instance of a variant ofA. Note that an instance of

†We should here verify, using induction on the lengths of b and A, that b[x1 , . . . , xn ∣a1 , . . . , an] is a term and that
A[x1 , . . . , xn ∣a1 , . . . , an] is a formula. Usually, veri�cations of this kind will be entirely le� out.
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an instance of A is an instance of A and that any formula obtained from A by taking successively variants
and instances is a version of A.

2.8 �e standardmeaning.Wemake a few remarks on the intendedmeaning of the symbols and formulae
of a �rst-order language. �ese remarks are not required for the formal exposition of �rst-order theories
but are important nonetheless. �e terms of a �rst-order language are meant to represent the individuals
whose behaviour we intend to formalize—it must be assumed that there is at least one such individual—,
and the formulae represent propositions about those individuals. �e predicate and function symbols are
of course meant to represent predicates and functions, so that pa1 . . . an means “a1, . . . , an together have
the predicate p”, and fa1 . . . an represents the individual that is the image of the individuals a1, . . . , an by
the function f . �e predicate symbol = is a symbol for identity of individuals. �e meanings of closed
formulae ∨AB, ⌝A, and ∃xA are respectively “A is true or B is true”, “A is false”, and “for some x,A is true”.
If a formula is not closed, then itsmeaning is that of its closure. �is is the standardmeaning of a �rst-order
language, and it is used, in the informal exposition, to translate back and forth between English and the
�rst-order language. However, other meanings are possible: a �rst-order language is wholly independant
from the meaning we have in mind for it.
We then see that the standard meaning of the abbreviations A ∧ B, A → B, A ↔ B, and ∀xA is as

expected. Our choice of the “primitive symbols” ∨, ⌝, and ∃ rather than, say, ∧, ⌝, and ∀ is completely
arbitrary. However, it is worthwhile to note that it would have been possible to use only one symbol instead
of ∨ and ⌝: for example a symbol whose meaning, when applied to A and B, is “both A and B are false”.
2.9 First-order theories. Let L be a �rst-order language. �e following rules of inference are called the
logical rules for L:

(i) infer ⌝A ∨A (propositional axioms);
(ii) infer A from A ∨A (contraction rules);
(iii) infer B ∨A from A (expansion rules);
(iv) infer (A ∨ B) ∨C from A ∨ B ∨C (associativity rules);
(v) infer B ∨C from A ∨ B and ⌝A ∨C (cut rules);
(vi) infer A[x∣a]→ ∃xA (substitution axioms);
(vii) if x is not free in B, infer ∃xA→ B from A→ B (∃-introduction rules);
(viii) infer x = x (identity axioms);
(ix) infer x1 = y1 → ⋯→ xn = yn → fx1 . . . xn = fy1 . . . yn (functional equality axioms);
(x) infer x1 = y1 → ⋯→ xn = yn → px1 . . . xn → py1 . . . yn (predicative equality axioms).

Other rules of inference for L are called nonlogical rules. �e rules (i)–(v) are called the propositional rules,
the rules (vi)–(vii) the quanti�cation rules, and the rules (viii)–(x) the equality rules. In what follows we
shall o�en refer to one of (i)–(x) as a rule in the singular, even though each of them is an in�nite collection
of rules of inferences.
A formal system T is called a �rst-order theory if its language L(T) is a �rst-order language, if its rules

of inference include the logical rules for L(T), and if its nonlogical rules are axioms. �is last restriction
deserves an explanation. It is easily seen that most of the results of this chapter are true even if we allow
any nonlogical rules. But this is not the case of many fundamental results of Chapter ii. For instance, we
shall prove in ch. ii §1.1 that if A is a theorem of T[⌝A], where T is a �rst-order theory and A is a closed
formula of T , then A is a theorem of T . �is simple result can be false if T is allowed to have arbitrary
nonlogical rules. Indeed, we shall discuss in Chapter iii a �rst-order theory N in which there is a closed
formula A such that neither A nor ⌝A is a theorem of N. If F is the formal system obtained from N by
adding the rule of inference “inferA from ⌝A”, then the sequence ⌝A,A is a derivation ofA in F[⌝A], but
A is not a theorem of F.
We must also comment brie�y on the equality rules. Unsurprisingly, all the general results on �rst-

order theories which do not deal explicitely with the equality symbol = are in fact true if we do not require
the presence of the equality symbol nor of the equality rules. �e systematic inclusion of the equality
rules has the consequence that, if we want to obtain a �rst-order theory from a given �rst-order theory
by extending its signature, i.e., by adding nonlogical symbols, then we have to add all the equality rules
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featuring the new symbols as well. �is may seem like a trivial variation, but in fact it introduces consider-
able di�culties, as we shall see in ch. ii §4. �ere are a number of reasons for us not to consider the more
general situation of �rst-order theories “without equality”. �e �rst is that all the proofs of these more
general results are contained in the proofs given here. �e second is that it is tedious to deal with various
sets of hypotheses all the time. Finally, �rst-order theories without equality rarely occur in practice.
Let T and T ′ be �rst-order theories such that L(T ′) is an extension of L(T). For T ′ to be an extension

of T , it is obviously necessary that every nonlogical axiom of T be a theorem of T ′. �is is also su�cient,
for if Γ is the collection of nonlogical axioms of T , a derivation of A in T is a derivation of A from Γ in T ′,
so our claim follows from the proposition of §1.3.

§3 Tautologies

3.1 Truth valuations. Let L be a �rst-order language. We say that a truth valuation V on L has been given
if to each elementary formula of L is associated one of the two symbols T and F. We denote by V (A) the
symbol that V assigns to an elementary formula A. We want to extend the domain of truth valuations to
all formulae. To do this we de�ne the mapping f∨ by

f∨(T,T) = T, f∨(T, F) = T, f∨(F,T) = T, and f∨(F, F) = F,

and the mapping f⌝ by
f⌝(T) = F and f⌝(F) = T.

Given a truth valuation V on L and a formula A of L, we de�ne V (A) by induction on the length of A as
follows:

(i) if A is elementary, then V (A) is already de�ned;
(ii) if A is B ∨C, then V (A) is f∨(V (B),V (C));
(iii) if A is ⌝B, then V (A) is f⌝(V (B)).
Let Γ be a �nite collection of formulae of L. A formula A is a tautological consequence of Γ if any truth

valuation which assigns T to the formulae of Γ assigns T to A. If the latter holds when Γ is empty, we say
that A is a tautology. Two formulae are tautologically equivalent if they are tautological consequences of
one another. It is an easy exercise to show that A is a tautological consequence of B1, . . . , Bn if and only if
B1 → ⋯→ Bn → A is a tautology.
It is not at once clear that the notions of tautology and tautological consequence are �nitary, since there

is an in�nite number of elementary formulae and hence an in�nite number of possible truth valuations
to consider. �is is not actually so, for in a given formula A there are only �nitely many occurrences of
elementary subformulae, and hence all the possibilities of assignment may be checked in a �nite number
of steps in order to decide whether A is a tautology or not. �is also shows that the notion of tautology
does not depend on L, but only on the expression A itself. �ese remarks also apply to the notion of
tautological consequence that can be seen as a particular case of the notion of tautology.
Obviously, given the de�nition of a truth valuation, the meaning of a tautology is true. In fact, a

tautology is a formula that can be seen to be true using only the meanings of ⌝ and ∨. However, the
notion of tautology does not take into account the meanings of ∃ and =. In this section we shall prove that
the logical axioms and rules of a �rst-order theory are su�ciently strong to derive any tautology.

3.2 �e tautology theorem. In this paragraph, we �x a �rst-order language L and we let F be the formal
system with language L whose rules of inference are the propositional rules for L. It follows from the
de�nition of a �rst-order theory and some remarks in §1.4 that for any �rst-order theory T with language
L, if Γ ∣−FA, then Γ ∣−TA. We write ∣− and 0 instead of ∣−F and 0F .

Commutativity Rule. A ∨ B ∣−B ∨A.

Proof. Apply the cut rule to A ∨ B and ⌝A ∨A which is a propositional axiom.

Detachment Rule. A→ B,A ∣−B.
Proof. We have ∣−A∨B by the expansion rule and the commutativity rule. Applying the cut rule to A∨B
and A→ B, we get ∣−B ∨ B, whence ∣−B by the contraction rule.
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�e deduction theorem that we shall prove in §4.3 is a reciprocal to the detachment rule.

Lemma 1. LetA1, . . . ,An be formulae, eachAi being either elementary or the negation of an elementary
formula. �e formula A1 ∨⋯ ∨An is a tautology if and only if some Ai is the negation of some A j .

Proof. �e su�ciency is obvious. Suppose now that there are no i and j such that Ai is the negation of
A j . De�ne a truth valuation V by letting V (A) be T if and only if ⌝A is some Ai , for elementary A. �en
V (Ai) is F for all i, and from this we easily conclude that V (A1 ∨⋯ ∨An) is F.

Lemma 2. Let i1, . . . , im be natural numbers among 1, . . . , n. �en Ai1 ∨⋯ ∨Aim ∣−A1 ∨⋯ ∨An .

Proof. Let A be A1 ∨⋯∨An . We proceed by induction on m. Suppose that m = 1. By the expansion rule,
∣−(Ai1+1 ∨⋯∨An)∨Ai1 , whence ∣−Ai1 ∨⋯∨An by the commutativity rule. Using the expansion rule i1 − 1
more times, we obtain ∣−A.
Suppose that m is 2. If i1 is i2, then the contraction rule yields ∣−Ai1 , whence ∣−A by the �rst case.

Suppose that i1 < i2. We prove the result in this case by induction on n, which is necessarily greater than
or equal to 2. If n is exactly 2, then there is nothing to prove. Suppose that n ≥ 3. We distinguish the
following cases:

(i) i1 ≥ 2;
(ii) i1 = 1 and i2 ≥ 3;
(iii) i1 = 1 and i2 = 2.

In case (i) we have ∣−A2∨⋯∨An by the induction hypothesis, whence ∣−A by the expansion rule. In case (ii),
we have ∣−A1∨A3∨⋯∨An by the induction hypothesis. By the commutativity rule, the expansion rule, and
the associativity rule, we get ∣−(A2∨A3∨⋯∨An)∨A1, whence ∣−A by the commutativity rule. In case (iii),
the hypothesis is ∣−A1 ∨A2. By the expansion rule and the associativity rule, ∣−((A3 ∨⋯∨An)∨A1)∨A2.
Using the commutativity rule, the associativity rule, and again the commutativity rule, we obtain ∣−A as
desired. If i2 < i1, we have ∣−Ai2 ∨Ai1 by the commutativity rule, whence ∣−A by the case i1 < i2.
Suppose �nally thatm ≥ 3. By the associativity rule, ∣−(Ai1∨Ai2 )∨Ai3∨⋯∨Aim . Hence ∣−(Ai1∨Ai2 )∨A

by the induction hypothesis. By the commutativity rule and the associativity rule, ∣−(A∨Ai1 )∨Ai2 . Hence
∣−(A ∨ Ai1 ) ∨ A by the induction hypothesis. Again by the commutativity rule and the associativity rule,
∣−(A∨A)∨Ai1 . Hence ∣−(A∨A)∨A∨A by the induction hypothesis. Applying the contraction rule twice,
we obtain ∣−A as desired.
Lemma 3. A ∨ B ∣−⌝⌝A ∨ B.

Proof. �e formula ⌝⌝A ∨ ⌝A is a propositional axiom. Hence ∣−⌝A ∨ ⌝⌝A by the commutativity rule.
From A ∨ B and ⌝A ∨ ⌝⌝A we infer ∣−B ∨ ⌝⌝A by the cut rule. Hence ∣−⌝⌝A ∨ B by the commutativity
rule.

Lemma 4. ⌝A ∨C,⌝B ∨C ∣−⌝(A ∨ B) ∨C.

Proof. �e formula ⌝(A ∨ B) ∨ A ∨ B is a propositional axiom. Hence ∣−A ∨ B ∨ ⌝(A ∨ B) by Lemma 2.
FromA∨B∨⌝(A∨B) and ⌝A∨Cwe infer ∣−(B∨⌝(A∨B))∨C by the cut rule. Hence ∣−C∨B∨⌝(A∨B)
by the commutativity rule, whence ∣−B ∨C ∨ ⌝(A ∨ B) by Lemma 2. From B ∨C ∨ ⌝(A ∨ B) and ⌝B ∨C
we infer ∣−(C∨⌝(A∨B))∨C by the cut rule. Hence ∣−C∨C∨⌝(A∨B) by the commutativity rule. From
this and Lemma 2, we obtain ∣−⌝(A ∨ B) ∨C as desired.

Tautology Theorem. Every tautology is a theorem. If A is a tautological consequence of B1, . . . , Bn ,
then B1 , . . . ,Bn ∣−A.

Proof. It su�ces to prove the �rst statement, for A is a tautological consequence of B1, . . . , Bn if and only
if B1 → ⋯ → Bn → A is a tautology, and B1 → ⋯ → Bn → A,B1 , . . . ,Bn ∣−A by n applications of the
detachment rule. Now clearly if A is a tautology, so is A ∨A, and if ∣−A ∨A, then ∣−A by the contraction
rule. �us, it su�ces to prove that if A ∨ A is a tautology, then it is a theorem. We prove more generally
that if n ≥ 2 and A1 ∨⋯ ∨An is a tautology, then it is a theorem. We proceed by induction on the sum of
the lengths of the Ai .
Suppose that eachAi is either elementary or the negation of an elementary formula. By Lemma 1, some

Ai is the negation of some A j . �en Ai ∨A j is a propositional axiom, and by Lemma 2, ∣−A1 ∨⋯ ∨An .
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Suppose that some Ai is neither elementary nor the negation of an elementary formula. By Lemma 2,
we have ∣−A1∨⋯∨An if and only if ∣−Ai∨⋯∨An∨A1∨⋯∨Ai−1. Since those two formulae are tautologically
equivalent, we may suppose that i is 1. �en A1 is either

(i) a disjunction;
(ii) the negation of a negation; or
(iii) the negation of a disjunction.

We prove the result in each case. Suppose thatA1 is B∨C. �en it is easy to prove that B∨C∨A2∨⋯∨An
is a tautology. By induction hypothesis, it is a theorem. Hence ∣−(B∨C)∨A2 ∨⋯∨An by the associativity
rule, that is, ∣−A1 ∨ ⋯ ∨ An . Suppose that A1 is ⌝⌝B. �en B ∨ A2 ∨ ⋯ ∨ An is clearly a tautology; by
induction hypothesis it is a theorem. By Lemma 3, ∣−A1 ∨ ⋯ ∨ An . Finally, suppose that A1 is ⌝(B ∨ C).
�en both ⌝B∨A2∨⋯∨An and ⌝C∨A2∨⋯∨An are clearly tautologies, hence theorems by the induction
hypothesis. By Lemma 4, we obtain ∣−A1 ∨⋯ ∨An as desired.

Corollary. If A and B are tautologically equivalent, then ∣−A↔ B.

Proof. For any truth valuation V , V (A) is the same symbol as V (B). It is then easily veri�ed using the
de�nition of the abbreviation A↔ B that A↔ B is a tautology.

From the tautology theorem, we see that

(i) if ∣−A↔ B, then ∣−A if and only if ∣−B.
�is result, as well as the detachment rule, should be kept in mind whenever we assert a statement of the
form ∣−A → B or ∣−A↔ B. Sometimes we refer to such a statement but we actually use “if ∣−A then ∣−B”
or “∣−A if and only if ∣−B”, respectively. �e tautology theorem allows us to prove the following results,
among others:

(ii) if ∣−A or ∣−B, then ∣−A ∨ B;
(iii) ∣−A ∧ B if and only if ∣−A and ∣−B;
(iv) ∣−(A→ B)→ (B→ C)→ A→ C;
(v) ∣−(A↔ B)→ (B↔ C)→ A↔ C;
(vi) ∣−A↔ ⌝⌝A;
(vii) ∣−(A→ B)↔ (⌝B→ ⌝A);
(viii) ∣−(⌝A→ A)→ A;
(ix) ∣−(A→ B)→ (A→ ⌝B)→ ⌝A;
(x) ∣−A→ (B→ ⌝A)→ ⌝B.
By the detachment rule, (i), (ii), and (iii), all of the above theorems have consequences on derivability.

For example, from (iv) we obtain that (B→ C)→ A→ C is derivable from A→ B, and hence that A→ C
is derivable fromA→ B andB→ C. Manymore results can be deduced from the tautology theorem, such
as properties of associativity and distributivity of ∨ and ∧, and it is hardly possible to make an exhaustive
list of even the most used ones. All of these results will be referred to generically as the tautology theorem.

3.3 Tautological induction. �e tautology theorem allows for a useful characterization of the theorems
of a �rst-order theory. More generally, let L and F be as in §3.2, and let T be of the form F[R]. We de�ne
a formal system T∗ as follows. �e language of T∗ is L. �e rules of inference of T∗ are the rules in
R together with all the rules with premises B1, . . . , Bn and conclusion A whenever A is a tautological
consequence of B1, . . . , Bn .

Proposition 1. T and T∗ are equivalent.

Proof. Using the tautology theorem and induction on theorems in T∗, it is clear that a theorem of T∗
is a theorem of T . �e converse is equally clear using induction on theorems in T and noting that the
conclusions of the propositional rules are tautological consequences of their premises.
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To prove that all the theorems ofT have a given property, wemay thus use induction on theorems inT∗.
Such a proof will be called a proof by tautological induction on theorems in T . �e following proposition
is o�en used in such proofs.

Proposition 2. Let L and L′ be �rst-order languages. Suppose that to each formula A of L′ is associ-
ated a formula A∗ of L in such a way that if A is B ∨ C, then A∗ is B∗ ∨ C∗ and if A is ⌝B, then A∗ is
⌝B∗. If A is a tautological consequence of B1, . . . , Bn , then A∗ is a tautological consequence of B∗1 , . . . ,
B∗n .

Proof. We may suppose n = 0. Let V be any truth valuation on L. De�ne a truth valuation V ′ on L′ by
setting V ′(A) to be V (A∗) for A elementary. Let A be any formula of L′. We prove by induction on the
length of A that V ′(A) is V (A∗). If A is elementary, this is given. If A is B ∨ C, then A∗ is B∗ ∨ C∗ and
by induction hypothesis V ′(B) is V (B∗) and V ′(C) is V (C∗); thus V ′(A) is V (A∗). If A is ⌝B, then A∗ is
⌝B∗ and by induction hypothesis V ′(B) is V (B∗); thus V ′(A) is V (A∗). Now, if A is a tautology, V ′(A) is
T; hence V (A∗) is T.

§4 �eorems and rules in �rst-order theories

In this section, a �rst-order theory T is �xed. We write ∣− and 0 instead of ∣−T and 0T .

4.1 Quanti�cation.We now prove some rules involving the symbol ∃.
∀-introduction Rule. If x is not free in A, then A→ B ∣−A→ ∀xB.

Proof. By the tautology theorem, ∣−⌝B → ⌝A. Since x is not free in ⌝A, the ∃-introduction rule yields
∣−∃x⌝B→ ⌝A. �en by the tautology theorem, ∣−A→ ∀xB.
Generalization Rule. A ∣−∀xA.

Proof. By the tautology theorem, ∣−⌝∀xA → A. By the ∀-introduction rule, ∣−⌝∀xA → ∀xA, whence
∣−∀xA by the tautology theorem.
Substitution Rule. If A′ is an instance of A, then A ∣−A′.

Proof. We �rst deal with the special case where A′ is A[x∣a]. By the generalization rule, we have ∣−∀xA,
and by the substitution axioms ∣−⌝A[x∣a] → ∃x⌝A. From these by the tautology theorem ∣−A[x∣a]. We
now prove the general case. Suppose that A′ is A[x1 , . . . , xn ∣a1 , . . . , an]. Let y1, . . . , yn be distinct variables
not occurring in either A or A′. By n applications of the special case, we �nd successively ∣−A[x1∣y1], . . . ,
∣−A[x1 , . . . , xn ∣y1 , . . . , yn]. Applying again n times the special case, we �nd

∣−A[x1 , . . . , xn ∣y1 , . . . , yn][y1∣a1], . . . , ∣−A[x1 , . . . , xn ∣y1 , . . . , yn][y1 , . . . , yn ∣a1 , . . . , an],
i.e., ∣−A[x1 , . . . , xn ∣a1 , . . . , an].
Substitution Theorem. ∣−A[x1 , . . . , xn ∣a1 , . . . , an] → ∃x1 . . . ∃xnA and ∣−∀x1 . . .∀xnA → A[x1 ,
. . . , xn ∣a1 , . . . , an].

Proof. For each i, ∃xi+1 . . . ∃xnA→ ∃xi∃xi+1 . . . ∃xnA is a substitution axiom. A tautological consequence
of all these isA→ ∃x1 . . . ∃xnA, fromwhich we obtain the �rst result by the substitution rule. �e formula
⌝B → ∃x⌝B is a substitution axiom, from which we infer ∣−∀xB → B by the tautology theorem. Hence
for each i, we have ∣−∀xi∀xi+1 . . .∀xnA → ∀xi+1 . . .∀xnA. A tautological consequence of all these is
∀x1 . . .∀xnA→ A, from which we get the second result by the substitution rule.

Distribution Rule. A→ B ∣−∃xA→ ∃xB and A→ B ∣−∀xA→ ∀xB.
Proof. �e formula B → ∃xB is a substitution axiom. Hence ∣−A → ∃xB by the tautology theorem, and
∣−∃xA → ∃xB by the ∃-introduction rule. Similarly, we have ∣−∀xA → A by the substitution theorem,
from which ∣−∀xA→ B by the tautology theorem, and ∣−∀xA→ ∀xB by the ∀-introduction rule.

�e following corollary will also be referred to as the distribution rule.

Corollary. A↔ B ∣−∃xA↔ ∃xB and A↔ B ∣−∀xA↔ ∀xB.
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Proof. By the tautology theorem, ∣−A→ B and ∣−B→ A, whence ∣−∃xA→ ∃xB and ∣−∃xB→ ∃xA by the
distribution rule. From these by the tautology theorem, ∣−∃xA ↔ ∃xB. �e proof of ∣−∀xA ↔ ∀xB is
identical.

Closure Theorem. A 0 ∀x1 . . .∀xnA.
Proof. We have A ∣−∀x1 . . .∀xnA by n applications of the generalization rule. By the second part of the
substitution theorem, we have ∣−∀x1 . . .∀xnA→ A, whence∀x1 . . .∀xnA∣−A by the detachment rule.
We use the results of this paragraph to derive some useful theorems.

(i) If x is not free in A, ∣−∃xA↔ A;
(ii) if x is not free in A, ∣−∀xA↔ A;
(iii) ∣−∃x∃yA↔ ∃y∃xA;
(iv) ∣−∀x∀yA↔ ∀y∀xA;
(v) ∣−∃x∀yA→ ∀y∃xA;
(vi) ∣−∃x(A ∨ B)↔ ∃xA ∨ ∃xB;
(vii) ∣−∀x(A ∧ B)↔ ∀xA ∧ ∀xB;
(viii) ∣−∃x(A ∧ B)→ ∃xA ∧ ∃xB;
(ix) ∣−∀xA ∨ ∀xB→ ∀x(A ∨ B).

�e formula A → ∃xA is a substitution axiom and if x is not free in A, we obtain ∣−∃xA → A by the ∃-
introduction rule from the tautologyA→ A; so (i) by the tautology theorem. By the substitution theorem
∣−A → ∃y∃xA, whence ∣−∃x∃yA → ∃y∃xA by the ∃-introduction rule. Similarly, ∣−∃y∃xA → ∃x∃yA,
whence (iii) by the tautology theorem. By the substitution axioms and the distribution rule, ∣−∀yA →
∀y∃xA, whence (v) by the ∃-introduction rule. By the substitution axioms, ∣−A → ∃xA and ∣−B → ∃xB,
whence ∣−∃x(A∨B)→ ∃xA∨∃xB by the tautology theorem and the∃-introduction rule. �e samemethod
proves (viii). �e formulaA→ A∨B is a tautology; hence ∣−∃xA→ ∃x(A∨B) by the distribution rule, so
∣−∃xA ∨ ∃xB → ∃x(A ∨ B) by the tautology theorem. Together with the previous result, this proves (vi).
Items (ii), (iv), (vii), and (ix) are proved in the same way as (i), (iii), (vi), and (viii), respectively, using the
∀-introduction rule instead of the ∃-introduction rule, and the other parts of the substitution theorem
and the distribution rule.

4.2 Adjunction of nonlogical symbols. Let T be a �rst-order theory. We may form a �rst-order theory
fromT by adding new function and predicate symbols to the signature of L(T) while leaving the nonlogical
rules of T unchanged (but of course new formulae and logical rules featuring the new symbols are to
be added). We may also form a new �rst-order theory by adding new nonlogical axioms. We then say
that such a theory is obtained from T by the adjunction of those symbols and of those nonlogical axioms.
�e next proposition says that the mere adjunction of nonlogical symbols will not allow us to derive any
formula of the original language that was not already derivable without using the new symbols.

Proposition. Let T be a �rst-order theory and let T ′ be obtained from T by the adjunction of new
nonlogical symbols. �en T ′ is a conservative extension of T .

Proof. We shall prove a slightly more general result: ifA is a theorem of T ′, if x is a variable not occurring
in any member of some derivation of A in T ′, and if A∗ is obtained from A by replacing every occurrence
of a term of the form fa1 . . . an , where f is not a symbol of T , by x and every occurrence of an atomic
formula of the form pa1 . . . an , where p is not a symbol of T , by x = x, then A∗ is a theorem of T (note
that the order in which those replacements are carried out has no in�uence on the resulting formula A∗).
First observe that this implies the proposition, since A∗ is A whenever A is a formula of T . Now to prove
the more general statement, we modify the given derivation of A as follows: replace any appearance of
a functional equality axiom x1 = y1 → ⋯ → xn = yn → fx1 . . . xn = fy1 . . . yn by a derivation in T of
x1 = y1 → ⋯ → xn = yn → x = x; replace any appearance of a predicative equality axiom x1 = y1 → ⋯ →
xn = yn → px1 . . . xn → py1 . . . yn by a derivation in T of x1 = y1 → ⋯ → xn = yn → x = x → x = x;
replace any occurrence of a term of the form fa1 . . . an , where f is not a symbol of T , by x; �nally, replace
any occurrence of an atomic formula of the form pa1 . . . an , where p is not a symbol of T , by x = x. A
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quick inspection reveals that, with the exception of the equality axioms, an application of a logical rule
of inference becomes an application of the same type of rule, and nonlogical rules are una�ected. �e
only nontrivial case is that of the substitution axioms. But if u∗ denotes the designator of T obtained
from a designator u of T ′ in the same way as A∗ was obtained from A, a straightforward induction on
the length of u shows that, if x does not occur in u and is distinct from y, (u[y∣a])∗ is u∗[y∣a∗]. It follows
that a substitution axiom A[y∣a]→ ∃yA becomes the substitution axiom A∗[y∣a∗]→ ∃yA∗. �us, we have
indeed obtained a derivation of A∗ in T .

When the only nonlogical symbols added are constants, we have the following stronger result.

Theorem on Constants. Let T be a �rst-order theory. Let T ′ be obtained from T by the adjunc-
tion of n new constants e1, . . . , en , and let x1, . . . , xn be distinct variables. �en ∣−TA if and only if
∣−T′A[x1 , . . . , xn ∣e1 , . . . , en].

Proof. Suppose that ∣−TA. �en ∣−T′A, whence ∣−T′A[x1 , . . . , xn ∣e1 , . . . , en] by the substitution rule. Con-
versely, suppose that ∣−T′A[x1 , . . . , xn ∣e1 , . . . , en]. �is means that there is a derivation of A[x1 , . . . , xn ∣e1 ,
. . . , en] in T ′. Let y1, . . . , yn be distinct variables not appearing in that derivation. We replace every
occurrence of ei in members of that derivation by yi , for all i, and what we obtain is a derivation of
A[x1 , . . . , xn ∣y1 , . . . , yn] in T . Indeed, an application of a logical rule of inference becomes an application
of the same type of rule, and nonlogical rules are una�ected. �us ∣−TA[x1 , . . . , xn ∣y1 , . . . , yn], whence
∣−TA by the substitution rule.

4.3 �e deduction theorem.

Lemma. Let T be a �rst-order theory and let A be a closed formula of T . �en ∣−TA → B if and only
if A ∣−TB.

Proof. �e necessity follows at once from the detachment rule. To prove the converse, we use tautological
induction on theorems in T[A]. If B is an axiom of T[A] other thanA, then B is an axiom of T and hence
∣−TA → B by the tautology theorem. If B is A, then A → B is a tautology, and hence ∣−TA → B. Suppose
that B is a tautological consequence of C1, . . . , Cn . By induction hypothesis, ∣−TA → Ci for all i. �en
∣−TA → B because it is a tautological consequence of all the A → Ci . Suppose that B is inferred from
C → D by the ∃-introduction rule with the variable x. By induction hypothesis, ∣−TA → C → D. �en by
the tautology theorem, ∣−TC → A → D. Since x is not free in D and A is closed, x is not free in A; hence
it is not free in A → D. By the ∃-introduction rule, ∣−T∃xC → A → D. From the latter and the tautology
theorem, ∣−TA→ ∃xC→ D, that is, ∣−TA→ B.

Combining the Lemma and the theorem on constants, we obtain the following result:

Deduction Theorem. Let T be a �rst-order theory and let A be a formula of T whose free variables
are among x1, . . . , xn . Let T ′ be obtained from T by the adjunction of n new constants e1, . . . , en . �en
A→ B is a theorem of T if and only if A[x1 , . . . , xn ∣e1 , . . . , en] ∣−T′B[x1 , . . . , xn ∣e1 , . . . , en].
Reduction Theorem. Let T be a �rst-order theory, Γ a collection of formulae of T , and A a formula
of T . �en Γ ∣−TA if and only if there are formulae B1, . . . , Bn among the closures of the formulae of
Γ such that ∣−TB1 → ⋯→ Bn → A.

Proof. Suppose that Γ ∣−TA. �is means that there exists a derivation of A in T[Γ]. Let B1, . . . , Bn be the
closures of the formulae of Γ that appear in the derivation. �en by the closure theorem A is a theorem
of T[B1 , . . . ,Bn]. So ∣−TB1 → ⋯ → Bn → A by n applications of the deduction theorem. �e converse
follows from the closure theorem and n applications of the detachment rule.

4.4 �e equivalence theorem.

Equivalence Theorem. Let A′ be a formula obtained from A by replacing some occurrences of B1,
. . . , Bn by B′1, . . . , B′n . �en B1 ↔ B′1 , . . . ,Bn ↔ B′n ∣−A↔ A′.

Proof. If Bi is all of A for some i and if A is replaced by B′i , then A′ is B′i and ∣−A ↔ A′ by hypothesis.
We now exclude this case, and we prove the result by induction on the length of A. If A is atomic, then
A has no subformula distinct from A; hence A′ is A and ∣−A ↔ A′ by the tautology theorem. Suppose
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that A is C ∨ D. By the occurrence theorem, any subformula of A di�erent from A occurs either in C
or in D. Denote by C′ and D′ the formulae such that A′ is C′ ∨D′. By induction hypothesis, ∣−C ↔ C′
and ∣−D ↔ D′, whence ∣−A ↔ A′ by the tautology theorem. Suppose that A is ⌝C. By the occurrence
theorem, any subformula of A di�erent from A occurs in C. Let C′ be the formula such that A′ is ⌝C′.
�en ∣−C ↔ C′ by induction hypothesis, whence ∣−A ↔ A′ by the tautology theorem. Suppose �nally
that A is ∃xC. By the occurrence theorem and the induction hypothesis, A′ is ∃xC′ where ∣−C↔ C′. By
the distribution rule, ∣−A↔ A′.

Variant Theorem. If A′ is a variant of A, then ∣−A↔ A′.

Proof. Suppose �rst that A is ∃xB and that A′ is ∃yB[x∣y] where y is not free in B. By the substitution
axioms ∣−B[x∣y]→ ∃xB and ∣−B→ ∃yB[x∣y]. By the ∃-introduction rule, ∣−∃yB[x∣y]→ ∃xB and ∣−∃xB→
∃yB[x∣y]. From these we get ∣−∃xB ↔ ∃yB[x∣y] by the tautology theorem. In the general case, A′ is
obtained from A through A1, . . . , An−1 in the following way: setting A0 to be A and An to be A′, Ai is
obtained from Ai−1 by replacement of an occurrence of a subformula of the form ∃xB by ∃yB[x∣y] with y
not free in B. At each step, we have ∣−Ai−1 ↔ Ai by the special case and the equivalence theorem. Hence
∣−A↔ A′ by the tautology theorem.

From the variant theorem, the tautology theorem, and the substitution rule, we obtain:

Version Theorem. If A′ is a version of A, then A ∣−A′.

4.5 �e equality theorem.

Symmetry Theorem. ∣−a = b↔ b = a.

Proof. �e formula x = y → x = x → x = x → y = x is an equality axiom. By the identity axiom x = x
and the tautology theorem, we obtain ∣−x = y → y = x. By the substitution rule, we have ∣−a = b→ b = a
and ∣−b = a→ a = b. From these we get ∣−a = b↔ b = a by the tautology theorem.

Equality Theorem for terms. Let a′ be a term obtained from a by replacing some occurrences of
b1, . . . , bn by b′1, . . . , b′n . �en b1 = b′1 , . . . , bn = b′n ∣−a = a′.

Proof. If bi is all of a for some i and if a is replaced by b′i , then a′ is b′i and ∣−a = a′ by hypothesis. We
now exclude this case, and we prove the result by induction on the length of a. If a is a variable, then there
is no occurrence in a of a term distinct from a; hence a′ is a and ∣−a = a′ by the identity axioms and the
substitution rule. Suppose that a is fc1 . . . ck . By the occurrence theorem, any occurrence of a term in a
di�erent from a is in one of the ci . Denote by c′1, . . . , c′k the terms such that a

′ is fc′1 . . . c′k . By induction
hypothesis, ∣−ci = c′i for all i. By the equality axioms and the substitution rule, ∣−c1 = c′1 → ⋯→ ck = c′k →
a = a′, hence ∣−a = a′ by k applications of the detachment rule.

Equality Theorem for formulae. Let A′ be a formula obtained from A by replacing some mean-
ingful occurrences of b1, . . . , bn by b′1, . . . , b′n . �en b1 = b′1 , . . . , bn = b′n ∣−A↔ A′.

Proof. We prove the result by induction on the length ofA. Suppose thatA is pc1 . . . ck . By the occurrence
theorem, any occurrence of a term in A is in one of the ci . Denote by c′1, . . . , c′k the terms such that
A′ is pc′1 . . . c′k . By the equality theorem for terms, ∣−ci = c′i for all i; also ∣−c′i = ci by the symmetry
theorem. By the equality axioms and the substitution rule, ∣−c1 = c′1 → ⋯ → ck = c′k → A → A′ and
∣−c′1 = c1 → ⋯ → c′k = ck → A′ → A, hence ∣−A → A′ and ∣−A′ → A by k applications of the detachment
rule. From these we get ∣−A↔ A′ by the tautology theorem. Suppose that A is C ∨D. By the occurrence
theorem, any occurrence of a term in A is either in C or in D. Denote by C′ and D′ the formulae such
that A′ is C′ ∨D′. By induction hypothesis, ∣−C↔ C′ and ∣−D↔ D′, whence ∣−A↔ A′ by the tautology
theorem. Suppose that A is ⌝C. By the occurrence theorem, any occurrence of a term in A is in C. Let
C′ be the formula such that A′ is ⌝C′. �en ∣−C ↔ C′ by induction hypothesis, whence ∣−A ↔ A′ by
the tautology theorem. Suppose �nally that A is ∃xC. By the hypothesis, the occurrence [∃,C] of x is not
replaced. Hence by the occurrence theorem and the induction hypothesis,A′ is ∃xC′ where ∣−C↔ C′. By
the distribution rule, ∣−A↔ A′.

�e equality theorems can be combined with the deduction theorem to get the following useful corol-
lary, which will also be referred to as the equality theorem. Its proof is straightforward.



i 4.6 theorems and rules in first-order theories 17

Corollary.
(i) ∣−a1 = a′1 → ⋯→ an = a′n → b[x1 , . . . , xn ∣a1 , . . . , an] = b[x1 , . . . , xn ∣a′1 , . . . , a′n];
(ii) ∣−a1 = a′1 → ⋯→ an = a′n → A[x1 , . . . , xn ∣a1 , . . . , an]↔ A[x1 , . . . , xn ∣a′1 , . . . , a′n].
Replacement Theorem. If x does not occur in a, then ∣−A[x∣a] ↔ ∃x(x = a ∧ A) and ∣−A[x∣a] ↔
∀x(x = a→ A).

Proof. By the hypothesis, the formula (a = a ∧ A[x∣a]) → ∃x(x = a ∧ A) is a substitution axiom. By
the identity axioms and the substitution rule, we have ∣−a = a. A tautological consequence of these two
formulae is

A[x∣a]→ ∃x(x = a ∧A). (1)

By the Corollary, we have ∣−x = a→ A↔ A[x∣a], whence ∣−x = a∧A→ A[x∣a] by the tautology theorem.
By the ∃-introduction rule,

∣−∃x(x = a ∧A)→ A[x∣a]. (2)

From (1) and (2), we get the desired result by the tautology theorem.
By the hypothesis and the substitution theorem, ∣−∀x(x = a → A) → a = a → A[x∣a]. A tautological

consequence of this and a = a is ∀x(x = a → A) → A[x∣a]. By the equality theorem and the tautology
theorem, ∣−A[x∣a]→ x = a→ A, whence ∣−A[x∣a]→ ∀x(x = a→ A) by the ∀-introduction rule. As above,
we obtain the second result by the tautology theorem.

4.6 Prenex form. A formula A is in prenex form if it is of the form u1 . . . unB where: B is open; each ui
is either ∃xi or ∀xi ; x1, . . . , xn are distinct. It is clear that u1, . . . , un , and B are then uniquely determined;
u1 . . . un is called the pre�x of A and B its matrix. If moreover each ui is ∃xi (resp. ∀xi), we say that A is
existential (resp. universal). We shall show that for any formula A, there is a formula A′ in prenex form
such that ∣−A↔ A′.
Let A be a formula. �e prenex operations that can be applied to A are the following:

(i) replace A by a variant;
(ii) if x is not free in C, replace an occurrence of ∃xB ∨C by ∃x(B ∨C);
(iii) if x is not free in C, replace an occurrence of ∀xB ∨C by ∀x(B ∨C);
(iv) if x is not free in B, replace an occurrence of B ∨ ∃xC by ∃x(B ∨C);
(v) if x is not free in B, replace an occurrence of B ∨ ∀xC by ∀x(B ∨C);
(vi) replace an occurrence of ⌝∃xB by ∀x⌝B;
(vii) replace an occurrence of ⌝∀xB by ∃x⌝B.
A formula in prenex form obtained from A by prenex operations is called a prenex form of A.

Theorem on Prenex Operations. If A′ is obtained from A by prenex operations, then ∣−A↔ A′.

Proof. By the tautology theorem, it su�ces to consider the case where A′ is obtained from A by just one
of the seven prenex operations. If A′ is a variant of A, then the conclusion is the variant theorem. To
prove that ∣−A↔ A′ whenA′ is obtained fromA by one of (ii)–(vii), we may suppose, by the equivalence
theorem, that all of A is replaced. By the tautology theorem, it will su�ce to prove

∣−∃x(B ∨C)→ ∃xB ∨C, (3)
∣−∃xB→ ∃x(B ∨C), (4)
∣−C→ ∃x(B ∨C), (5)
∣−∀x(B ∨C)→ ∀xB ∨C, (6)
∣−∀xB→ ∀x(B ∨C), (7)
∣−C→ ∀x(B ∨C), (8)
∣−B ∨ ∃xC↔ ∃x(B ∨C), (9)
∣−B ∨ ∀xC↔ ∀x(B ∨C), (10)
∣−⌝∃xB↔ ⌝∃x⌝⌝B, and (11)
∣−⌝⌝∃x⌝B↔ ∃x⌝B, (12)
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under the hypothesis that x is not free in C in (3)–(8) and not free in B in (9)–(10). Now B → ∃xB is
a substitution axiom. A tautological consequence of it is B ∨ C → ∃xB ∨ C. Hence we �nd (3) by the
∃-introduction rule. From the tautology B → B ∨ C, we get (4) and (7) by the distriution rule. From
the substitution axiom B ∨ C → ∃x(B ∨ C), we get (5) by the tautology theorem. By the substitution
theorem, ∣−∀x(B ∨ C) → B ∨ C. A tautological consequence of this is ∀x(B ∨ C) ∧ ⌝C → B, from which
∣−∀x(B ∨ C) ∧ ⌝C → ∀xB by the ∀-introduction rule, whence (6) by the tautotlogy theorem. From the
tautology C → B ∨ C we get (8) by the ∀-introduction rule. Interchanging B and C in (3)–(8) yields (9)
and (10) by the equivalence theoremand the tautology theorem. Weobtain (11) by the equivalence theorem
and the tautology theorem. Finally, (12) is a tautology.

Proposition. Every formula has a prenex form.

Proof. Let A be a formula. We prove our claim by induction on the length of A. If A is atomic, then it is
a prenex form of itself. If A is B ∨C, then by induction hypothesis B and C have prenex forms B′ and C′,
and we may suppose by (i) that the bound variables in B′ are distinct from the variables in C′ and that the
bound variables inC′ are distinct from the variables in B′. We then obtain a prenex form ofA by applying
successively (ii)–(v) to B′ ∨C′. IfA is ⌝B, then we obtain a prenex form ofA from a prenex form of B and
successive applications of (vi)–(vii). If A is ∃xB, then by the induction hypothesis and (i), B has a prenex
form B′ in which x is not bound. �en ∃xB′ is a prenex form of A.

�e following operations are easily seen to be combinations of prenex operations.

(viii) if x is not free in C, replace an occurrence of ∃xB ∧C by ∃x(B ∧C);
(ix) if x is not free in C, replace an occurrence of ∀xB ∧C by ∀x(B ∧C);
(x) if x is not free in B, replace an occurrence of B ∧ ∃xC by ∃x(B ∧C);
(xi) if x is not free in B, replace an occurrence of B ∧ ∀xC by ∀x(B ∧C);
(xii) if x is not free in C, replace an occurrence of ∃xB→ C by ∀x(B→ C);
(xiii) if x is not free in C, replace an occurrence of ∀xB→ C by ∃x(B→ C);
(xiv) if x is not free in B, replace an occurrence of B→ ∃xC by ∃x(B→ C);
(xv) if x is not free in B, replace an occurrence of B→ ∀xC by ∀x(B→ C).

4.7 On English translation. We have already de�ned in §2.8 the standard meaning of a �rst-order lan-
guage, which provides an e�cient way of translating formulae of a �rst-order language into English. For
example, ∀x(x 1 x) may be translated as “for all individuals x, x does not equal x”, where the kind of indi-
viduals may be further speci�ed in a given theory. Of course, in order to translate formulae of an arbitrary
�rst-order theory, it is also necessary to explain the meaning of the nonlogical symbols.
In Chapter vi we shall introduce a �rst-order theory called ZF, and we shall o�en translate derivations

in English. �is does not mean that we abandon the formalism we have described with great care in
this chapter. Our objects of study will remain formal expressions, and our theorems (whose statements
will always be accurate) will say something about formal systems and not, as is usual in mathematics,
about abstract individuals. �ese informal derivations in English should be considered as guidelines from
which one can recover derivations using the results of the previous sections. We intend each step of these
guidelines to be easily translated back into the formal system by simple applications of these results. �e
problem is that no reference can be given where the derivations of the theorems of ZF can be found, so one
must trust that these informal derivations actually work. �e best way to be convinced of it is of course to
try and translate some of them into formal derivations.

�ere is a device that is o�en used in informal derivations which is worth explaining. When proving
∣−TA → B, it is customary to start the derivation by saying “suppose that A holds”. One way to translate
such an argument formally is by using the deduction theorem.

•



Chapter Two
�eQuestion of Consistency

§1 Consistency and completeness

1.1 Consistency. We say that a formal system F is inconsistent if every formula of F is a theorem of F; it
is consistent otherwise. We shall only be interested in applying these de�nitions when L(F) is a �rst-order
language and when the propositional rules are derivable in F. We can then formulate a simple criterion
for consistency with the tautology theorem. Since there is no truth valuation V for which both V (A) and
V (⌝A) are T, it follows that every formula is a tautological consequence of A and ⌝A. Consequently, F is
inconsistent if (and only if) there is a formula A of F such that ∣−FA and ∣−F⌝A.
Proposition 1. Let T be a �rst-order theory, A a formula of T , and A′ its closure. �en ∣−TA if and
only if T[⌝A′] is inconsistent.

Proof. If ∣−TA, then ∣−T[⌝A′]A and hence ∣−T[⌝A′]A′ by the closure theorem. Obviously ∣−T[⌝A′]⌝A′, so by
the above remarkT[⌝A′] is inconsistent. Conversely, suppose thatT[⌝A′] is inconsistent. �en ∣−T[⌝A′]A′,
so by the deduction theorem, ∣−T⌝A′ → A′. �us we obtain ∣−TA′ by the tautology theorem, whence ∣−TA
by the closure theorem.

Proposition 2. Let F be a formal system whose language is a �rst-order language and whose rules of
inference are the propositional rules for L(F), and let Γ be a collection of formulae of L(F). �en F[Γ]
is inconsistent if and only if some disjunction of negations of formulae in Γ is a tautology.

Proof. Recall that, by the tautology theorem, a formula of L(F) is a theorem of F[Γ] if and only if it is a
tautological consequence of formulae in Γ. It follows that if F[Γ] is inconsistent, then x = x and x 1 x are
tautological consequences of formulae A1, . . . , An in Γ. �en no truth valuation assigns T to all of A1, . . . ,
An , i.e., ⌝A1 ∨ ⋯ ∨ ⌝An is a tautology. Conversely, if some disjunction of negations of formulae in Γ is a
tautology, then any formula of L(F) is a tautological consequence of formulae in Γ, so F[Γ] is inconsistent
by the tautology theorem.

1.2 �e consistency of �rst-order logic. Given the meaning we have in mind for �rst-order theories, we
want them to be consistent. But the problem of determining the consistency of a �rst-order theory is not
an easy one in general. In some simple cases it can be done by elementary (and �nitary) arguments. �is
is fortunately the case for the �rst-order theories exempt of nonlogical axioms.

Proposition. A �rst-order theory with no nonlogical axioms is consistent.

Proof. Let T be a �rst-order theory with no nonlogical axioms, and let L be the �rst-order language con-
sisting of L(T) and a new constant e. To every formula A of T , we let A∗ be obtained from A by deleting
all occurrences of ∃x and replacing all remaining terms by e. ClearlyA∗ is a formula of L. We prove that if
∣−TA, then A∗ is a tautological consequence of e = e. We proceed by tautological induction on theorems
in T . If A is B[x∣a] → ∃xB, then A∗ is B∗ → B∗ which is a tautology. If A is x = x, then A∗ is e = e and
is a tautological consequence of itself. If A is an equality axiom, then A∗ is either e = e → ⋯ → e = e,
which is a tautological consequence of e = e, or e = e → ⋯ → e = e → pe . . . e → pe . . . e, which is a
tautology. IfA is a tautological consequence of B1, . . . , Bn , thenA∗ is a tautological consequence of B∗1 , . . . ,
B∗n by proposition 2 of ch. i §3.3, and so is a tautological consequence of e = e by induction hypothesis. If
A is obtained from B → C by the ∃-introduction rule with the variable x, then A∗ is B∗ → C∗, which is
a tautological consequence of e = e by induction hypothesis. Let now V be a truth valuation on L which
assigns T to e = e. �en V (e 1 e) is F, and so x 1 x is not a theorem of T .

1.3 Completeness. A notion that is closely related to consistency is that of completeness. A �rst-order
theory T is complete if for any closed formula A of T , ∣−TA or ∣−T⌝A. Completeness, like consistency,
is obviously a desirable property of a �rst-order theory. We will not pursue this notion any further in
this chapter, but we shall obtain important results on the completeness of particular �rst-order theories in
Chapter iii.

19
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§2 Extensions by de�nitions

2.1 De�nitions of predicate symbols. Let T be a �rst-order theory, D a formula of T , and x1, . . . , xn
distinct variables including the variables free in D. Let T ′ be the �rst-order theory obtained from T by
the adjunction of a new n-ary predicate symbol p and the new nonlogical axiom px1 . . . xn ↔ D. For any
formula A of T ′, we choose a variant D′ of D in which no variable of A is bound and we let A∗ be the
formula of T obtained from A by replacing each occurrence of pa1 . . . an in A by

D′[x1 , . . . , xn ∣a1 , . . . , an].
We now assume that for each formula A a formula A∗ has been chosen once and for all. Since only oc-
currences of atomic formulae are replaced to form A∗, it follows that if A is B ∨ C, then A∗ is a variant of
B∗ ∨ C∗, if A is ⌝B, then A∗ is a variant of ⌝B∗, and if A is ∃xB, then A∗ is ∃xB′ where B′ is a variant of
B∗.

Theorem on Predicative Definitions. With the notations of this paragraph, ∣−T′A ↔ A∗ and T ′
is a conservative extension of T .

Proof. To prove the �rst assertion, it su�ces, by the equivalence theorem, to show that ∣−T′pa1 . . . an ↔
D′[x1 , . . . , xn ∣a1 , . . . , an]. �is follows from the axiom px1 . . . xn ↔ D by the version theorem.
To prove that T ′ is a conservative extension of T , it su�ces to prove ∣−TA∗ for any theoremA of T ′; for

ifA is a formula of T , thenA∗ isA. We use tautological induction on theorems in T ′. IfA is a substitution
axiom B[x∣a]→ ∃xB, thenA∗ is easily seen to be a variant of the substitution axiom B∗[x∣a]→ ∃xB∗, and
hence ∣−TA∗ by the variant theorem. If A is an identity axiom, then p does not occur in A; hence A∗ is A
and ∣−TA∗. Similarly, ifA is an equality axiom in which p does not occur, thenA∗ isA and ∣−TA∗. Suppose
that A is an equality axiom of the form y1 = y′1 → ⋯→ yn = y′n → py1 . . . yn → py′1 . . . y′n . �en A∗ is

y1 = y′1 → ⋯→ yn = y′n → D′[x1 , . . . , xn ∣y1 . . . yn]→ D′′[x1 , . . . , xn ∣y′1 . . . y′n]
for some variantsD′ andD′′ ofD, so it is a theorem of T by the equality theorem and the variant theorem.
If A is a nonlogical axiom of T , then p does not occur in A; hence A∗ is A and ∣−TA∗. Finally, if A is
px1 . . . xn ↔ D, then A∗ isD′ ↔ D, which is a theorem of T by the variant theorem.
Suppose that A is a tautological consequence of B1, . . . , Bk . �en by Proposition 2 of ch. i §3.3, A∗ is a

tautological consequence of variants of B∗1 , . . . , B∗k , and hence ∣−TA∗ by the variant theorem, the tautology
theorem, and the induction hypothesis. Suppose that A is inferred from B → C by the ∃-introduction
rule with the variable x. �en A∗ is ∃xB′ → C′ where B′ and C′ are variants of B∗ and C∗. �e induction
hypothesis is ∣−TB∗ → C∗. Since x is not free in C∗, A is a theorem of T by the ∃-introduction rule and
the variant theorem.

2.2 De�nitions of function symbols. Let T be a �rst-order theory, D a formula of T , and x1, . . . , xn ,
y, y′ distinct variables such that x1, . . . , xn , y include the variables free in D. Let T ′ be the �rst-order
theory obtained from T by the adjunction of a new n-ary function symbol f and the new nonlogical
axiom y = fx1 . . . xn ↔ D. For any atomic formula A of T ′, we de�ne a formula A∗ of T by induction
on the number of occurrences of f in A. If there are no such occurrences, then A∗ is A. If f occurs in A,
consider the last occurrence of a term fa1 . . . an in A, so that f does not occur in a1, . . . , an , and let B be
obtained from A by replacing that occurrence by a variable z not occurring in A. �en B is an atomic
formula in which f occurs one less time than in A; we choose a variantD′ ofD in which no variable of A
is bound and we let A∗ be the formula

∃z(D′[x1 , . . . , xn , y∣a1 , . . . , an , z] ∧ B∗).

We now assume that a formula A∗ is �xed for any atomic formula A of T . If A is any formula of T ′, let A∗
be the formula obtained from A by replacing each occurrence of an atomic formula B in A by B∗. For the
same reason as in §2.1, if A is B∨C, then A∗ is a variant of B∗ ∨C∗, if A is ⌝B, then A∗ is a variant of ⌝B∗,
and if A is ∃xB, then A∗ is ∃xB′ where B′ is a variant of B∗.
Lemma 1. Let A be a formula of T ′. Assume that A○ is built as A∗, except that, at each step, instead of
replacing the last occurrence of a term fa1 . . . an , we allow the replacement of any such occurrence as
long as f does not occur in a1, . . . , an . �en ∣−TA∗ ↔ A○.
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Proof. By the equivalence theorem, it su�ces to prove the result for A atomic. Replacing A∗ and A○ by
variants if necessary, we may assume that any given occurrence of f in A is replaced by the same variable
in forming A∗ and A○, and that this variable does not occur in all of A. It follows that if A∗ has the form
∃z1(D1 ∧⋯∃zm(Dm ∧ B)⋯ ) for some formula B of T , then A○ has the form ∃z′1(D′

1 ∧⋯∃z′m(D′
m ∧ B)⋯ )

where for each i there is exactly one j such that zi is z′j andDi is a variant ofD′
j . �us A○ can be obtained

from A∗ using the following operations: prenex operations; replacing an occurrence of ∃x∃x′ by ∃x′∃x;
replacing an occurrence of C ∧ C′ by C′ ∧ C. By ch. i §4.1 (iii), the tautology theorem, the equivalence
theorem, and the theorem on prenex operations, we have ∣−TA∗ ↔ A○.

Lemma 2. If ∣−T∃xA and ∣−TA → A[x∣x′] → x = x′ for some x′ not free in A and B, then ∣−T∃x(A ∧
B)↔ ∀x(A→ B) and ∣−T⌝∃x(A ∧ B)↔ ∃x(A ∧ ⌝B).

Proof. For the �rst assertion, we derive both implications. By the substitution theorem and the tautology
theorem, ∣−T∀x(A→ B)∧A→ A∧B, whence ∣−T∀x(A→ B)∧∃xA→ ∃x(A∧B) by the distribution rule
and prenex operations. By the �rst hypothesis and the tautology theorem, we obtain ∣−T∀x(A → B) →
∃x(A∧B). Conversely, ∣−TA∧B→ A[x∣x′]→ B[x∣x′] by the equality theorem, the second hypothesis, and
the tautology theorem. So by the ∀-introduction rule and the ∃-introduction rule, we obtain ∣−T∃x(A ∧
B) → ∀x′(A[x∣x′] → B[x∣x′]), whence ∣−T∃x(A ∧ B) → ∀x(A → B) by the variant theorem. �e second
assertion follows from the �rst one by the tautology theorem and the equivalence theorem.

Lemma 3. With the notations of this paragraph, suppose that

∣−T∃yD and (1)
∣−TD→ D[y∣y′]→ y = y′ . (2)

If a1, . . . , an are terms of T , A a formula of T ′, and D′ a variant of D in which no variable of A, a1, . . . ,
an is bound, then ∣−TA[z∣fa1 . . . an]∗ ↔ ∃z(D′[x1 , . . . , xn , y∣a1 , . . . , an , z] ∧A∗).

Proof. �roughout the proof, we let D1 abbreviate D′[x1 , . . . , xn , y∣a1 , . . . , an , z]. We prove the result by
induction on the length of A. Suppose �rst that A is atomic, and proceed by induction on the number of
free occurrences of z in A. If there are none, then z is not free in A∗. From the tautology D1 ∧ A∗ →
A∗, we obtain ∣−T∃z(D1 ∧ A∗) → A∗ by the ∃-introduction rule. Conversely, from ∣−T∃zD1, we ob-
tain ∣−TA∗ → ∃z(D1 ∧ A∗) by the tautology theorem and prenex operations. Hence the desired equiva-
lence holds by the tautology theorem. Suppose that z has a free occurrence in A, and let B be obtained
from A by replacing all free occurrences of z save one by a variable w distinct from z and not occur-
ring in A, a1, . . . , an , or D′. �en by Lemma 1 ∣−TA[z∣fa1 . . . an]∗ ↔ ∃z(D1 ∧ B[w∣fa1 . . . an]∗), and
by induction hypothesis ∣−TB[w∣fa1 . . . an]∗ ↔ ∃w(D1[z∣w] ∧ B∗). Hence by the equivalence theorem,
∣−TA[z∣fa1 . . . an]∗ ↔ ∃z(D1 ∧ ∃w(D1[z∣w] ∧ B∗)), and by prenex operations

∣−TA[z∣fa1 . . . an]∗ ↔ ∃z∃w(D1 ∧D1[z∣w] ∧ B∗). (3)

By a version of (2), the equality theorem, and the tautology theorem, ∣−TD1 → D1[z∣w] → A∗ ↔ B∗,
whence ∣−TD1[z∣w]∧D1∧A∗ ↔ D1∧D1[z∣w]∧B∗ by the tautology theorem. So by (3) and the equivalence
theorem, we �nd ∣−TA[z∣fa1 . . . an]∗ ↔ ∃z∃w(D1[z∣w] ∧D1 ∧A∗). Since w is not free in D1 ∧A∗ and z is
not free inD1[z∣w], we get

∣−TA[z∣fa1 . . . an]∗ ↔ ∃wD1[z∣w] ∧ ∃z(D1 ∧A∗) (4)

by prenex operations. From the tautology D1 ∧ A∗ → D1, we get ∣−T∃z(D1 ∧ A∗) → ∃wD1[z∣w] by the
distribution rule and the variant theorem. From the latter and (4), we obtain ∣−TA[z∣fa1 . . . an]∗ ↔ ∃z(D1∧
A∗) by the tautology theorem, which is the desired result.
Suppose now that A is B∨C. �en A[z∣fa1 . . . an]∗ is a variant of B[z∣fa1 . . . an]∗ ∨C[z∣fa1 . . . an]∗. By

the induction hypotheses, the variant theorem, and the tautology theorem, ∣−TA[z∣fa1 . . . an]∗ ↔ ∃z(D1 ∧
B∗)∨∃z(D1∧C∗). We obtain the desired result by ch. i §4.1 (vi), the tautology theorem, and the equivalence
theorem.
Suppose that A is ⌝B. �en A[z∣fa1 . . . an]∗ is a variant ⌝B[z∣fa1 . . . an]∗. By the induction hypothesis,

the variant theorem, and the tautology theorem, ∣−TA[z∣fa1 . . . an]∗ ↔ ⌝∃z(D1∧B∗). So the desired result
follows from Lemma 2 and the tautology theorem.



22 the question of consistency ii 2.2

Finally, suppose that A is ∃xB. Since fa1 . . . an is substitutible for z in A, x does not occur in a1, . . . ,
an . In particular, either x is z or x is not free in D1. Suppose �rst that x is z, so that A[z∣fa1 . . . an]
is A. By prenex operations, ∣−T∃zD1 ∧ ∃zB∗ ↔ ∃z(D1 ∧ ∃zB∗). From this and ∣−T∃zD1, we obtain
∣−T∃zB∗ ↔ ∃z(D1 ∧ ∃zB∗) by the tautology theorem, which is a variant of the expected result. Suppose
that x and z are distinct. �en A[z∣fa1 . . . an]∗ is a variant of ∃xB[z∣fa1 . . . an]∗. By induction hypothesis,
the variant theorem, and the equivalence theorem, ∣−TA[z∣fa1 . . . an]∗ ↔ ∃x∃z(D1 ∧B∗). By prenex oper-
ations (exchanging beforehand ∃x and ∃z by virtue of ch. i §4.1 (iii) and the tautology theorem), we obtain
∣−TA[z∣fa1 . . . an]∗ ↔ ∃z(D1 ∧ ∃xB∗) which is as desired up to a variant.
Theorem on Functional Definitions. With the notations of this paragraph, ∣−T′A↔ A∗. If more-
over ∣−T∃yD and ∣−TD→ D[y∣y′]→ y = y′, then T ′ is a conservative extension of T .

Proof. To prove ∣−T′A ↔ A∗, it su�ces, by the equivalence theorem, to consider the case where A is
atomic. We proceed by induction on the number of occurrences of f in A. If f does not occur in A,
then A∗ is A and hence ∣−T′A ↔ A∗ by the tautology theorem. Suppose that f occurs in A, and let a1,
. . . , an , B, and D′ be as in the construction of A∗. From the nonlogical axiom y = fx1 . . . xn ↔ D, we
obtain ∣−T′z = fa1 . . . an ↔ D′[x1 , . . . , xn , y∣a1 , . . . , an , z] by the version theorem. By the equivalence
theorem, we get ∣−T′∃z(z = fa1 . . . an ∧ B∗) ↔ A∗. Since f occurs in B one less time than in A, we have
∣−T′B ↔ B∗ by the induction hypothesis; hence ∣−T′∃z(z = fa1 . . . an ∧ B) ↔ A∗ by the equivalence
theorem. By the replacement theorem, we have ∣−T′∃z(z = fa1 . . . an ∧ B) ↔ B[z∣fa1 . . . an], whence
∣−T′B[z∣fa1 . . . an]↔ A∗ by the tautology theorem, i.e., ∣−T′A↔ A∗.
To prove that T ′ is a conservative extension of T , it su�ces to prove ∣−TA∗ for any theorem A of T ′;

for A∗ is A for any formula A of T . We use tautological induction on theorems in T ′. Suppose that A is a
substitution axiom B[x∣a] → ∃xB. We prove ∣−TA∗ by induction on the number of occurrences of f in a.
If there are none, then A∗ is a variant of the substitution axiom B∗[x∣a]↔ ∃xB∗, and hence is a theorem
of T . If f occurs in a, consider some occurrence of a term fa1 . . . an in a such that f does not occur in a1,
. . . , an , and let b be obtained from a by replacing that occurrence by a variable z not occurring inA, so that
B[x∣a] is B[x∣b][z∣fa1 . . . an]. By the hypotheses onD, we may apply Lemma 3 which yields

∣−TB[x∣a]∗ ↔ ∃z(D′[x1 , . . . , xn , y∣a1 , . . . , an , z] ∧ B[x∣b]∗) (5)

for some suitable variantD′ ofD. Since f occurs in b one less time than in a, we have ∣−TB[x∣b]∗ → ∃xB∗
by the induction hypothesis, whence ∣−TD′[x1 , . . . , xn , y∣a1 , . . . , an , z]∧B[x∣b]∗ → ∃xB∗ by the tautology
theorem. Using the ∃-introduction rule and (5), we obtain ∣−TB[x∣a]∗ → ∃xB∗, whence ∣−TA∗ by the
variant theorem.
If A is an identity axiom, then f does not occur in A; hence A∗ is A and ∣−TA∗. Similarly, if A is an

equality axiom in which f does not occur, then A∗ is A and ∣−TA∗. Suppose that A is y1 = y′1 → ⋯ → yn =
y′n → fy1 . . . yn = fy′1 . . . y′n . �en A∗ is

∃z′(D1 ∧ ∃z(D2 ∧ (y1 = y′1 → ⋯→ yn = y′n → z = z′))),

where D1 is D′[x1 , . . . , xn , y∣y′1 , . . . , y′n , z′] and D2 is D′′[x1 , . . . , xn , y∣y1 , . . . , yn , z], for some z and z′ dis-
tinct and not occurring in A and some variants D′ and D′′ of D. Note that z is not free in D1. From the
hypothesis (2) and the version theorem,

∣−TD′′[x1 , . . . , xn , y∣y′1 , . . . , y′n , z]→ D1 → z = z′ , (6)

and by the equality theorem,

∣−Ty1 = y′1 → ⋯→ yn = y′n → D2 ↔ D′′[x1 , . . . , xn , y∣y′1 , . . . , y′n , z]. (7)

A tautological consequence of (6) and (7) is

D1 ∧D2 → D1 ∧D2 ∧ (y1 = y′1 → ⋯→ yn = y′n → z = z′). (8)

From the hypothesis (1) and the version theorem, we have ∣−T∃z′D1 and ∣−T∃zD2, from which we infer
∣−T∃z′∃z(D1∧D2) by the tautology theorem and prenex operations. �us we obtain ∣−TA∗ from (8) by the
distribution rule, the detachment rule, and prenex operations. IfA is a nonlogical axiom of T , then f does
not occur in A; hence A∗ is A and ∣−TA∗. If A is y = fx1 . . . xn ↔ D, then A∗ is ∃z(D′[y∣z] ∧ y = z)↔ D,
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which is a theorem of T by the replacement theorem, the tautology theorem and the equivalence theorem,
and the variant theorem.
Suppose that A is a tautological consequence of B1, . . . , Bk . �en by Proposition 2 of ch. i §3.3, A∗ is a

tautological consequence of variants of B∗1 , . . . , B∗k , and hence ∣−TA∗ by the variant theorem, the tautology
theorem, and the induction hypothesis. Suppose that A is inferred from B → C by the ∃-introduction
rule with the variable x. �en A∗ is ∃xB′ → C′ where B′ and C′ are variants of B∗ and C∗. �e induction
hypothesis is ∣−TB∗ → C∗. Since x is not free in C∗, A is a theorem of T by the ∃-introduction rule and
the variant theorem.

�e formula of (1) is called the existence condition for y in D, and that of (2), for y′ not free in D, a
uniqueness condition for y inD. �e following criteria are o�en useful.

Proposition 1. IfD as in this paragraph is of the form y = awhere y does not occur in a, then existence
and uniqueness conditions for y inD are theorems of T .

Proof. We have ∣−Ta = a as an instance of an identity axiom. Hence ∣−T∃y(y = a) by the substitution
axioms and the detachment rule. �is proves that the existence condition for y in D is a theorem of T .
From the equality axioms, the symmetry theorem, and the equivalence theorem, we have ∣−Ty = a→ y′ =
a → a = a → y = y′. A tautological consequence of this and a = a is y = a → y′ = a → y = y′, which is a
desired uniqueness condition for y inD.

Proposition 2. Suppose thatD as in this paragraph is (A1 ∧B1)∨⋯∨ (An ∧Bn) where y is not free in
A1, . . . , An . If ∣−TA1 ∨⋯ ∨An and ∣−TAi → ∃yBi for each i, then ∣−T∃yD. If ∣−TAi → ⌝A j whenever
i 1 j and if ∣−TAi → Bi → Bi[y∣y′]→ y = y′ for each i, then ∣−TD→ D[y∣y′]→ y = y′.

Proof. A tautological consequence of A1 ∨ ⋯ ∨ An and all the Ai → ∃yBi is ∃yB1 ∨ ⋯ ∨ ∃yBn , whence
∣−T∃yD by (vi) of ch. i §4.1. �e formula D → D[y∣y′] → y = y′ is a tautological consequence of all the
formulae ∣−TAi → ⌝A j and Ai → Bi → Bi[y∣y′]→ y = y′.

�e adjunction of a new symbol with a legit de�ning axiom to a �rst-order theory is sometimes called
a de�nition. De�nitions in the form of Proposition 1 are then called explicit de�nitions. By the equality
theorem, ∣−T′y = fx1 . . . xn ↔ y = a if and only if ∣−T′ fx1 . . . xn = a, so in order not to encumber the
notations, the de�ning axiom for an explicit de�nition is usually written fx1 . . . xn = a instead of y =
fx1 . . . xn ↔ y = a. De�nitions in the form of Proposition 2 are called de�nitions by cases.

2.3 Extensions by de�nitions. Let T be a �rst-order theory. A �rst-order theory T ′ is called an extension
by de�nitions of T if there are �rst-order theories T0, . . . , Tn such that T0 is T , Tn is T ′, and for each i, one
of the following holds.

(i) Ti is obtained from Ti−1 by the adjunction of an n-ary predicate symbol p and a new axiom
px1 . . . xn ↔ D where x1, . . . , xn are distinct and include the variables free inD.

(ii) Ti is obtained from Ti−1 by the adjunction of an n-ary function symbol f and a new axiom y =
fx1 . . . xn ↔ D where x1, . . . , xn , y are distinct and include the variables free in D, ∣−Ti−1∃yD, and
∣−Ti−1D→ D[y∣y′]→ y = y′ for some variable y′ distinct from x1, . . . , xn , y.

If A is a formula of T ′, we can build a formula A∗ of T , called a translation of A into T , by successive
applications of the constructions of the previous paragraphs, and we have the following result:

Theorem. Let T ′ be an extension by de�nitions of a �rst-order theory T , A a formula of T ′, and A∗
and A○ translations of A into T . �en

(i) T ′ is a conservative extension of T ;
(ii) ∣−TA∗ if and only if ∣−T′A; and
(iii) ∣−TA∗ ↔ A○.

Proof. �e fact that T ′ is a conservative extension of T follows from the transitivity of conservative exten-
sions. By the theorems on de�nitions and the tautology theorem, we have

∣−T′A↔ A∗ and ∣−T′A↔ A○ . (9)
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Suppose ∣−TA∗. �en ∣−T′A∗, whence ∣−T′A by (9) and the tautology theorem. Conversely, suppose ∣−T′A.
�en ∣−T′A∗ by (9) and the tautology theorem, whence ∣−TA∗ by (i). �is proves (ii). Finally, we have
∣−T′A∗ ↔ A○ by (9) and the tautology theorem, whence (iii) from (i).

2.4 De�nitions in practice. Extensions by de�nitions provide a completely formal way of de�ning func-
tions and predicates in �rst-order theories. When actually working in a �rst-order theory T , however,
it becomes quickly laborious to keep track of all the extensions by de�nitions we have introduced so far.
Fortunately, this is not necessary if we agree that whenever a symbol has been introduced with a de�ning
axiom, thereby forming an extension by de�nitions of T , any subsequent occurrence of that symbol must
be understood as being taken in a suitable extension by de�nitions with the same de�ning axiom. Ex-
plicitely, assume we extend T to T ′ by de�ning a symbol s with a certain de�ning axiom. If B is a formula
of T ′, we should write ∣−T′B to mean that B is a theorem of T ′. Now since the de�ning axiom for s has
been �xed, there is no confusion in writing ∣−TB instead. �is can be taken to mean that B is a theorem in
any extension by de�nitions of T in which s is de�ned. Since any formula of any extension by de�nitions
of T can be translated in any other extension by de�nitions of T , any theorem derived in an extension by
de�nitions of T may be viewed as a theorem of any extension by de�nitions of T .
If T ′ is an extension by de�nitions of T , a symbol of T ′ is called a de�ned symbol of T , and a formula

of T ′ a de�ned formula of T . �ese de�nitions are only useful when the de�ning axioms for the symbols
have been �xed, otherwise any symbol or formula would satisfy them. �us if we introduce a function
symbol f with a new axiom, we o�en say that f is a de�ned symbol to mean that the associated axiom is a
valid de�ning axiom, i.e., that existence and uniqueness conditions can be derived.
In practice, we o�en de�ne in�nitely many new symbols in a �rst-order theory T . Since in any given

context at most �nitely many of them can appear, any theorem of the �rst-order theory obtained from T
by the de�nitions of all these symbols is a theorem of some extension by de�nitions of T .

§3 Interpretations

3.1 Interpretations. Let L andM be �rst-order languages. An interpretation I of L in M consists of:

(i) a unary predicate symbol ofM, abbreviated by UI ;
(ii) for each n-ary function symbol f of L, an n-ary function symbol ofM, abbreviated by fI ;
(iii) for each n-ary predicate symbol p of L, an n-ary predicate symbol ofM, abbreviated by pI .†

�e predicate symbol UI is called the universe of the interpretation I.
Let I be an interpretation of L in M. If a is a term of L, we abbreviate by aI the term of M obtained

from a by replacing each function symbol f by fI . �e term aI is called the interpretation of a by I. For
any formula A of L, we de�ne a formula AI of M by induction on the length of A. If A is pa1 . . . an , then
AI is pI(a1)I . . . (an)I . If A is B ∨ C, then AI is BI ∨ CI . If A is ⌝B, then AI is ⌝BI . If A is ∃xB, then AI
is ∃x(UIx ∧ BI). If x1, . . . , xn are the variables free in A in reverse alphabetical order, we let AI abbreviate
UIx1 → ⋯→ UIxn → AI , and we call AI the interpretation of A by I.
Let L be a �rst-order language andU a �rst-order theory. An interpretation of L in L(U) is an interpre-

tation of L in U if ∣−U∃xUIx and ∣−UUIx1 → ⋯→ UIxn → UIfIx1 . . . xn for each n-ary function symbol f
of L.
Let T and U be �rst-order theories. An interpretation of L(T) in U is an interpretation of T in U if

the interpretations by I of the identity axioms, equality axioms, and nonlogical axioms of T are theorems
of U . Note that if =I is =, then the interpretations by I of identity and equality axioms are tautological
consequences of identity and equality axioms ofU , so in that case the �rst two conditions are automatically
satis�ed.

3.2 �e interpretation theorem. In this paragraph we prove a �nitary version of that result which in
model theory is o�en called the soundness of �rst-order logic.

Lemma 1. Let L be a �rst-order language,U a �rst-order theory, and I an interpretation of L inU . If x1,
. . . , xn include the variables occurring in a term a of L, in any order, then ∣−UUIx1 → ⋯→ UIxn → UIaI .
†To be completely general (and such generality is relevant), one should allow an interpretation to have parameters. Speci�cally,

an interpretation with k parameters (k ≥ 0) would consist of a (k + 1)-ary UI and (k + n)-ary fI ’s and pI ’s, as well as a k-ary
predicate symbol ΩI acting as the “parameter space”. �ese parameters introduce no essential di�culty in the contents of this
section, but they complicate the exposition considerably, which is why we have restricted it to the 0-parameter case.
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Proof. We prove the lemma by induction on the length of a. If a is a variable, then the result is a tautology.
Suppose that a is fb1 . . . bn . �en ∣−UUI(b1)I → ⋯→ UI(bn)I → UIaI by de�nition of an interpretation of
L in U and the substitution rule. By induction hypothesis, UIx1 → ⋯ → UIxn → UI(bi)I for each i. �e
conclusion is a tautological consequence of the above formulae.

Lemma 2. Let T and U be �rst-order theories, let I be an interpretation of T in U , and let A be a
formula of L(T). If x1, . . . , xn include the variables free in A and if ∣−UUIx1 → ⋯ → UIxn → AI , then
∣−UAI .

Proof. �e formula UIy1 → ⋯ → UIyk → AI , where y1, . . . , yk include the variables among x1, . . . , xn
which are not free in A, is a tautological consequence of UIx1 → ⋯ → UIxn → AI . Since y1, . . . , yk are
not free in AI , we get ∣−U∃y1UIy1 → ⋯ → UIyk → AI by the ∃-introduction rule, and since ∣−U∃xUIx
we obtain ∣−UUIy2 → ⋯ → UIyk → AI by the substitution rule and the detachment rule. We repeat this
derivation k − 1 more times and we obtain ∣−UAI as desired.

Interpretation Theorem. Let T and U be �rst-order theories. If I is an interpretation of T in U ,
then the interpretation by I of any theorem of T is a theorem of U .

Proof. Let A be a theorem of T . We prove ∣−UAI by tautological induction on theorems in T . Suppose
thatA is B[x∣a]→ ∃xB, and let x1, . . . , xn be the variables free inA. By Lemma 1, we have ∣−UUIx1 → ⋯→
UIxn → UIaI . By the substitution theorem, ∣−UUIaI ∧ BI[x∣aI] → ∃x(UIx ∧ BI). From these we obtain
∣−UUIx1 → ⋯ → UIxn → AI by the tautology theorem, whence ∣−UAI by Lemma 2. If A is an identity or
equality axiom, then ∣−UAI by de�nition of an interpretation of T in U .
Suppose that A is a tautological consequence of B1, . . . , Bn . By Proposition 2 of ch. i §3.3, AI is a

tautological consequence of (B1)I , . . . , (Bn)I . If x1, . . . , xn denote the variables free in A, B1, . . . , Bn , then
UIx1 → ⋯→ UIxn → AI is a tautological consequence ofBI

1 , . . . ,BI
n ; hence ∣−UUIx1 → ⋯→ UIxn → AI by

the induction hypothesis and the tautology theorem. By Lemma 2, we obtain ∣−UAI . Finally, suppose that
A is inferred from B→ C by the ∃-introduction rule with the variable x. Denote by x1, . . . , xn the variables
free inA. Since x is not free in C, x is not among x1, . . . , xn . By the induction hypothesis and the tautology
theorem, we have ∣−UUIx∧BI → UIx1 → ⋯→ UIxn → CI , whence ∃x(UIx∧BI)→ UIx1 → ⋯→ UIxn →
CI by the ∃-introduction rule. By the latter and the tautology theorem, we obtain ∣−UAI .

�e following corollary will also be referred to as the interpretation theorem.

Corollary. LetT andU be �rst-order theories. Suppose that there is an interpretation of an extension
of T in a conservative extension of U . If T is inconsistent, then U is inconsistent.

Proof. Let T ′ be an extension of T and U ′ a conservative extension of U with an interpretation I of T ′ in
U ′. Suppose that T is inconsistent. �en T ′ is inconsistent. Let A be ∀x(x = x). By the interpretation
theorem, AI and (⌝A)I are theorems of U ′. But since A is closed, (⌝A)I is ⌝AI . By a remark in §1.1, it
follows that U ′ is inconsistent. Hence U is inconsistent.

3.3 Interpretations and de�nitions. Let T and U be �rst-order theories and let I be an interpretation
of L(T) in U . Suppose that there exists a constant e in an extension by de�nitions U ′′ of U . For any
extension by de�nitions T ′ of T , we shall de�ne an extension U ′ of U . We �rst do this in the case where
T ′ is obtained from T by the adjunction of one new symbol and one new nonlogical axiom (if T ′ is T , let
U ′ be U). If T ′ is obtained from T by the adjunction of an n-ary predicate symbol p and the nonlogical
axiom px1 . . . xn ↔ D, we let U ′ be obtained from U by the adjunction of a new n-ary predicate symbol
p′ and the nonlogical axiom p′x1 . . . xn ↔ DI . If T ′ is obtained from T by the adjunction of an n-ary
function symbol f and the nonlogical axiom y = fx1 . . . xn ↔ D, we let U ′ be obtained from U by the
adjunction of a new n-ary function symbol f ′ and as a new nonlogical axiom a translation of

y = f ′x1 . . . xn ↔ ((UIx1 ∧⋯ ∧UIxn) ∧UIy ∧DI) ∨ ⌝(UIx1 ∧⋯ ∧UIxn) ∧ y = e

into U . Finally, if T ′ is any extension by de�nitions of T , we let U ′ be obtained from U by repeated
applications of the above constructions.
We de�ne an interpretation I′ of L(T ′) in L(U ′) by letting UI′ be UI and sI′ be sI or s′ according to s

being a symbol of L(T) or not. An interpretation I′ de�ned in this way is called an extension of I to L(T ′).
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Interpretation Extension Theorem. With the notations of this paragraph, I′ is an interpretation
of L(T ′) in U ′. Moreover, if I is an interpretation of T in U , then U ′ is an extension by de�nitions of
U and I′ is an interpretation of T ′ in U ′.

Proof. It su�ces to consider the special case where T ′ is obtained from T by the de�nition of a single
symbol. Since ∣−U∃xUIx, we have ∣−U ′∃xUI′x. Suppose that the de�ned symbol is the function symbol f .
From the de�ning axiom of f ′ and the equality theorem, we have ∣−U ′′(UIx1 ∧⋯ ∧UIxn ∧UIf ′x1 . . . xn ∧
DI) ∨ ⌝(UIx1 ∧ ⋯ ∧UIxn) ∧ f ′x1 . . . xn = e. A tautological consequence of an instance of this formula is
UI′x1 → ⋯→ UI′xn → UI′ f ′x1 . . . xn , which proves that I′ is an interpretation of L(T ′) in U ′.
We now assume that I is an interpretation of T inU . To prove thatU ′ is an extension by de�nitions of

U , we must verify, in case the new symbol is a function symbol f with de�ning axiom y = fx1 . . . xn ↔ D,
that existence and uniqueness conditions for y in (UIx1∧⋯∧UIxn∧UIy∧DI)∨⌝(UIx1∧⋯∧UIxn)∧y = e
are theorems of U ′′ (for it is easy to see that existence and uniqueness conditions for a given translation
are translations of existence and uniqueness conditions; hence the former will be theorems of U). By the
Propositions 1 and 2 of §2.2, it will su�ce to prove

∣−UUIx1 ∧⋯ ∧UIxn → ∃y(UIy ∧DI) and (1)
∣−UUIx1 ∧⋯ ∧UIxn → UIy ∧DI → UIy′ ∧DI[y∣y′]→ y = y′ (2)

for some suitable y′. �e interpretation of the existence condition for y in D is UIx′1 → ⋯ → UIx′k →
∃y(UIy ∧ DI), where x′1, . . . , x′k are the variables free in ∃yD in reverse alphabetical order. Since I is an
interpretation of T in U , this formula is a theorem of U by the interpretation theorem. Since x′1, . . . , x′k
are among x1, . . . , xn , we obtain (1) by the tautology theorem. Similarly, the interpretation of a uniqueness
condition for y inD is UIx′1 → ⋯→ UIx′k → DI ∧DI[y∣y′]→ y = y′, where x′1, . . . , x′k are the variables free
inD ∧D[y∣y′] in reverse alphabetical order, of which (2) is a tautological consequence.
It remains to prove that the interpretation by I′ of the new nonlogical axiom of T ′ is a theorem of U ′.

Suppose that this axiom ispx1 . . . xn ↔ D. Its interpretation by I′ isUIx′1 → ⋯→ UIx′n → p′x1 . . . xn ↔ DI ,
where x′1, . . . , x′n are x1, . . . , xn in reverse alphabetical order. �is is tautological consequence of the de�ning
axiom of p′. Suppose that the new nonlogical axiom of T ′ is y = fx1 . . . xn ↔ D. Its interpretation by I′
is UIx′1 → ⋯ → UIx′n+1 → y = f ′x1 . . . xn ↔ DI , which is again a tautological consequence of the de�ning
axiom of f ′.

Remark. Following the considerations in §2.4, if I is an interpretation of T in U and if there is a constant
in some extension by de�nitions of U , then in practice we �x such a constant and we continue to write I
for any extension I′ of I to an extension by de�nitions T ′ of T . �is is possible if moreover we agree that
for any de�ned symbol s of T (to which, we recall, a de�ning axiom is assigned), we use the same symbol
s′ in forming U ′ for any extension by de�nitions T ′ of T in which s is de�ned.

3.4 Isomorphisms of interpretations. Let L be a �rst-order language, U a �rst-order theory, and I and J
interpretations of L in U . A unary function symbol g of U is called an isomorphism from I to J if

(i) ∣−UUJ y↔ ∃x(UIx ∧ y = gx);
(ii) for each n-ary function symbol f of L, ∣−UUIx1 → ⋯→ UIxn → gfIx1 . . . xn = fJgx1 . . . gxn ;
(iii) for each n-ary predicate symbol p of L, ∣−UUIx1 → ⋯→ UIxn → pIx1 . . . xn ↔ pJgx1 . . . gxn .

Isomorphism Extension Theorem. Let L be a �rst-order language,U a �rst-order theory, and I and
J interpretations of L inU . Suppose that some unary function symbol g ofU is an isomorphism from
I to J. For any term a of L, if x1, . . . , xn include the variables occurring in a, then ∣−UUIx1 → ⋯ →
UIxn → gaI = aJ[x1 , . . . , xn ∣gx1 , . . . , gxn]. For any formula A of L, if x1, . . . , xn include the variables
free in A, then ∣−UUIx1 → ⋯→ UIxn → AI ↔ AJ[x1 , . . . , xn ∣gx1 , . . . , gxn].

Proof. We prove the �rst assertion by induction on the length of a. If a is a variable, the result is a tauto-
logical consequence of an instance of an identity axiom. Suppose that a is fb1 . . . bk . By Lemma 1 of §3.2,
∣−UUIx1 → ⋯ → UIxn → UI(bi)I for each i. As a tautological consequence of these formulae and of
UI(b1)I → ⋯→ UI(bk)I → gaI = fJg(b1)I . . . g(bk)I , which is an instance of (ii), we obtain

∣−UUIx1 → ⋯→ UIxn → gaI = fJg(b1)I . . . g(bk)I . (3)
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By induction hypothesis, ∣−UUIx1 → ⋯ → UIxn → g(bi)I = (bi)J[x1 , . . . , xn ∣gx1 , . . . , gxn]. From these
and (3), we obtain the desired result by the equality theorem and the tautology theorem.
We now turn to the proof of the second assertion, and we proceed by induction on the length of

A. Suppose that A is pa1 . . . ak . By (iii) and the substitution rule, ∣−UUI(a1)I → ⋯ → UI(ak)I →
pI(a1)I . . . (ak)I ↔ pJg(a1)I . . . g(ak)I . Using as above Lemma 1 of §3.2 and the tautology theorem, we
obtain

∣−UUIx1 → ⋯→ UIxn → pI(a1)I . . . (ak)I ↔ pJg(a1)I . . . g(ak)I . (4)

�en the desired result follows from the �rst result and (4) using the equality theorem and the tautology
theorem. Suppose that A is B ∨ C or ⌝B. In both cases, the result follows from the induction hypothesis
and the tautology theorem. Finally, suppose that A is ∃xB. By the induction hypothesis,

∣−UUIx1 → ⋯→ UIxn → UIx → BI ↔ BJ[x1 , . . . , xn , x∣gx1 , . . . , gxn , gx],
whence

∣−UUIx1 → ⋯→ UIxn → ∃x(UIx ∧ BI)↔ ∃x(UIx ∧ BJ[x1 , . . . , xn , x∣gx1 , . . . , gxn , gx])
by the tautology theorem, the deduction theorem, and the distribution rule. Now ∃x(UIx ∧ BI) is AI , so
by the equivalence theorem it remains to show that

∣−U∃x(UIx ∧ BJ[x1 , . . . , xn , x∣gx1 , . . . , gxn , gx])↔ AJ[x1 , . . . , xn ∣gx1 , . . . , gxn]. (5)

Let z be distinct from x1, . . . , xn , and x, and let B′ be BJ[x1 , . . . , xn ∣gx1 , . . . , gxn]. By the replacement
theorem and the equivalence theorem,

∣−U∃x(UIx ∧ B′[x∣gx])↔ ∃x(UIx ∧ ∃z(z = gx ∧ B′[x∣z])). (6)

By prenex operations and ch. i §4.1 (iii),

∣−U∃x(UIx ∧ ∃z(z = gx ∧ B′[x∣z]))↔ ∃z(∃x(UIx ∧ z = gx) ∧ B′[x∣z]). (7)

By a version of (i) and the equivalence theorem,

∣−U∃z(∃x(UIx ∧ z = gx) ∧ B′[x∣z])↔ ∃z(UJz ∧ B′[x∣z]). (8)

By (6), (7), (8), and the tautology theorem, ∣−U∃x(UIx∧B′[x∣gx])↔ ∃z(UJz∧B′[x∣z]), which is a variant
of (5).

Let I and J be interpretations of L in U . We say that I is isomorphic to J in U when there is an isomor-
phism from I to J in an extension by de�nitions of U . It can be proved without di�culty that this is an
equivalence relation among the interpretations of L in U , but we shall not use this fact.

3.5 Inner interpretations and absoluteness. Let L be a �rst-order language, U a �rst-order theory, and I
an interpretation of L in U . An n-ary function symbol f of U is said to be I-invariant if ∣−UUIx1 → ⋯ →
UIxn → UIfx1 . . . xn . By de�nition of an interpretation of L inU , fI is I-invariant for any function symbol
f of L.
In this paragraph we shall discuss a special kind of interpretations o�en encountered in practice,

namely interpretations of a �rst-order language L in a �rst-order language M which is an extension of
L. We call such interpretations inner interpretations if moreover =I is =. In this setting new questions
arise, for it is possible to compare in M designators of L with their interpretations. An even more special
case is that of an inner interpretation I of L in M such that sI is s for any nonlogical symbol s of L. Such
an interpretation I, which is completely de�ned by its universe, is called simple. If q is a unary predicate
symbol of M, the simple interpretation of L in M whose universe is q is called the simple interpretation
de�ned by q, or simply, by abuse, the simple interpretation q.
Let L be a �rst-order language, U a �rst-order theory such that L(U) is an extension of L, and I an

interpretation of L in U such that =I is =. A term a of L is absolute for I if ∣−UUIx1 → ⋯→ UIxn → a = aI ,
where x1, . . . , xn are the variables occurring in a (the order is irrelevant for the de�nition by the tautology
theorem). A formula A of L with free variables x1, . . . , xn is said to be absolute for I if ∣−UUIx1 → ⋯ →
UIxn → A ↔ AI . �us a is absolute for I if and only if y = a is for some y not occurring in a. We also
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say that an n-ary function symbol f (resp. an n-ary predicate symbol p) of L is absolute for I if the term
fx1 . . . xn (resp. the formula px1 . . . xn) is absolute for I. �us = is absolute for I. A formula A of L is said
to be complete in y1, . . . , ym for I if ∣−UUIx1 → ⋯ → UIxn → A → UIy1 ∧ ⋯ ∧UIym where x1, . . . , xn are
the variables other than y1, . . . , ym free in A. For example, x = y is complete in x for I and complete in y
for I, but it is complete in x, y for I if and only if ∣−UUIx.

Lemma 1. If f is absolute for I, then f is I-invariant.

Proof. We have ∣−UUIx1 → ⋯ → UIxn → fx1 . . . xn = fIx1 . . . xn by absoluteness of f and ∣−UUIx1 →
⋯ → UIxn → UIfIx1 . . . xn by de�nition of an interpretation of L in U . �us the result follows from the
tautology theorem and a version of a predicative equality axiom.

Lemma 2. If all the nonlogical symbols occurring in a are absolute for I, then a is absolute for I.

Proof. By induction on the length of a. �e result is a tautological consequence of an identity axiom if a
is a variable. If a is fb1 . . . bn where f is absolute for I, then by induction hypothesis b1, . . . , bn are absolute
for I. Hence a is absolute for I by the equality theorem and the tautology theorem.

Lemma 3. If A and B are absolute for I, then A ∨ B, A ∧ B, ⌝B, A→ B, and A↔ B are absolute for I.

Proof. It su�ces to consider A ∨ B and ⌝B. �e condition of absoluteness of A ∨ B is a tautological
consequence of that of A and that of B. Similarly for ⌝A.
Lemma 4. If A is open and all the nonlogical symbols occurring in A are absolute for I, then A is
absolute for I.

Proof. We proceed by induction on the length of A. If A is pa1 . . . an where p is absolute for I, then by
Lemma 2 a1, . . . , an are absolute for I, so A is absolute for I by the equality theorem and the tautology
theorem. If A is B ∨C or ⌝B, the result follows from the induction hypothesis and Lemma 3.
Lemma 5. If A is absolute for I and complete in x for I, then ∃xA is absolute for I. If A is absolute for
I and if ⌝A is complete in x for I, then ∀xA is absolute for I.

Proof. Let x1, . . . , xn be the variables free in ∃xA. We letU ′ be obtained fromU by the adjunction of n new
constants e1, . . . , en and new axiomsUIe1, . . . , UIen . We letA′ abbreviateA[x1 , . . . , xn ∣e1 , . . . , en]. �en for
the �rst assertion it will su�ce, by the deduction theorem, to prove ∣−U ′∃xA′ ↔ ∃x(UIx ∧ (A′)I). By the
hypotheses, the substitution rule, and the detachment rule, we have ∣−U ′A′ ↔ (A′)I and ∣−U ′A′ → UIx,
of whom A′ ↔ UIx ∧ (A′)I is a tautological consequence. �us ∣−U ′∃xA′ ↔ ∃x(UIx ∧ (A′)I) by the
distribution rule. �e second assertion follows from the �rst one by Lemma 3.

In applications, proofs of absoluteness of formulae are thus reduced to proofs of completeness of for-
mulae. Not much more can be said on completeness in the present general setting, for it depends heavily
on the nonlogical axioms of U and the de�nition of I.

Lemma 6. Let A and B be formulae of L. If A and B are complete in y1, . . . , ym for I, then A ∨ B is
complete in y1, . . . , ym for I. If A is complete in y1, . . . , ym for I and if B is complete in y′1, . . . , y′k for I,
thenA∧B is complete in y1, . . . , ym , y′1, . . . , y′k for I. If x is distinct from y1, . . . , ym and ifA is complete
in x, y1, . . . , ym for I, then ∃xA and ∀xA are complete in y1, . . . , ym for I.

Proof. �e �rst two assertions are applications of the tautology theorem. For the last assertion, let x1, . . . ,
xn be the variables other than x, y1, . . . , ym free in A. �en ∣−UUIx1 ∧⋯ ∧UIxn ∧A → UIy1 ∧⋯ ∧UIym
by the hypothesis and the tautology theorem, whence ∣−UUIx1 → ⋯ → UIxn → ∃xA → UIy1 ∧⋯ ∧UIym
by the ∃-introduction rule, prenex operations, and the tautology theorem. �e proof for ∀xA uses the
substitution theorem instead of the ∃-introduction rule.
In the case of a simple interpretation, we have the following very useful criterion.

Lemma 7. Assume that I is simple, and let Γ be a collection of formulae of L such that any subformula of
a formula in Γ is in Γ. �en for the formulae of Γ to be absolute for I, it su�ces that for any instantiation
∃yB of Γ with free variables among x1, . . . , xn , ∣−UUIx1 → ⋯→ UIxn → ∃yB→ ∃y(UIy ∧ B).
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Proof. We proceed by induction on the length of A in Γ. If A is atomic, then AI is A because I is simple,
and the claim is a tautology. IfA is B∨C or ⌝B, then the absoluteness ofA follows tautologically from the
induction hypothesis. Suppose thatA is ∃yB. �enB is in Γ and by induction hypothesis and the tautology
theorem ∣−UUIx1 → ⋯→ UIxn → UIy → B↔ BI . Using the distribution rule and the tautology theorem
with the deduction theorem, we �nd ∣−UUIx1 → ⋯ → UIxn → ∃y(UIy ∧ B)↔ ∃y(UIy ∧ BI). Now AI is
exactly ∃y(UIy ∧ BI), so by the tautology theorem it will su�ce to prove ∣−UUIx1 → ⋯ → UIxn → A ↔
∃y(UIy ∧B). �e implication from right to le� is obtained by the tautology theorem and the distribution
rule using the deduction theorem. �e other implication was assumed.

We now suppose that U is an extension of T and that I is an interpretation of T in U such that =I is =.

Lemma 8. If ∣−Ta = b and a is absolute for I, then b is absolute for I. If ∣−TA↔ B andA is absolute for
I, then B is absolute for I.

Proof. Since I is an interpretation of T , we have ∣−UUIx1 → ⋯ → UIxn → aI = bI (resp. ∣−UUIx1 → ⋯ →
UIxn → AI ↔ BI) where x1, . . . , xn are the variable occurring in a and b (resp. free inA and B). �e result
follows by the equality theorem and the tautology theorem (resp. the tautology theorem).

§4 Herbrand–Skolem theory

4.1 Skolem andHenkin theories. A �rst-order theory T is called a Skolem theory if for every instantiation
∃xA of T there exist a term a of T and a variant A′ of A such that

(i) the variables occurring in a occur freely in ∃xA and
(ii) ∣−T∃xA→ A′[x∣a].
We say that T is a Henkin theory if the previous statement holds when ∃xA is a closed instantiation (in
this case, condition (i) simply states that a is closed). �us a Skolem theory is a Henkin theory, but the
converse need not be true. One of the goals of this section will be to prove that any �rst-order theory has
a conservative Skolem extension. In this paragraph we shall only prove that any �rst-order theory has a
conservative Henkin extension. As will be seen, the proof of this fact will rely on the theorem on constants.
To prove the more general result, we shall need a generalization of the theorem on constants for function
symbols of higher arity: this is the theorem on functional extensions of §4.4.
Let L be a �rst-order language. We de�ne the special constants of level n, for n ≥ 1, by induction on n.

Let Γ0(L) denote the collection of closed instantiations of L. Suppose that, for some n ≥ 0, the collection
Γn(L) has been described. For every formula ∃xA in Γn(L), we choose a new constant called the special
constant for ∃xA; the special constants of level n + 1 are the special constants for the formulae of Γn(L).
We then let Γn+1(L) consists of the closed instantiations not in Γn(L) of the language obtained from L by
adding the special constants of level at most n + 1. �e �rst-order language obtained from L by adding
all the special constants is denoted by Lc. �e level of a formula of Lc is 0 if it is a formula of L and is
the greatest level of a special constant occurring in it otherwise. We use i, j, and k as syntactical variables
varying through special constants. If i is the special constant for ∃xA, the special axiom for i is the formula
∃xA→ A[x∣i].
Let T be a �rst-order theory. We now describe a Henkin extension Tc of T . Its language is Lc and its

nonlogical axioms are those of T and the special axioms for the special constants of Lc. It is obvious that
Tc is a Henkin theory. A formula of L(Tc) of the form ∀x(A↔ B) → i = j, where i is the special constant
for ∃xA and j is the special constant for ∃xB, is called a special equality axiom. We form T ′c from Tc by
adding as further nonlogical axioms all the special equality axioms.

Lemma. Let T be a �rst-order theory and ∃xA a closed formula of T which is a theorem of T . �en
the �rst-order theory obtained from T by the adjunction of a new constant e and of the axiom A[x∣e]
is a conservative extension of T .

Proof. Let T ′ be the extension of T to be proved conservative, and let B be a formula of T which is a
theorem of T ′. If y is a variable not occurring in A or B, then ∣−TA[x∣y] → B by the deduction theorem.
By the ∃-introduction rule, ∣−T∃yA[x∣y] → B. But ∣−T∃yA[x∣y] by the hypothesis, the variant theorem,
and the tautology theorem. Hence ∣−TB by the detachement rule.

Theorem. Tc and T ′c are conservative extensions of T .
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Proof. Since T ′c is an extension of Tc, it su�ces to prove that T ′c is a conservative extension of T . We �rst
observe that any formula of the form

∀x(A↔ A)→ a = a or (1)
(∀x(A↔ B)→ a = b)→ ∀x(B↔ A)→ b = a (2)

is derivable without nonlogical axioms: (1) is a tautological consequence of an instance of an identity
axiom, while (2) is obtained from the tautology (B ↔ A) → (A ↔ B) using the distribution rule, the
symmetry theorem, and the tautology theorem.
Let A be a formula of T which is a theorem of T ′c ; then A is a theorem of some �rst-order theory

obtained from T by the adjunction of �nitely many special constants i1, . . . , in , their special axioms, and
the special equality axioms whose right-hand sides are of the form ir = is . Order these special constants
so that the level of ir is at least the level of is whenever s < r. �en if ∃xkBk is the formula for which ik is
the special axiom, il does not occur in Bk for all l ≥ k. We choose once and for all a variable xrs which
does not occur in ∃x1B1, . . . , ∃xnBn , for every pair of indices r, s. For 0 ≤ k ≤ n, we designate by Tk the
�rst-order theory whose language is obtained from L(T) by the adjunction of the constants i1, . . . , ik and
whose nonlogical axioms are: the nonlogical axioms of T ; the special axioms of L(Tk); and the formulae
of L(Tk) of the form ∀xrs(Br[xr ∣xrs] ↔ Bs[xs ∣xrs]) → ir = is for s < r. �en T0 is T and by the variant
theorem, (1), (2), and the tautology theorem, every special equality axiom of L(Tk) is a theorem of Tk .
In particular, A is a theorem of Tn , so it will su�ce to prove that for each k < n, Tk+1 is a conservative
extension of Tk . Fix k < n, and let i, x, B, and yr be ik+1, xk+1, Bk+1, and xk+1,r . We form a �rst-order
theory U from Tk by the adjunction of the constant i and of the single axiom

(∃xB→ B[x∣i]) ∧ (∀y1(B[x∣y1]↔ B1[x1∣y1])→ i = i1) ∧⋯ ∧ (∀yk(B[x∣yk]↔ Bk[xk ∣yk])→ i = ik)

which is just the conjunction of the nonlogical axioms which must be added to Tk in order to obtain Tk+1.
Let C[z∣i] be the above formula. By the tautology theorem, U is equivalent to Tk+1. Hence, by the lemma,
it will su�ce to prove ∣−Tk∃zC. We �rst prove

∣−Tk∀yr(B[x∣yr]↔ Br[xr ∣yr])→ ∃zC (3)

for 1 ≤ r ≤ k. By the deduction theorem, it will su�ce to prove that ∃zC is a theorem of the theory T ′ ob-
tained fromTk by the adjunction of the axiom∀yr(B[x∣yr]↔ Br[xr ∣yr]). We have ∣−T′B[x∣yr]↔ Br[xr ∣yr]
by the closure theorem, whence ∣−T′∃xB ↔ ∃xrBr by the distribution rule and the variant theorem and
∣−T′B[x∣ir]↔ Br[xr ∣ir] by the substitution rule. From these and the special axiom for ir , we obtain

∣−T′∃xB→ B[x∣ir] (4)

by the tautology theorem. Let 1 ≤ s ≤ k. From ∣−T′B[x∣yr]↔ Br[xr ∣yr] we also obtain ∣−T′∀ys(B[x∣ys]↔
Bs[xs ∣ys]) ↔ ∀xrs(Br[xr ∣xrs] ↔ Bs[xs ∣xrs]) by the tautology theorem, the distribution rule, and the vari-
ant theorem, whence

∣−T′∀ys(B[x∣ys]↔ Bs[xs ∣ys])→ ir = is (5)

by the axioms of L(Tk) and the tautology theorem. From (4) and (5) by the tautology theorem, ∣−T′C[z∣ir],
whence ∣−T′∃zC by the substitution axioms. �is proves (3). Next we prove

∣−Tk⌝(∀y1(B[x∣y1]↔ B1[x1∣y1]) ∨⋯ ∨ ∀yk(B[x∣yk]↔ Bk[xk ∣yk]))→ ∃zC. (6)

Let w be a variable not occurring in the above formula. By the variant theorem and prenex operations,
∣−Tk∃z(∃xB→ B[x∣z]). Hence by the tautology theorem and the ∀-introduction rule,

∣−Tk⌝(∀y1(B[x∣y1]↔ B1[x1∣y1]) ∨⋯ ∨ ∀yk(B[x∣yk]↔ Bk[xk ∣yk]))→ ∃z(∃xB→ B[x∣z])
∧ ∀w((∀y1(B[x∣y1]↔ B1[x1∣y1])→ i = i1) ∧⋯ ∧ (∀yk(B[x∣yk]↔ Bk[xk ∣yk])→ i = ik)),

from which we obtain (6) by prenex operations, the substitution theorem, the distribution rule, and the
tautology theorem. From (3) and (6) we obtain ∣−Tk∃zC by the tautology theorem.
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�is theorem is a syntactical principle of choice: if we imagine a formula A with one free variable x as
representing the collection of all individuals x such that A, then the special constants select a particular
individual in each such collection. We shall see in §4.4 a considerable generalization of this conservativity
result to instantiations ∃xA with any number of free variables.
4.2 �e consistency theorem. In this paragraph we shall prove a useful criterion for the consistency of
�rst-order theories of a special kind, namely those all of whose nonlogical axioms are universal. If T is
such a �rst-order theory and if T ′ has the same language as T and has as nonlogical axioms the matrices
of the nonlogical axioms of T , then T and T ′ are equivalent by the closure theorem. �us we shall not
restrict the generality if we assume that the nonlogical axioms of T are open, and this will be technically
convenient. A �rst-order theory whose nonlogical axioms are open will be called open.
Let T be a �rst-order theory. A formula of L(Tc) is said to belong to the special constant i for ∃xA if it

is the special equality axiom for i or a closed substitution axiom of L(Tc) of the form A[x∣a] → ∃xA. We
denote by ∆(T) the collection of formulae of L(Tc) which either belong to some special constant or are
closed instances in L(Tc) of equality rules for L(T) or of nonlogical axioms of T . �e rank of the special
constant for ∃xA is the number of occurrences of ∃ in ∃xA. We let ∆n(T) be the collection of formulae in
∆(T) which do not belong to special constants of rank n + 1 or greater.
Lemma. Let T be a �rst-order theory and A a theorem of T . �en any closed instance of A in L(Tc) is
a tautological consequence of formulae in ∆(T).

Proof. By tautological induction on theorems in T . Let A′ be a closed instance of A in L(Tc). If A is a
substitution axiom, so is A′, and then A′ is in ∆(T) and is a tautological consequence of itself. If A is an
identity axiom, equality axiom, or nonlogical axiom of T , thenA′ is in ∆(T) by de�nition. Suppose thatA
is a tautological consequence of B1, . . . , Bn . By Proposition 2 of ch. i §3.3, A′ is a tautological consequence
of closed instances B′1, . . . , B′n in L(Tc) of B1, . . . , Bn . By induction hypothesis, each B′i is a tautological
consequence of formulae in ∆(T), and hence so is A′. Finally, suppose that A is inferred from B → C
by the ∃-introduction rule with the variable x. �en A′ has the form ∃xB′ → C′ where ∃xB′ and C′ are
closed instances in L(Tc) of ∃xB and C. Let i be the special constant for ∃xB′. �en B′[x∣i] → C′ is a
closed instance of B → C, and so by induction hypothesis it is a tautological consequence of formulae in
∆(T). But then A′ is a tautological consequence of these formulae and the formula ∃xB′ → B′[x∣i] which
is also in ∆(T).

Let T be an open �rst-order theory. We let T∗ (resp. T∗c ) be the formal system whose language is L(T)
(resp. L(Tc)) and whose rules of inference are the propositional rules for L(T) (resp. for L(Tc)) and the
instances in L(T) (resp. the closed instances in L(Tc)) of the equality rules and nonlogical axioms of T .
Note that the nonlogical axioms of T∗c are exactly the formulae in ∆0(T).

Consistency Theorem. If T is an open �rst-order theory, the following statements are equivalent:

(i) T is inconsistent;
(ii) T∗c is inconsistent;
(iii) T∗ is inconsistent.

Proof. Suppose that T is inconsistent, and let us prove that T∗c is inconsistent. Let F be the formal system
whose language is L(Tc) and whose rules of inference are the propositional rules. It will su�ce to prove
that for some formulae A1, . . . , An in ∆0(T), F[A1 , . . . ,An] is inconsistent. Let A be a formula in ∆0(T).
By the lemma, ⌝A is a tautological consequence of formulae B1, . . . , Bk in ∆(T). �en by the tautology
theorem, F[B1 , . . . ,Bk ,A] is inconsistent. Since all of B1, . . . , Bk , andA are in ∆n(T) for some n, the proof
will be complete if we can establish the following assertion: if n ≥ 0 and if F[A1 , . . . ,Ak] is inconsistent for
some formulaeA1, . . . ,Ak in ∆n+1(T), then there are formulae B1, . . . , Bl in ∆n(T) such that F[B1 , . . . ,Bl ]
is inconsistent. We prove the assertion by induction on the number of special constants of rank n + 1
belonging to A1, . . . , Ak . If there are none, then A1, . . . , Ak are already formulae of ∆n(T) and there is
nothing to prove. Otherwise, let these special constants be i1, . . . , ir , and i where the level of i is as great
as the levels of i1, . . . , ir . Say i is the special constant for ∃xB. Let C1, . . . , Cp be the formulae among A1,
. . . , Ak which are in ∆n(T) or belong to one of i1, . . . , ir , and letD1, . . . ,Dq be those which are substitution
axioms belonging to i. �enD j is B[x∣a j]→ ∃xB for some closed term a j of L(Tc).
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For u a designator of L(Tc) and 1 ≤ j ≤ q, we de�ne a designator u( j) by induction on the greatest level
of a special constant in u. If u contains no special constant, u( j) is u. If u is i, then u( j) is a j . If u is the
special constant for ∃yC and u is distinct from i, then u( j) is the special constant for ∃yC( j). Otherwise,
u( j) is the expression obtained from u by replacing every occurrence of a special constant j by j( j). We now
prove that for 1 ≤ i ≤ p, if Ci is in ∆n(T), so is (Ci)( j), and if Ci belongs to one of i1, . . . , ir , so does (Ci)( j).
If Ci is a closed instance of a nonlogical axiom of T , so is C( j)i , and if Ci belongs to a special constant j of
rank at most n, then this special constant is not i and hence C( j)i belongs to j. If Ci belongs to one of i1, . . . ,
ir , then since the level of i is as great as the levels of i1, . . . , ir , C( j)i belongs to the same special constant. In
view of this and the induction hypothesis, it will su�ce to prove that

F[C1 , . . . ,Cp , (C1)(1) , . . . , (C1)(q) , . . . , (Cp)(1) , . . . , (Cp)(q)] (7)

is inconsistent.
We observe that ∃xB does not occur in C1, . . . , Cp . If Ci is an instance of a nonlogical axiom of T ,

then it is open by hypothesis. Since there are n + 1 occurrences of ∃ in ∃xB, it clearly cannot occur in
a formula belonging to a special constant of rank at most n. If ∃xB occurs in a formula belonging to a
special constant of rank exactly n + 1, then this special constant must be i, and hence it cannot occur in
formulae belonging to i1, . . . , ir either. Now if A′ denotes the formula obtained from A by replacing each
occurrence of ∃xB by B[x∣i], then by Proposition 2 of ch. i §3.3 and the tautology theorem, F[A′

1 , . . . ,A′
k]

is inconsistent. �e formula D′
j is B[x∣a j] → B[x∣i]. If some Ai is the special axiom for i, then A′

i is the
tautology B[x∣i]→ B[x∣i], so by the tautology theorem

F[C1 , . . . ,Cp ,B[x∣a1]→ B[x∣i], . . . ,B[x∣aq]→ B[x∣i]] (8)

is inconsistent. Hence F[(C1)( j) , . . . , (Cp)( j) , (B[x∣a1] → B[x∣i])( j) , . . . , (B[x∣aq] → B[x∣i])( j)] is inconsis-
tent for 1 ≤ j ≤ q by the proposition of ch. i §3.3 and the tautology theorem. Noting that (B[x∣a]→ B[x∣i])( j)
is B[x∣a]( j) → B[x∣a j],

F[(C1)( j) , . . . , (Cp)( j) ,B[x∣a1]( j) → B[x∣a j], . . . ,B[x∣aq]( j) → B[x∣a j]] (9)

is inconsistent for all j. Let V be a truth valuation on L(Tc) assigning T to each (Ci)( j). �en by the
inconsistency of (9) and the tautology theorem, V must assign F to B[x∣a j] for all j. But then by the
inconsistency of (8) and the tautology theorem, V must assign F to some Ci . �us there is no truth
valuation V assigning T to all formulae in (7), and so by the tautology theorem (7) is inconsistent.
Next, suppose that T∗c is inconsistent. By Proposition 2 of §1.1, there exists a tautology A which is a

disjunction of negations of instances in L(Tc) of equality rules and nonlogical axioms of T ; let i1, . . . , in be
the special constants occurring in A, and let x1, . . . , xn be distinct variables not occurring in A. �en by
replacing each occurrence of ii by xi for all i, we obtain a formula A∗ in T∗, which is again a tautology by
Proposition 2 of ch. i §3.3. Clearly, A∗ is a disjunction of negations of instances in L(T) of equality rules
and nonlogical axioms of T . By Proposition 2 of §1.1, T∗ is inconsistent.
Finally, suppose that T∗ is inconsistent. By the substitution rule, T is an extension of T∗. Hence x = x

and x 1 x are theorems of T , which is therefore inconsistent by the tautology theorem.

Corollary. Let T be an open �rst-order theory and A a closed existential formula of T . �en A is a
theoremofT if and only if some disjunction of intances of thematrix ofA is a tautological consequence
of instances of equality rules for L(T) and instances of nonlogical axioms of T .

Proof. Say A is ∃x1 . . . ∃xnB with B open. By proposition 1 of §1.1, A is a theorem of T if and only if
T[⌝A] is inconsistent. By prenex operations and the closure theorem, this is the case if and only if T[⌝B]
is inconsistent, and by the consistency theorem, this is the case if and only if T[⌝B]∗ is inconsistent. By
Proposition 2 of §1.1, this is in turn equivalent to the existence of a tautology which is a disjunction of
negations of formulae of the following kind:

(i) instances of equality rules for L(T);
(ii) instances of nonlogical axioms of T ;
(iii) instances of ⌝B.
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If ⌝⌝B1, . . . , ⌝⌝Bn are the negations of the formulae of type (iii) appearing in such a disjunction, then
B1∨⋯∨Bn is a tautological consequences of formulae of types (i) and (ii). Conversely, if there are instances
B1, . . . , Bn of the matrix of A whose disjunction is a tautological consequence of formulae C1, . . . , Cm of
types (i) and (ii), then

⌝⌝B1 ∨⋯ ∨ ⌝⌝Bn ∨ ⌝C1 ∨⋯ ∨ ⌝Cm

is a tautology.

4.3 Herbrand forms and Skolem forms. Let L be a �rst-order language and let A be a formula of L in
prenex form. �en A can be written in the form

∃x1 . . . ∃xn1∀y1 . . . ∃xnk−1+1 . . . ∃xnk∀yk∃xnk+1 . . . ∃xnk+1B (10)

where B is open and 0 ≤ n1 ≤ ⋯ ≤ nk+1. A Herbrand form of this prenex form is any formula of the form

∃x1 . . . ∃xnk+1B[y1 , . . . , yk ∣f1x1 . . . xn1 , . . . , fkx1 . . . xnk ] (11)

in some extension of L, where the fi are distinct and do not occur inA. �us, each fi has index n i . Dually,
A can also be written in the form

∀x1 . . .∀xn1∃y1 . . .∀xnk−1+1 . . .∀xnk∃yk∀xnk+1 . . .∀xnk+1B (12)

where B is open and 0 ≤ n1 ≤ ⋯ ≤ nk+1. A Skolem form of this prenex form is any formula of the form

∀x1 . . .∀xnk+1B[y1 , . . . , yk ∣f1x1 . . . xn1 , . . . , fkx1 . . . xnk ] (13)

in some extension of L, where the fi are distinct and do not occur in A. If A is an arbitrary formula of L,
a Herbrand form (resp. a Skolem form) of A is de�ned to be a Herbrand form (resp. a Skolem form) of a
prenex form ofA. Observe that Herbrand forms are existential formulae while Skolem forms are universal
formulae.

Theorem. Let T be an open �rst-order theory, A a closed formula of T and A∗ a Herbrand form of
A. Let T ′ be obtained from T by the adjunction of the new function symbols in A∗. �en ∣−TA if and
only if ∣−T′A∗.

Proof. By the theoremon prenex operations, wemay suppose thatA is in prenex form, say in the form (10),
and that A∗ has the form (11). �en ∣−T′A → A∗ by the tautology theorem and several applications of
the substitution theorem and of the distribution rule. Now if ∣−TA, then ∣−T′A and so ∣−T′A∗ by the
detachement rule.
Before proving the converse we introduce some notations. For 1 ≤ i ≤ k, let Ai be the subformula

of (10) starting on the le� from ∃xn i+1, and let Bi be ∀yiAi . We also write A0 for A and Bk+1 for B. Let a1,
. . . , ank+1 be closed terms of L(Tc). For 1 ≤ i ≤ k, we shall denote by ki(a1 , . . . , an i ) the special constant for
the instantiation

∃yi⌝Ai[y1 , . . . , yi−1∣k1(a1 , . . . , an1 ), . . . , ki−1(a1 , . . . , an i−1 )][x1 , . . . , xn i ∣a1 , . . . , an i ].

We let Ai(a1 , . . . , an i ) be the formula

Ai[y1 , . . . , yi ∣k1(a1 , . . . , an1 ), . . . , ki(a1 , . . . , an i )][x1 , . . . , xn i ∣a1 , . . . , an i ]

(setting n0 = 0), and similarly Bi(a1 , . . . , an i ) is the formula

Bi[y1 , . . . , yi−1∣k1(a1 , . . . , an1 ), . . . , ki−1(a1 , . . . , an i−1 )][x1 , . . . , xn i ∣a1 , . . . , an i ].

We claim that
∣−TcB(a1 , . . . , ank+1 )→ A. (14)

By the tautology theorem, it will su�ce to prove

∣−TcBi(a1 , . . . , an i )→ Ai−1(a1 , . . . , an i−1 ) and
∣−TcAi(a1 , . . . , an i )→ Bi(a1 , . . . , an i ),
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the former for 1 ≤ i ≤ k + 1 and the latter for 1 ≤ i ≤ k. �e former follows from n i − n i−1 substitution
axioms and the tautology theorem, while the latter is a tautological consequence of the special axiom for
ki(a1 , . . . , an i ).
Let a1, . . . , ank , a′1, . . . , a′nk

be closed terms of L(Tc). We claim that for all i

∣−T′ca1 = a′1 → ⋯→ an i = a′n i
→ ki(a1 , . . . , an i ) = ki(a′1 , . . . , a

′
n i
). (15)

We prove this fact by induction on i. Suppose it is proved for all j < i. Let ∃yi⌝A′
i(a1 , . . . , an i ) be the

formula for which ki(a1 , . . . , an i ) is the special constant. �en by the equality theorem, the tautology
theorem, and the ∀-introduction rule,

∣−T′ca1 = a′1 → ⋯→ an i = a′n i
→ ∀yi(⌝A′

i(a1 , . . . , an i )↔ ⌝A′
i(a

′
1 , . . . , a

′
n i
)),

and we obtain the desired result from the tautology theorem and the special equality axiom

∀yi(⌝A′
i(a1 , . . . , an i )↔ ⌝A′

i(a
′
1 , . . . , a

′
n i
))→ ki(a1 , . . . , an i ) = ki(a′1 , . . . , a

′
n i
).

Suppose that ∣−T′A∗. By the corollary to the consistency theorem, we can �nd in L(T ′) a disjunction
of the form

B[y1 , . . . , yk ∣f1x1 . . . xn1 , . . . , fkx1 . . . xnk ][x1 , . . . , xnk+1 ∣a1,1 , . . . , a1,nk+1 ]
∨⋯ ∨ B[y1 , . . . , yk ∣f1x1 . . . xn1 , . . . , fkx1 . . . xnk ][x1 , . . . , xnk+1 ∣an ,1 , . . . , an ,nk+1 ] (16)

which is a tautological consequence of instances in L(T ′) of equality rules for L(T ′) and nonlogical axioms
of T . LetC1, . . . ,Cr be such instances. �en eachCl is an open formula because the nonlogical axioms of T
are open. We nowmodify the formula (16) and the formulaeC1, . . . ,Cr simultaneously as follows. Choose
a variable occurring in some ap,q or some Cl and replace all its occurrences by some special constant.
Continue to do so until there are no more variables le�. �en, select an occurrence of a term of the form
fia1 . . . an i in (16) or someCl such that f1, . . . , fk do not occur in a1, . . . , an i , and replace all such occurrences
by ki(a1 , . . . , an i ). Continue to do so until there are nomore occurrences of f1, . . . , fk . �ese modi�cations
tranform (16) into a formula

B(a′1,1 , . . . , a
′
1,nk+1

) ∨⋯ ∨ B(a′n ,1 , . . . , a
′
n ,nk+1

) (17)

of L(Tc), where the a′p,q are closed terms, and they transform C1, . . . , Cr into formulae C′1, . . . , C′r of L(Tc).
Since these transformations only a�ect atomic formulae, it follows from Proposition 2 of ch. i §3.3 that (17)
is a tautological consequence of C′1, . . . , C′r . But the C′l are again instances in L(Tc) of equality rules for
L(T) and nonlogical axioms of T , unless Cl is an equality axiom of the form x1 = y1 → ⋯xn i = yn i →
fix1 . . . xn i = fiy1 . . . yn i . But then C′l is a theorem of T

′
c by (15). �us C′1, . . . , C′r are theorems of T ′c , so by

the tautology theorem, (17) is a theorem of T ′c . By (14) and the tautology theorem, A is a theorem of T ′c
and hence, by the theorem of §4.1, a theorem of T .

�is theorem and the following corollary are in fact true for an arbitrary �rst-order theory T , as we
shall prove in §4.6 below.

Corollary 1. Let T be an open �rst-order theory, A a closed formula of T and A○ a Skolem form of
A. Let T ′ be obtained from T by the adjunction of the new function symbols inA○. �en ∣−T⌝A if and
only if ∣−T′⌝A○.

Proof. We can obtain a Herbrand form of ⌝A from ⌝A○ using prenex operations. �us, the corollary
follows from the theorem, the theorem on prenex operations, and the tautology theorem.

Corollary 2. Let T be an open �rst-order theory, A a closed formula of T and A∗ a Herbrand form
of A. Let T ′ be obtained from T by the adjunction of the new function symbols in A∗. �en ∣−TA if
and only if some disjunction of instances in L(T ′) of the matrix of A∗ is a tautological consequence of
instances in L(T ′) of equality rules for L(T ′) and instances in L(T ′) of nonlogical axioms of T ′.

Proof. �is follows at once from the theorem and the corollary to the consistency theorem.
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4.4 Functional extensions.

Theorem on Functional Extensions. Let T be a �rst-order theory, A a formula of T , and x1, . . . ,
xn , and y distinct variables including the variables free in A. If ∣−T∃yA, then the �rst-order theory
obtained from T by the adjunction of a new n-ary function symbol f and the axiom A[y∣fx1 , . . . , xn]
is a conservative extension of T .

Proof. Let T ′ denote the extension of T to be proved conservative. Let T0 be the �rst-order theory with
language L(T) and without nonlogical axioms, and let T1 be obtained from T0 by the adjunction of the
n-ary function symbol f . By the closure theorem, it su�ces to prove that any closed formula of T which is
a theorem of T ′ is a theorem of T . Let B be such a formula. By the reduction theorem, there are formulae
C1, . . . , Ck among the closures of the nonlogical axioms of T such that ∀x1 . . .∀xnA[y∣fx1 . . . xn] → C1 →
⋯ → Ck → B is a theorem of T1. Let C be the latter formula and let D be the formula ∀x1 . . .∀xn∃yA →
C1 → ⋯→ Ck → B. Let C∗ be a Herbrand form of C, and let T ′1 be obtained from T1 by the adjunction of
the new function symbols inC∗. �en it is clear thatC∗ is also a Herbrand form ofD. By two applications
of the theorem of §4.3, we obtain �rst ∣−T′1C

∗ and then ∣−T0D. �en by the hypothesis, the closure theorem,
and the detachement rule, ∣−TB.

Remark. �e theorem on functional extensions can be used to prove the second part of theorem on
functional de�nitions almost instantly, by deriving the equivalence between the de�ning axiom of f and
D[y∣fx1 , . . . , xn] using a uniqueness condition for y in D. However, the direct proof of §2.2 produces a
much shorter derivation of a translation of A from a given derivation of A, and thus is practically pre-
ferrable.
We shall use this theorem to prove that any �rst-order theory has a conservative Skolem extension,

using a construction similar to that of Tc. Let L be a �rst-order language. We de�ne the special function
symbols of level n, for n ≥ 1, by induction on n. Let Γ0(L) denote the collection of instantiations of L.
Suppose that, for some n ≥ 0, the collection Γn(L) has been described. For every formula ∃xA in Γn(L)
and every choice of distinct variables x, x1, . . . , xn including the variables free inA, we choose a new n-ary
function symbol called the special function symbol for ∃xA and x1, . . . , xn ; the special function symbols of
level n+1 are the special function symbols for all the formulae of Γn(L) and all suitable families of variables.
We then let Γn+1(L) consists of the instantiations not in Γn(L) of the language obtained from L by adding
the special function symbols of level at most n + 1. �e �rst-order language obtained from L by adding
all the special function symbols is denoted by Lf . If f is the special constant for ∃xA and x1, . . . , xn , the
special axiom for f is the formula ∃xA → A′[x∣fx1 . . . xn], where A′ is a variant of A, �xed once and for
all, in which fx1 . . . xn is substitutible for x. If now T is a �rst-order theory with language L, we let Tf be
the �rst-order theory whose language is Lf and whose nonlogical axioms are those of T and the special
axioms for the special function symbols of Lf . It is then obvious that Tf is a Skolem extension of T .
We form T ′f from Tf by adding as further nonlogical axioms all the formulae of the form

∀x(A↔ B)→ fx1 . . . xn = gy1 . . . yk ,

where f is the special function symbol for ∃xA and x1, . . . , xn and g is the special function symbol for ∃xB
and y1, . . . , yk .

Corollary. Tf and T ′f are conservative extensions of T .

Proof. Follow the proof of the theorem of §4.1, using the theorem on functional extensions instead of the
lemma used there. �e only di�erence is that in proving (3) using the deduction theorem we must �rst
replace the free variables by new constants, and in the derivation we use the corresponding instances of
the axioms of Tk rather than the axioms themselves.

4.5 �e ε-theorems.�e goal of this paragraph is to indicate how two famous theorems of Hilbert can be
recovered from the results of this section. As we shall see, they are merely reformulations of our own theo-
rems. Given a �rst-order theory T , we de�ne the ε-terms and ε-formulae of T by simultaneous induction
as follows:

(i) variables are ε-terms;
(ii) if a1, . . . , an are ε-terms and f is an n-ary function symbol, then fa1 . . . an is an ε-term;



36 the question of consistency ii 4.6

(iii) if a1, . . . , an are ε-terms and p is an n-ary predicate symbol, then pa1 . . . an is an ε-formula;
(iv) if A and B are ε-formulae, then ∨AB is an ε-formula;
(v) if A is an ε-formula, then ⌝A is an ε-formula;
(vi) if A is an ε-formula and x is a variable, then ∃xA is an ε-formula;
(vii) if A is an ε-formula and x is a variable, then εxA is an ε-term.
If we specify that any occurrence of x within an occurrence of a term of the form εxA is to be bound, we
can de�ne the notions of free and bound occurrences for ε-terms and ε-formulae in the obvious way, and
we can then de�ne instances and variants.
We let Tε be the formal system whose alphabet is that of T together with the new symbol ε, whose

formulae are the ε-formulae of T , and whose rules of inference are: the nonlogical axioms of T ; if εxA
is substitutible for x in A, infer ∃xA → A[x∣εxA]; infer ∀x(A ↔ B) → εxA = εxB; and the rules (i)–(x)
of ch. i §2.9 in whichA, B, and C are now any ε-formulae. Clearly Tε is an extension of T . Note that there
is some redundancy in the language of Tε , as we have ∣−Tε∃xA↔ A′[x∣εxA] for a suitable variant A′ of A.
We could thus have discarded the symbol ∃ entirely, modifying the rules of inference appropriately.
To any ε-term or ε-formula u of T , we associate a term or formula u∗ of T ′f using recursion on (i)–(vii).

If u is a variable, u∗ is u. If u is εxA, u∗ is fx1 . . . xn where x1, . . . , xn are the variables free in A∗ except x
in alphabetical order and f is the special function symbol for ∃xA∗ and x1, . . . , xn . If u is obtained by (ii)–
(vi), u∗ is de�ned in the evident way. A straightforward induction on theorems in Tε shows that for any
formula A of Tε , if ∣−TεA, then ∣−T′fA

∗ (in fact, the converse is also easily proved). Since A∗ is A if A is a
formula of T , the corollary of §4.4 implies that Tε is a conservative extension of T , a result known as the
second ε-theorem.

�e �rst ε-theorem is the following statement: if T is an open �rst-order theory and A is an open
formula of T such that ∣−TεA, then A is a tautological consequence of instances of equality rules for L(T)
and nonlogical axioms of T . To see that it is true, apply �rst the second ε-theorem to deduce that A is a
theorem of T . �en let A′ be obtained from A by replacing the free variables by as many new constants,
thereby forming an extension T ′ of T . By the substitution rule, ∣−T′A′. By the corollary to the consistency
theorem, A′ is a tautological consequence of instances in L(T ′) of equality rules for L(T ′) and nonlogical
axioms of T . By Proposition 2 of ch. i §3.3 and the fact that replacing all occurrences of the constant e by
a variable in the equality axiom e = e yields an identity axiom, we deduce that A itself is a tautological
consequence of instances of the contended kind.
4.6 �e fundamental theorem of Herbrand–Skolem theory. Let T be a �rst-order theory. We denote by
T○ any �rst-order theory whose language is an extension of L(T) and whose nonlogical axioms consist of
the matrices of Skolem forms of all nonlogical axioms of T .
Lemma. T○ is a conservative extension of T .

Proof. Let us �rst prove that T○ is an extension of T . By the substitution axioms, the distribution rule,
the tautology theorem, and prenex operations, A○ → A is a theorem of T○ for any formula A of T○ with
Skolem form A○ in T○. In particular, by the detachement rule and the closure theorem, the nonlogical
axioms of T are theorems of T○.
To prove that T○ is a conservative extension of T , we may suppose, by the reduction theorem and

transitivity of conservative extensions, that T has only one nonlogical axiom A. Let A○ be the nonlogical
axiom of T○. Let A be written in the form (12) so that A○ is the matrix of (13). For 0 ≤ i ≤ k, let Ai be the
formula

∃yi+1∀xn i+1+1 . . .∀xn i+2 . . . ∃yk∀xnk+1 . . .∀xnk+1B[y1 , . . . , yi ∣f1x1 . . . xn1 , . . . , fix1 . . . xn i ].

�enAk isA○. Let Ti be the �rst-order theory obtained from T by the adjunction of the function symbols
f1, . . . , fi and of the nonlogical axioms A0, . . . , Ai . By the functional extension theorem and the closure
theorem, Ti is a conservative extension of Ti−1, for 1 ≤ i ≤ k, and hence Tk is a conservative extension of
T . By the proposition of ch. i §4.2, any formula of T which is a theorem of T○ is a theorem of Tk , so T○ is
also a conservative extension of T .

Let A be a closed formula of T , and let A∗ be a Herbrand form of A in some extension L′ of L(T),
chosen in such a way that there exists a �rst-order language L′○ which is a common extension of L′ and
L(T○). Let T ′ (resp. T ′○) be the �rst-order theory with language L′ (resp. L′○) whose nonlogical axioms
are those of T (resp. those of T○).
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Herbrand–Skolem Theorem. With the notations of this paragraph, the following assertions are
equivalent:

(i) A is a theorem of T ;
(ii) A is a theorem of T○;
(iii) A∗ is a theorem of T ′;
(iv) A∗ is a theorem of T ′○.

Proof. By the lemma, (i) and (ii) are equivalent and (iii) and (iv) are equivalent. But T○ is an open �rst-
order theory by de�nition, so by the theorem of §4.3 and the proposition of ch. i §4.2, (ii) and (iv) are
equivalent. Hence, all four conditions are equivalent.

�is theorem reduces the problem of deriving a formula in a �rst-order theory to the problem of
deriving an existential formula in an open �rst-order theory. Combining the Herbrand–Skolem theorem
with the corollary to the consistency theorem, we also obtain a criterion for theoremhood in an arbitrary
�rst-order theory T in terms of tautologies. �is reduction of �rst-order logic to propositional logic was
achieved by J. Herbrand and is generically known as Herbrand’s theorem.

§5 Craig’s interpolation lemma

5.1 Compatibility.We say that two �rst-order languages are compatible if they have a common �rst-order
extension. If L1 and L2 are compatible, we can form the �rst-order language L1 ∪L2 (resp. L1 ∩L2; L1 −L2)
as follows: a nonlogical symbol is an n-ary function symbol of L1 ∪ L2 if and only if it is an n-ary function
symbol of L1 or of L2 (resp. of L1 andof L2; of L1 but not of L2), and similarly for predicate symbols. IfT1 and
T2 are �rst-order theories such that L(T1) and L(T2) are compatible, we say that T1 and T2 are compatible
and we de�ne T1 ∪T2 to be the �rst-order theory with language L(T1)∪L(T2) and with nonlogical axioms
those of T1 together with those of T2.

5.2 Eliminating function symbols. Two �rst-order theories T and T ′ are calledweakly equivalent if some
extension by de�nitions ofT is equivalent to some extension by de�nitions ofT ′. In this paragraphwe shall
prove that any �rst-order theory is weakly equivalent to a �rst-order theory without function symbols.
Let L be a �rst-order language. We form a new �rst-order language L§ as follows: each n-ary predicate

symbol of L is an n-ary predicate symbol of L§, and for each n-ary function symbol f of L, L§ has an
(n+ 1)-ary predicate symbol pf . It is understood that pf is distinct from all the symbols of L and is distinct
from pg if f is distinct from g. �us, L§ has no function symbols, and L and L§ are compatible. Let T be a
�rst-order theory with language L§, and consider the �rst-order theory obtained from T by the adjunction
of the n-ary function symbol f and the nonlogical axiom y = fx1 . . . xn ↔ pf yx1 . . . xn , for every n-ary
function symbol f of L. For A a formula of L, we shall denote by A§ a translation of A into T , as de�ned
in §2.2. �us, A§ is a formula of L§.
Let now T be a �rst-order theory with language L. We de�ne T§ to be the �rst-order theory with

language L§ whose nonlogical axioms are the formulae A§ for each nonlogical axiom A of T and the
formulae ∃ypf yx1 . . . xn and pf yx1 . . . xn → pf y′x1 . . . xn → y = y′ for each n-ary function symbol f of T .

Theorem. With the notations of this paragraph, T and T§ are weakly equivalent.

Proof. LetU be obtained from T by the adjunction of the (n+ 1)-ary predicate symbols pf and the axioms
y = fx1 . . . xn ↔ pf yx1 . . . xn for each n-ary function symbol f of L. Let U§ be obtained from T§ by the
adjunction of the n-ary function symbols f and the axioms y = fx1 . . . xn ↔ pf yx1 . . . xn for each n-ary
function symbol f of L. Clearly U is equivalent to an extension by de�nitions of T and U§ is an extension
by de�nitions of T§, so it will su�ce to prove that U and U§ are equivalent. It is clear that U and U§ have
the same language, namely L ∪ L§.
Let A be a nonlogical axiom of U . If A is a nonlogical axiom of T , then A§ is a nonlogical axiom of

T§, and ∣−U§A if and only if ∣−T§A§ by the theorem of §2.3. �us ∣−U§A in this case. If A is of the form
pf yx1 . . . xn ↔ y = fx1 . . . xn , then A is also a nonlogical axiom of U§. �us, U§ is an extension of U .
Conversely, let A be a nonlogical axiom of U§. If A is B§ for some nonlogical axiom B of T , the �rst

part of the theorem on functional de�nitions shows that ∣−UB ↔ A, and so ∣−UA. Suppose that A is
∃ypf yx1 . . . xn . To prove ∣−UA, it will su�ce, by the equivalence theorem, to prove ∣−U∃y(y = fx1 . . . xn).
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But this follows from an instance of an identity axiom, the substitution axioms, and the detachment rule.
Similarly, if A is pf yx1 . . . xn → pf y′x1 . . . xn → y = y′, to prove ∣−UA, it su�ces to prove

∣−U y = fx1 . . . xn → y′ = fx1 . . . xn → y = y′ .

�is is true by the equality theorem, an instance of an identity axiom, and the tautology theorem. �us,U
is also an extension of U§, so that U and U§ are equivalent.

Consider, more generally, two weakly equivalent �rst-order theories T and T§. For any formula A of
T , let A§ be a translation of A into T§, and for any formula B of T§, let B§ be a translation of B into T .

Proposition. Let T and T§ be weakly equivalent �rst-order theories. Let A be a formula of T and B
a formula of T§. �en

(i) ∣−TA if and only if ∣−T§A§;
(ii) ∣−T§B if and only if ∣−TB§;
(iii) ∣−TA↔ (A§)§;
(iv) ∣−T§B↔ (B§)§.

Proof. Note that it su�ces to prove (i) and (iv). Let U and U§ be equivalent extensions by de�nitions of
T and T§, respectively. By the conservativity of extensions by de�nitions, ∣−TA if and only if ∣−UA, and
by (ii) of the theorem of §2.3, ∣−U§A if and only if ∣−T§A§. �is proves (i). By the �rst part of the theorem
on functional de�nitions, we have ∣−UB ↔ B§ and ∣−U§B§ ↔ (B§)§, so ∣−U§B ↔ (B§)§, whence (iv) by
conservativity.

5.3 Craig’s interpolation lemma. In this paragraphwe give a �nitary proof of a famous result of �rst-order
logic known as Craig’s interpolation lemma: if T and U are compatible �rst-order theories and A → B is
a theorem of T ∪ U , where A is a formula of T and B of U , then we shall show how to �nd a formula C
of L(T) ∩ L(U) such that A → C is a theorem of T and C → B is a theorem of U . Our strategy will be as
follows. In a �rst step, we prove the result with “theorem” replaced by “tautology”. In a second step we use
Herbrand’s theorem to generalize the �rst step to �rst-order theories with no function symbols. Finally,
we prove the result for arbitrary �rst-order theories using the procedure described in §5.2.

Lemma 1. Let L and M be compatible �rst-order languages. Let A be a formula of L and B a formula
ofM. If A → B is a tautology, then there exists a formula C of L ∩M such that A → C and C → B are
tautologies. Moreover, C can be chosen so that the variables free in C are free in A.

Proof. We prove the lemma by induction on the number of elementary formulae D such that D has an
occurrence in A not happening within an occurrence of another elementary formula (we shall say that
this is a maximal occurrence of D) and such that nonlogical symbols of L − M occur in D. If there are
none, A is already a formula of L ∩M and we take C to be A. Otherwise, choose an elementary formula
D having a maximal occurrence in A and in which nonlogical symbols of L −M occur, and let A+ (resp.
A−) be obtained from A by replacing every maximal occurrence of D by ∃x(x = x) (resp. ⌝∃x(x = x)).
We claim that A → A+ ∨ A− and A+ ∨ A− → B are tautologies. To prove this, let V be a truth valuation
on L ∪M. By a straighforward induction on the length of A, we see that if V (D) is V (∃x(x = x)), then
V (A) = V (A+), and otherwise V (A) = V (A−). It follows that V (A → A+ ∨ A−) is T in both cases. For
the second formula, we have by Proposition 2 of ch. i §3.3 that both A+ → B and A− → B are tautologies,
so A+ ∨ A− → B is a tautology. Note that the variables free in A+ ∨ A− are also free in A. By induction
hypothesis, there exists a formulaC of L∩M whose free variables are free inA and such thatA+∨A− → C
and C→ B are tautologies. But then A→ C and C→ B are tautologies.

Lemma 2. Let T andU be compatible �rst-order theories with no function symbols. LetA be a closed
formula of T and B a closed formula of U such that ∣−T∪UA → B. �en there exists a closed formula
C of L(T) ∩ L(U) such that ∣−TA→ C and ∣−UC→ B.

Proof. Choose once and for all a Skolem form ∀x1 . . .∀xnA○ of A, a Herbrand form B∗ of B, and Skolem
forms of all the nonlogical axioms ofT∪U , and let L○ be the �rst-order language obtained from L(T)∩L(U)
by the adjunction of all the new function symbols introduced, as well as a new constant e. Let T○ be the
�rst-order theory with language L○ ∪ L(T) whose nonlogical axioms are the matrices of the prescribed
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Skolem forms of the nonlogical axioms of T , and de�ne U○ in the same way. Let also T ′ (resp. U ′) be the
�rst-order theory obtained from T (resp. fromU) by the adjunction of the function symbols of L○. By the
detachment rule, B is a theorem of T[A] ∪ U , so by the Herbrand–Skolem theorem, B∗ is a theorem of
T○[A○]∪U○. By the corollary to the consistency theorem, we can �nd instancesB1, . . . , Bn of the matrix of
B∗ whose disjunction is a tautological consequence of instances of equality rules for L(T○[A○] ∪U○) and
instances of nonlogical axioms of T○[A○] ∪ U○. Of those instances, let C1, . . . , Cl be the instances of the
equality rules for L(T○[A○]) and of the nonlogical axioms of T○[A○], and let D1, . . . , Dm be the instances
of the other axioms. �en

(C1 ∧⋯ ∧Cl )→ (⌝D1 ∨⋯ ∨ ⌝Dm ∨ B1 ∨⋯ ∨ Bn)

is a tautology. Substituting e for every free variable in the above formula and using Proposition 2 of ch. i
§3.3, we can assume that the formula is closed. Using Lemma 1, we �nd a closed formula C of L○ such that

(C1 ∧⋯ ∧Cl )→ C and C→ (⌝D1 ∨⋯ ∨ ⌝Dm ∨ B1 ∨⋯ ∨ Bn) (1)

are tautologies. �e �rst tautology in (1) tells us thatC is a tautological consequence of instances of equality
rules for L(T○[A○]) and instances of nonlogical axioms of T○[A○]. By the substitution rule and the tauto-
logy theorem, ∣−T○[A○]C, so by the closure theorem and the deduction theorem, ∣−T○∀x1 . . .∀xnA○ → C.
Now ∀x1 . . .∀xnA○ → C and A → C have a common Herbrand form, so ∣−T′A → C by the Herbrand–
Skolem theorem. �e second tautology in (1) tells us that B1 ∨ ⋯ ∨ Bn is a tautological consequence of
C, instances of equality rules for L(U○), and instances of nonlogical axioms of U○. By the corollary to
the consistency theorem, ∣−U○[C]B∗, whence ∣−U○C → B∗ by the deduction theorem. Since C → B∗ and
C→ B have a common Herbrand form, we obtain ∣−U ′C→ B by the Herbrand–Skolem theorem.
Now the proof of the proposition of ch. i §4.2 shows that if x is a variable not occurring in given

derivations ofA→ C in T ′ and ofC→ B inU ′ and ifC∗ is obtained fromC by replacing every occurrence
of a term that is not a variable by x, then ∣−TA → C∗ and ∣−UC∗ → B. �en by the substitution axioms
and the tautology theorem, we have ∣−TA→ ∃xC∗, and by the ∃-introduction rule, we have ∣−U∃xC∗ → B.
�us, ∃xC∗ satis�es the conclusion of the lemma.
Craig’s Interpolation Lemma. Let T and U be compatible �rst-order theories. Let A be a formula
of T and B a formula of U such that ∣−T∪UA→ B. �en there exists a formula C of L(T) ∩ L(U) such
that ∣−TA → C and ∣−UC → B. Moreover, C can be chosen so that the variables free in C are free in
A→ B.

Proof. Suppose �rst that A and B are closed. Form (T ∪ U)§ from T ∪ U as in §5.2. Form also T§ and
U§ from T and U using the same symbols pf that were used in forming (T ∪ U)§. �en (T ∪ U)§ is
T§ ∪ U§. By the proposition of §5.2, we have ∣−T§∪U§A§ → B§. By Lemma 2, we obtain a closed formula
C of L(T§) ∩ L(U§) such that ∣−T§A§ → C and ∣−U§C → B§. �en, again using the proposition of §5.2,
∣−TA → C§ and ∣−UC§ → B. Since C§ is a closed formula of L(T) ∩ L(U), the theorem is proved in this
case.
Suppose now that A and B are arbitrary. Let x1, . . . , xn be the free variables in A → B, and let

T ′ (resp. U ′) be obtained from T (resp. from U) by the adjunction of n new constants e1, . . . , en . By
the substitution rule, ∣−T′∪U ′A[x1 , . . . , xn ∣e1 , . . . , en] → B[x1 , . . . , xn ∣e1 , . . . , en], so by the �rst part of
the proof, we �nd a closed formula C of L(T ′) ∩ L(U ′) such that ∣−T′A[x1 , . . . , xn ∣e1 , . . . , en] → C and
∣−U ′C→ B[x1 , . . . , xn ∣e1 , . . . , en]. ReplacingC by a variant if necessary, we can assume thatC has the form
C′[x1 , . . . , xn ∣e1 , . . . , en]. �en by the theorem on constants, we obtain ∣−TA→ C′ and ∣−UC′ → B.

�e following is a reformulation of Craig’s interpolation lemma that is useful for the study of consis-
tency.

Joint Consistency Theorem. Let T and U be compatible �rst-order theories. �en T ∪U is incon-
sistent if and only if there exists a closed formula A of L(T) ∩ L(U) such that ∣−TA and ∣−U⌝A.
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Proof. Suppose that T∪U is inconsistent. Applying Craig’s interpolation lemma to the implication ∃x(x =
x) → ⌝∃x(x = x), we �nd a closed formula A of L(T) ∩ L(U) such that ∣−T∃x(x = x) → A and ∣−UA →
⌝∃x(x = x). Since ∣−T∃x(x = x) and ∣−U∃x(x = x) by the identity axioms, the substitution axioms, and
the detachment rule, we obtain ∣−TA and ∣−U⌝A by the tautology theorem. Conversely, if ∣−TA and ∣−U⌝A
for some formulaA, thenA and⌝A are theorems of T∪U , which is therefore inconsistent by the tautology
theorem.

•



Chapter�ree
�e Incompleteness�eorem

§1 Number-theoretic functions and predicates

1.1 Recursive functions and predicates. In what follows, “function” and “predicate” are used exclusively
for functions and predicates taking natural numbers as arguments and values. Also, a number is a natural
number. In discussing natural numbers, we shall use the signs ∃,∀, ⌝, ∨, ∧,→,↔with the usual meanings
“for some”, “for all”, “not”, “or”, “and”, “if . . . then”, and “if and only if ”. �e context will always distinguish
them from the symbols and abbreviations of symbols of a formal system. We also use the expression µa
to mean “the �rst (natural number) a such that”. We use German letters to represent �nite sequences of
numbers, with conventions that will be apparent.

�e following functions are called initial functions:

(i) the binary function +;
(ii) the binary function ⋅;

(iii) the binary function χ< de�ned by χ<(a, b) =
⎧⎪⎪⎨⎪⎪⎩
0 if a < b,
1 otherwise;

(iv) for every n and every i with n ≥ 1 and 1 ≤ i ≤ n, the n-ary function πn
i de�ned by πn

i (a1 , . . . , an) = a i .

If g is a k-ary function and h1, . . . , hk are n-ary functions, the composition of g, h1, . . . , hk is the n-ary
function f de�ned by f (a) = g(h1(a), . . . , hk(a)). If g is an (n + 1)-ary function and if ∀a∃a(g(a, a) = 0),
the minimization of g is the n-ary function f de�ned by f (a) = µa(g(a, a) = 0). A recursive function is
one that is obtained from the initial functions through composition and minimization.
If p is a predicate, we de�ne its representing function χp by

χp(a) =
⎧⎪⎪⎨⎪⎪⎩
0 if p(a),
1 otherwise.

We then say that a predicate is recursive if its representing function is recursive.
We now describe general rules to decide whether certain functions or predicates are recursive.

(i) If p is a recursive k-ary predicate, if h1, . . . , hk are recursive n-ary functions, and if q(a) ↔
p(h1(a), . . . , hk(a)), then q is recursive.

�e representing function of q is the composition of χp , h1, . . . , hk , and hence is recursive.

(ii) If p is a recursive (n + 1)-ary predicate such that ∀a∃ap(a, a) and if f (a) = µap(a, a), then f is
recursive.

Indeed, f is the minimization of χp . In this situation, we say that f is theminimization of p.
We denote by cnk the n-ary function de�ned by c

n
k (a) = k.

(iii) For all n and k, cnk is recursive.

We prove this by induction on k. For k = 0, cn0 is the minimization of πn+1
n+1 . If k > 0, then cnk is the

minimization of p where p(a, a) ↔ cn+1k−1 (a, a) < πn+1
n+1(a, a). But p is recursive by (i) and the induction

hypothesis, so cnk is recursive by (ii).

(iv) If p and q are recursive n-ary predicates, then so are ⌝p, p ∨ q, p ∧ q, p → q, and p↔ q.

We have χ⌝p(a) = χ<(cn0 (a), χp(a)) and χp∨q(a) = χp(a) ⋅ χq(a), so ⌝p and p∨ q are recursive. Since p∧ q
is ⌝(⌝p ∨ ⌝q), p → q is ⌝p ∨ q, and p↔ q is (p → q) ∧ (q → p), the other cases follow.
We denote by ⊺n the n-ary predicate de�ned by ⊺n(a) ↔ 0 < 1 and by �n the n-ary predicate ⌝⊺n .

�en by (i), (iii), and (iv),

41
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(v) For all n, ⊺n and �n are recursive.
We say that predicates r1, . . . , rk aremutually exclusive if r i(a)→ ⌝r j(a) whenever i 1 j.

(vi) Let g1, . . . , gk+1 be recursive n-ary functions and r1, . . . , rk mutually exclusive recursive n-ary predi-
cates. If

f (a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g1(a) if r1(a),
⋮ ⋮
gk(a) if rk(a),
gk+1(a) otherwise,

then f is recursive.
(vii) Let q1, . . . , qk+1 be recursive n-ary predicates and r1, . . . , rk mutually exclusive recursive n-ary pred-

icates. If

p(a)↔

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q1(a) if r1(a),
⋮ ⋮
qk(a) if rk(a),
qk+1(a) otherwise,

then p is recursive.

We have f (a) = g1(a) ⋅ χr1 (a) + ⋯ + gk(a) ⋅ χrk (a) + gk+1(a) ⋅ χ⌝r1∧⋯∧⌝rk (a) and p(a) ↔ (r1(a) ∧ q1(a)) ∨
⋯ ∨ (rk(a) ∧ qk(a)) ∨ (⌝r1(a) ∧⋯ ∧ ⌝rk(a) ∧ qk+1(a)).

(viii) �e binary predicates ≤ and = are recursive.
�is follows from the relations a ≤ b↔ ⌝(π22(a, b) < π21 (a, b)) and a = b↔ a ≤ b ∧ π22(a, b) ≤ π21 (a, b).
Since we do not deal with negative integers, we set a − b to be 0 if a < b.

(ix) �e binary function − is recursive.
�e function − is the minimization of the ternary predicate p de�ned by p(a, b, c) ↔ π31 (a, b, c) =
π32(a, b, c) + π33(a, b, c) ∨ π31 (a, b, c) < π32(a, b, c).
We introduce some abbreviations. We write ∃a<⋯ and ∀a<⋯ to mean “for some a < ⋯ ” and “for all

a < ⋯ ”, respectively. We also write µa<⋯ for “the �rst a such that a = ⋯ or” (note that such an a always
exists).

(x) If p is a recursive (n + 1)-ary predicate and if f (a, a) = µb<a p(a, b), then f is recursive.

�e function f is the minimization of the (n + 2)-ary predicate q where q(a, a, b) ↔ πn+2
n+2(a, a, b) =

πn+2
n+1 (a, a, b) ∨ p(πn+2

1 (a, a, b), . . . , πn+2
n (a, a, b), πn+2

n+2(a, a, b)). But q is recursive by our previous results,
so f is recursive.

(xi) If p is a recursive (n+ 1)-ary predicate and if q(a, a)↔ ∃b<a p(a, b) and r(a, a)↔ ∀b<a p(a, b), then
q and r are recursive.

We have q(a, a)↔ µb<a p(a, b) < πn+1
n+1(a, a) and r(a, a)↔ ⌝∃b<a⌝p(a, b).

1.2 Coding functions. A binary function β is called a coding function if

(i) for all a and b, β(a, b) ≤ a − 1;
(ii) for all n ≥ 1 and for all a0, . . . , an−1, there is a number a such that, for all i < n, β(a, i) = a i .

Theorem. �e function β de�ned by

β(a, i) = µb<a−1∃c<a∃d<a(a = (c + d)(c + d) + c + 1 ∧ ∃e<a(c = (((b + i)(b + i) + b + 2)d + 1)e))

is a recursive coding function.
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We do not give the proof of this theorem here since it can be recovered from the derivation of a for-
malized version of this theorem which we shall give in full in chapter iv.
We now �x a coding function β. �us if a1, . . . , an are numbers, there exists a number a such that

β(a, 0) = n, β(a, 1) = a1, . . . , β(a, n) = an ; we denote the �rst such a by [a1 , . . . , an] (the function β will
always be �xed throughout a givendiscussion, sowe shall not �nd it necessary to indicate it in the notation).
As an n-ary function of a1, . . . , an , [a1 , . . . , an] is called a sequence function. If β is recursive, the n-ary
sequence function is recursive for every n, since [a1 , . . . , an] = µa(β(a, 0) = n∧β(a, 1) = a1∧⋯∧β(a, n) =
an) and β is recursive. Note that β(0, 0) = 0 because of (i), and hence [] = 0. We abbreviate β(a, i + 1)
to (a)i and we write (a)i , j instead of ((a)i) j . We shall sometimes drop the parentheses when they are not
needed: thus we may write f (a, b)i instead of ( f (a, b))i . We further de�ne

(i) len(a) = β(a, 0);
(ii) sq(a) if and only if there exists n and a1, . . . , an such that a = [a1 , . . . , an];
(iii) a ∈ b if and only if b = [a1 , . . . , an] and a = a i for some i;

(iv) a ∗ b =
⎧⎪⎪⎨⎪⎪⎩
[a1 , . . . , an , b1 , . . . , bm] if a = [a1 , . . . , an] and b = [b1 , . . . , bm],
0 otherwise;

(v) ini(a, i) =
⎧⎪⎪⎨⎪⎪⎩
[a1 , . . . , a i ] if a = [a1 , . . . , an] and i ≤ n,
0 otherwise;

(vi) rmv(a, i) =
⎧⎪⎪⎨⎪⎪⎩
[a1 , . . . , a i−1 , a i+1 , . . . , an] if a = [a1 , . . . , an] and 1 ≤ i ≤ n
a otherwise.

In (vi), [a1 , . . . , a i−1 , a i+1 , . . . , an] is to be read as [a2 , . . . , an] if n ≥ 2 and i = 1, as [a1 , . . . , an−1] if n ≥ 2
and i = n, and as [] if n = 1 and i = 1.
Suppose that β is recursive. �en obviously (i) is recursive. �e recursiveness of (ii)–(vi) follows from

the relations

(ii) sq(a)↔ ∀b<a∃i<len(a)+1(β(a, i) 1 β(b, i));
(iii) a ∈ b↔ sq(b) ∧ ∃i<len(b)(a = (b)i);

(iv) a ∗ b =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µc(len(c) = len(a) + len(b) ∧ ∀i<len(a)((c)i = (a)i) ∧ ∀i<len(b)((c)i+len(a) = (b)i))
if sq(a) ∧ sq(b),

0 otherwise;

(v) ini(a, i) =
⎧⎪⎪⎨⎪⎪⎩
µb(len(b) = i ∧ ∀ j<i((b) j = (a) j)) if sq(a) ∧ i ≤ len(a),
0 otherwise;

(vi) rmv(a, i) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µb(len(b) = len(a) − 1 ∧ ∀c<len(b)((c + 1 < i ∧ (b)c = (a)c) ∨ (i ≤ c + 1 ∧ (b)c = (a)c+1)))
if sq(a) ∧ i 1 0 ∧ i ≤ len(a) ∧ len(a) 1 0

a otherwise.

1.3 Recursion. Fix a recursive coding function β. If f is an (n + 1)-ary function, we de�ne an (n + 1)-ary
function f̄ by f̄ (0, a) = 0 and, for a ≥ 1, f̄ (a, a) = [ f (0, a), . . . , f (a − 1, a)].
(i) �e function f is recursive if and only if the function f̄ is recursive.

�is follows from the relations f̄ (a, a) = µb(len(b) = a ∧ ∀i<a((b)i = f (i , a))) and f (a, a) = β( f̄ (a +
1, a), a + 1).
(ii) If g is an (n + 2)-ary recursive function and if f (a, a) = g( f̄ (a, a), a, a), then f is recursive.

By (i), we need only prove that f̄ is recursive. But f̄ (a, a) = µb(len(b) = a ∧∀i<a((b)i = g(ini(b, i), i , a))),
and so f̄ is recursive.

1.4 Recursively enumerable predicates. An n-ary predicate p is recursively enumerable if there is a recur-
sive (n + 1)-ary predicate q such that p(a)↔ ∃aq(a, a).
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Negation Lemma. Let p be an n-ary predicate. If p and ⌝p are recursively enumerable, then p is
recursive.

Proof. �ere are recursive predicates q and r such that p(a) ↔ ∃aq(a, a) and ⌝p(a) ↔ ∃ar(a, a). �en
∀a∃a(q(a, a) ∨ r(a, a)), so we can de�ne a function f by f (a) = µa(χq∨r(a, a) = 0); f is recursive being
the minimization of the composition of ⋅, χq , and χr . Clearly χp(a) = χq(πn

1 (a), . . . , πn
n(a), f (a)), so p is

recursive.

In this paragraph we examine brie�y some properties of recursively enumerable predicates. We �x a
recursive coding function β.

(i) Recursive predicates are recursively enumerable.

Let p be a recursive predicate. De�ne q(a, a) ↔ p(a). �en q is recursive and p(a) ↔ ∃aq(a, a), so p is
recursively enumerable.

(ii) If p is a recursively enumerable k-ary predicate, if h1, . . . , hk are recursive n-ary functions, and if
q(a)↔ p(h1(a), . . . , hk(a)), then q is recursively enumerable.

�ere is a recursive (k + 1)-ary predicate p′ such that p(b)↔ ∃ap′(b, a). De�ne the (n + 1)-ary predicate
q′ by q′(a, a)↔ p′(h1(a), . . . , hk(a), a). �en q′ is recursive, and since q(a)↔ ∃aq′(a, a), q is recursively
enumerable.

(iii) If p is a recursively enumerable (n + 1)-ary predicate and if q(a)↔ ∃ap(a, a), then q is recursively
enumerable.

Let p′ be a recursive predicate such that p(a, a) ↔ ∃bp′(a, a, b). De�ne q′ by q′(a, c) ↔ p′(a, (c)0 , (c)1),
so that q′ is recursive. Clearly ∃a∃bp′(a, a, b)↔ ∃cq′(a, c), and since q(a)↔ ∃a∃bp′(a, a, b), q is recur-
sively enumerable.

(iv) If p and q are recursively enumerable, then p ∨ q and p ∧ q are recursively enumerable.

Let p′, q′ be recursive predicates such that p(a)↔ ∃ap′(a, a) and q(a)↔ ∃aq′(a, a). �en p(a)∨ q(a)↔
∃a(p′(a, a) ∨ q′(a, a)) and p(a) ∧ q(a)↔ ∃a∃b(p′(a, a) ∧ q′(a, b)), which shows that p ∨ q is recursively
enumerable and, using (iii), that p ∧ q is recursively enumerable.

(v) If p is a recursively enumerable (n + 1)-ary predicate and if q(a, b)↔ ∀a<b p(a, a), then q is recur-
sively enumerable.

Let r be a recursive predicate such that p(a, a)↔ ∃cr(a, a, c). �en q(a, b)↔ ∃c∀a<br(a, a, (c)a) and so
q is recursively enumerable.

1.5 Graph of a function. If f is an n-ary function, the graph of f is the (n + 1)-ary predicate Gf de�ned
byGf (a, b)↔ f (a) = b.

Proposition. Let f be a function. �e following assertions are equivalent: f is recursive;Gf is recur-
sive;Gf is recursively enumerable.

Proof. It is obvious that the �rst assertion implies the second, and the second implies the third by (i) of §1.4.
Suppose thatGf is recursively enumerable. �en

Gf (a, b)↔ ∃cp(a, b, c) (1)

for some recursive predicate p. In particular, ∀a∃cp(a, f (a), c) and hence ∀a∃cp(a, (c)0 , (c)1). �us we
can de�ne a recursive function g by g(a) = µcp(a, (c)0 , (c)1). We claim that f (a) = g(a)0, which will prove
that f is recursive. Indeed we have p(a, g(a)0 , g(a)1), and so ∃cp(a, g(a)0 , c). �e claim follows by (1).
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§2 Representability

2.1 Numerical languages. A �rst-order language L is numerical if it has the constant 0̇ and the unary
function symbol S. A numeral of L is a term of L in which only 0̇ and S occur. If n is a natural number, we
denote by ṅ the numeral of L having n occurrences of S, also called the numeral of n. If n is 0, this notation
coincides with the constant 0̇. If f is a function, ḟ is the function which to a associates the numeral of f (a).
A numerical instance of a formula A of L is a closed formula of the form A[x1 , . . . , xn ∣ȧ1 , . . . , ȧn]. A �rst-
order theory T is called numerical if L(T) is numerical. If L and M are numerical �rst-order languages,
an interpretation I of L inM is numerical if =I is =, 0̇I is 0̇, and SI is S.

2.2 Representability of functions. In this section, T is a numerical �rst-order theory. Let f be an n-ary
function, a a term of T , and x1, . . . , xn distinct variables. We say that a with x1, . . . , xn represents f in T
if for any a1, . . . , an , ∣−Ta[x1 , . . . , xn ∣ȧ1 , . . . , ȧn] = ḟ (a1 , . . . , an). We simply say that f represents f in T if
fx1 . . . xn with x1, . . . , xn represents f in T .
Let f be an n-ary function, A a formula of T , and x1, . . . , xn , and y distinct variables. We say that A

with x1, . . . , xn , y represents f in T if for any a1, . . . , an , ∣−TA[x1 , . . . , xn ∣ȧ1 , . . . , ȧn] ↔ y = ḟ (a1 , . . . , an).
An n-ary function f is said to be representable in T if there is a formula A of T and distinct variables x1,
. . . , xn , y such that A with x1, . . . , xn , y represents f in T .

Proposition. A function f is representable in T if and only if there exist an extension by de�nitions
T ′ of T , a term a of T ′, and variables x1, . . . , xn such that a with x1, . . . , xn represents f in T ′.

Proof. Suppose that A with x1, . . . , xn , y represents f in T . Let y′ be distinct from x1, . . . , xn , y and not
occurring in A and letD be the formula

(∃yA ∧ ∀y′(A→ A[y∣y′]→ y = y′) ∧A) ∨ (⌝(∃yA ∧ ∀y′(A→ A[y∣y′]→ y = y′)) ∧ y = 0̇).

We obtain T ′ from T by the adjunction of a new n-ary function symbol f and the axiom y = fx1 . . . xn ↔ D.
It is easy to derive existence and uniqueness conditions for y inD, so that T ′ is an extension by de�nitions
of T . Clearly fx1 . . . xn with x1, . . . , xn represents f in T ′.
Conversely, suppose that awith x1, . . . , xn represents f in some extension by de�nitions T ′ of T . LetA

be a translation of y = a into T . Since ∣−T′y = a[x1 , . . . , xn ∣ȧ1 , . . . , ȧn]↔ y = ḟ (a1 , . . . , an) by the equality
theorem, we have ∣−TA[x1 , . . . , xn ∣ȧ1 , . . . , ȧn] ↔ y = ḟ (a1 , . . . , an) by the theorem on de�nitions, so A
with x1, . . . , xn , y represents f in T .

2.3 Representability of predicates. Let p be an n-ary predicate, A a formula of T , and x1, . . . , xn dis-
tinct variables. We say that A with x1, . . . , xn represents p in T if for all a1, . . . , an , p(a1 , . . . , an) implies
∣−TA[x1 , . . . , xn ∣ȧ1 , . . . , ȧn] and ⌝p(a1 , . . . , an) implies ∣−T⌝A[x1 , . . . , xn ∣ȧ1 , . . . , ȧn]. If only the former
(resp. the latter) holds, we say that A with x1, . . . , xn positively represents (resp. negatively represents) p in
T . We say that p represents p in T if px1 . . . xn with x1, . . . , xn represents p in T . An n-ary predicate p is
said to be representable in T if there is a formula A of T and distinct variables x1, . . . , xn such that A with
x1, . . . , xn represents p in T .

Proposition. If ∣−T 0̇ 1 1̇, a predicate p is representable in T if and only if χp is representable in T .

Proof. Suppose that A with x1, . . . , xn represents p in T , and let y be distinct from x1, . . . , xn . Let a1, . . . ,
an be natural numbers, and let A′ abbreviate A[x1 , . . . , xn ∣ȧ1 , . . . , ȧn]. If p(a1 , . . . , an), then ∣−TA′, and if
⌝p(a1 , . . . , an), then ∣−T⌝A′. In both cases, ∣−T(A′ ∧ y = 0̇) ∨ (⌝A′ ∧ y = 1̇)↔ y = χ̇p(a1 , . . . , an) by the
tautology theorem. So (A ∧ y = 0̇) ∨ (⌝A ∧ y = 1̇) with x1, . . . , xn , y represents χp .
Conversely, suppose thatAwith x1, . . . , xn , y represents χp in T . If p(a1 , . . . , an), then χp(a1 , . . . , an) =

0 and so ∣−TA[x1 , . . . , xn ∣ȧ1 , . . . , ȧn]↔ y = 0̇. By the substituion rule, ∣−TA[y∣0̇][x1 , . . . , xn ∣ȧ1 , . . . , ȧn]↔
0̇ = 0̇, whence ∣−TA[y∣0̇][x1 , . . . , xn ∣ȧ1 , . . . , ȧn] by the identity axioms, the substitution rule, and the tau-
tology theorem. If ⌝p(a1 , . . . , an), we �nd similarly ∣−TA[y∣0̇][x1 , . . . , xn ∣ȧ1 , . . . , ȧn] ↔ 0̇ = 1̇, whence
∣−T⌝A[y∣0̇][x1 , . . . , xn ∣ȧ1 , . . . , ȧn] by the hypothesis and the tautology theorem. �us A[y∣0̇] with x1, . . . ,
xn represents p in T .

2.4 Representability and interpretations. We remark that if an n-ary function f is representable in T
and if x1, . . . , xn , y are distinct variables, then there is a formula A of T which with x1, . . . , xn , y represents
f in T and in which no variable other than x1, . . . , xn , and y is free. For if B with z1, . . . , zn , w repre-
sents f in T and if x′1, . . . , x′m are the variables free in B other than z1, . . . , zn , and w, then the formula
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B′[x′1 , . . . , x′m , z1 , . . . , zn ,w∣0̇, . . . , 0̇, x1 , . . . , xn , y], where B′ is a variant of B in which x1, . . . , xn , y are not
bound, is as desired by the version theorem. A similar statement and its proof hold for predicates.

Proposition. Let T and U be numerical �rst-order theories and let I be a numerical interpretation
of T in U . �en any function or predicate representable in T is representable in U .

Proof. Let f be an n-ary function representable in T . By the remark preceding the proposition, we can
�nd a formula A which with x1, . . . , xn , y represents f in T and in which no variable other than x1, . . . , xn ,
and y is free. Let b = f (a1 , . . . , an). By the interpretation theorem and the fact that ṅI is ṅ for all n,

∣−UUIy → AI[x1 , . . . , xn ∣ȧ1 , . . . , ȧn]↔ y = ḃ. (1)

But ∣−UUI ḃ because ḃI is ḃ and I is an interpretation of L(T) in U , and hence ∣−Uy = ḃ → UIy by the
equality theorem. From this and (1) we obtain ∣−U (UIy ∧ AI[x1 , . . . , xn ∣ȧ1 , . . . , ȧn]) ↔ y = ḃ by the
tautology theorem, so UIy ∧AI with x1, . . . , xn , y represents f in U .
Suppose that A with x1, . . . , xn represents a predicate p in T and that no variable other than x1, . . . , xn

is free in A. �en A[x1 , . . . , xn ∣ȧ1 , . . . , ȧn]I is AI[x1 , . . . , xn ∣ȧ1 , . . . , ȧn] and (⌝A[x1 , . . . , xn ∣ȧ1 , . . . , ȧn])I is
⌝AI[x1 , . . . , xn ∣ȧ1 , . . . , ȧn]. It follows from the interpretation theorem that AI with x1, . . . , xn represents p
in U .

§3 Arithmetizations

3.1 Arithmetizations. An arithmetization of a �rst-order language L is an e�ective mapping that assigns
a natural number to every designator of L and to every sequence of formulae of L (including the empty
sequence) in such away that di�erent numbers are assigned to di�erent designators, and di�erent numbers
are assigned to di�erent sequences of formulae. �e number assigned to an object is called its expression
number. By an “e�ective” mapping we mean not only that we can determine the expression number of a
given designator or sequence of formulae, but also the following: if we are given a number, we can decide
whether it is the expression number of a designator (resp. of a sequence of formulae) or not, and if it is, we
can determine the designator (resp. the sequence of formulae) of which it is the expression number.†
A �rst-order language will be called arithmetized when it is endowed with an arithmetization. If u is a

designator of an arithmetized �rst-order language, we write ‘u’ its expression number, and ,u- the numeral
of ‘u’. �is notation can be ambiguous when we are dealing with several arithmetized languages, so we
shall occasionally re�ne these conventions. We say that a �rst-order theory is arithmetized if its language
is arithmetized.
If L is an arithmetized �rst-order language and T an arithmetized �rst-order theory, we de�ne

(i) vbleL(a) if and only if a is the expression number of a variable;
(ii) tmL(a) if and only if a is the expression number of a term of L;
(iii) atfmL(a) if and only if a is the expression number of an atomic formula of L;
(iv) fmL(a) if and only if a is the expression number of a formula of L;
(v) desL(a) if and only if a is the expression number of a designator of L;
(vi) occL(a, b) if and only if a and b are expression numbers of designators of L and the designator with

expression number b occurs in the designator with expression number a;
(vii) frL(a, b) if and only if desL(a) and vbleL(b) and the variable with expression number b is free in the

designator with expression number a;
(viii) clL(a) if and only if a is the expression number of a closed designator of L;
(ix) subtlL(a, b, c) if and only if desL(a) and vbleL(b) and tmL(c) and the termwith expression number c

is substitutible for the variable with expression number b in the designator with expression number
a;

(x) paxL(a) if and only if a is the expression number of a propositional axiom for L;
(xi) saxL(a) if and only if a is the expression number of a substitution axiom for L;
†�is requirement that arithmetizations be e�ective is of course not used in any proof and hence is not strictly necessary.

However, some proofs would lose their constructive character if they were applied to none�ective arithmetizations.
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(xii) iaxL(a) if and only if a is the expression number of an identity axiom for L;
(xiii) feaxL(a) if and only if a is the expression number of a functional equality axiom for L;
(xiv) peaxL(a) if and only if a is the expression number of a predicative equality axiom for L;
(xv) axL(a) if and only if a is the expression number of a logical axiom for L;
(xvi) ctrL(a, b) if and only if fmL(a) and fmL(b) and the formula with expression number a is the conclu-

sion of a contraction rule whose premise has expression number b;
(xvii) expL(a, b) if and only if fmL(a) and fmL(b) and the formula with expression number a is the con-

clusion of an expansion rule whose premise has expression number b;
(xviii) assocL(a, b) if and only if fmL(a) and fmL(b) and the formula with expression number a is the

conclusion of an associativity rule whose premise has expression number b;
(xix) cutL(a, b, c) if and only if fmL(a) and fmL(b) and fmL(c) and the formula with expression number

a is the conclusion of a cut rule whose premises, in order, have expression numbers b and c;
(xx) intrL(a, b) if and only if fmL(a) and fmL(b) and the formula with expression number a is the con-

clusion of an ∃-introduction rule whose premise has expression number b;
(xxi) nlaxT(a) if and only if a is the expression number of a nonlogical axiom of T ;
(xxii) derT(a, b) if and only if fmL(T)(a) and b is the expression number of a derivation in T of the formula

with expression number a;
(xxiii) thmT(a) if and only if a is the expression number of a theorem of T .

3.2 Numerotations.We now describe a natural and highly applicable method to obtain arithmetizations
of �rst-order languages. Let L be a �rst-order language. We assume given a mapping σ which to each
symbol s of L associates a number σ(s), called the symbol number of s. We require that di�erent symbols
be associated to di�erent numbers. Such a mapping is called a numerotation of L. We can then de�ne

(i) vrσ (n) is the symbol number of the (n + 1)th variable in the alphabetical order;
(ii) funcσ (a, n) if and only if a is the symbol number of an n-ary function symbol of L;
(iii) predσ (a, n) if and only if a is the symbol number of an n-ary predicate symbol of L;
(iv) symσ (a) if and only if a is the symbol number of a symbol of L.

We call the numerotation σ recursive if vrσ , funcσ , and predσ are recursive and if vrσ is an increasing
function, i.e., vrσ (a) < vrσ (b) whenever a < b. When this is the case, symσ is recursively enumerable.
We now describe a method to obtain arithmetizations from numerotations. Let L be a �rst-order

language, σ a numerotation of L, and β a coding function. We �rst show how to assign a number to every
designator of L. We do this by induction on the length of the designator. If u is a designator of L, then by
the formation theorem u can be written in one and only one way as su1 . . . un where s is a symbol of L of
index n and u1, . . . , un are designators of L. We then de�ne

‘u’ = [σ(s), ‘u1’, . . . , ‘un ’].

If A1, . . . , An is a sequence of formulae of L, then the expression number of this sequence is the number
[‘A1’, . . . , ‘An ’]. It is obvious that this de�nes an arithmetization of L, i.e., that di�erent designators (resp.
di�erent sequences of formulae) have di�erent expression numbers.†
We say that a �rst-order language L is arithmetized from the numerotation σ by the coding function

β if it is endowed with the arithmetization just described.

Theorem. Let L be a �rst-order language arithmetized from a recursive numerotation σ by a recur-
sive coding function β. �en: the predicates (i)–(xx) of §3.1 are recursive; for each symbol s of L of
index n there is an n-ary recursive function fs such that for every designator of the form su1 . . . un ,

†To de�ne numerotations themselves, one can draw inspiration from thismethod and the remark concerning variables in ch. i
§2.1: thinking of variables as concatenations of two symbols x and ′, if ς assigns injectively a number to x, ′, and the symbols
of L that are not variables, then, if xn is the nth variable in the alphabetical order, the mapping σ de�ned by σ(x1) = [ς(x)],
σ(xn+1) = [ς(′), σ(xn)], and σ(s) = [ς(s)] for s not a variable is a numerotation of L. Moreover, vrσ is automatically increasing,
so σ will be recursive provided that funcς , predς , and β are recursive.
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fs(‘u1’, . . . , ‘un ’) = ‘su1 . . . un ’; there is a recursive function sub such that for every designator u, dis-
tinct variables x1, . . . , xn , and terms a1, . . . , an ,

sub(‘u’, [‘x1’, . . . , ‘xn ’], [‘a1’, . . . , ‘an ’]) = ‘u[x1 , . . . , xn ∣a1 , . . . , an]’;

there is a recursive function clos such that for every formulaA, ifA′ is the closure ofA, clos(‘A’) = ‘A′’.
If moreover L is numerical, then the function num de�ned by num(a) = ‘ȧ’ is recursive.
If T is a �rst-order theory with language L and if nlaxT is recursive (resp. recursively enumerable),

then derT is recursive (resp. recursively enumerable) and thmT is recursively enumerable.

Proof. We de�ne fs(a1 , . . . , an) = [σ(s), a1 , . . . , an]. �en fs is recursive and has the desired property.
De�ne f (a, b) = µi((a)0 1 σ(∃) ∨ ⌝((a)1 ∈ b) ∨ (i 1 0 ∧ (a)1 = β(b, i))). �is is obviously well de�ned
and recursive, and f (u, [‘x1’, . . . , ‘xn ’]) is the �rst i such that xi is x if u is ∃xA and such an i exists, and is
0 otherwise. We let sub(a, b, c) be β(c, µi(⌝(a ∈ b) ∨ a = (b)i) + 1) if vbleL(a) ∧ a ∈ b,

µd(len(d) = len(a) ∧ (d)0 = (a)0 ∧ ∀i<len(a)−1((d)i+1 = sub((a)i+1 , rmv(b, f (a, b)), rmv(c, f (a, b)))))

if ⌝ vbleL(a), and a otherwise. It is easy to check that sub(‘u’, [‘x1’, . . . , ‘xn ’], [‘a1’, . . . , ‘an ’]) = ‘u[x1 , . . . ,
xn ∣a1 , . . . , an]’. �e recursiveness of sub, (i)–(xii), and (xv)–(xx) follows from the relations
(i) vbleL(a)↔ a = [(a)0] ∧ ∃b<a(vrσ (b) = (a)0) (here we use that vrσ is increasing);
(ii) tmL(a)↔ vbleL(a) ∨ (sq(a) ∧ len(a) 1 0 ∧ funcσ ((a)0 , len(a) − 1) ∧ ∀b<len(a)−1(tmL((a)b+1)));
(iii) atfmL(a)↔ sq(a) ∧ len(a) 1 0 ∧ predσ ((a)0 , len(a) − 1) ∧ ∀b<len(a)−1(tmL((a)b+1));
(iv) fmL(a)↔ atfmL(a)∨(a = [σ(∨), (a)1 , (a)2]∧fmL((a)1)∧fmL((a)2))∨(a = [σ(⌝), (a)1]∧fmL((a)1))∨

(a = [σ(∃), (a)1 , (a)2] ∧ vbleL((a)1) ∧ fmL((a)2));
(v) desL(a)↔ tmL(a) ∨ fmL(a);
(vi) occL(a, b)↔ desL(a) ∧ desL(b) ∧ (a = b ∨ ∃i<len(a)−1 occL((a)i+1 , b));

(vii) frL(a, b)↔ desL(a) ∧ vbleL(b) ∧

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

occL(a, b) if tmL(a) ∨ atfmL(a),
frL((a)1 , b) ∨ frL((a)2 , b) if a = [σ(∨), (a)1 , (a)2],
frL((a)1 , b) if a = [σ(⌝), (a)1],
frL((a)2 , b) ∧ (a)1 1 b otherwise;

(viii) clL(a)↔ desL(a) ∧ ⌝∃b<a frL(a, b);
(ix) subtlL(a, b, c)↔ desL(a) ∧ vbleL(b) ∧ tmL(c)

∧

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

subtlL((a)1 , b, c) ∧ subtlL((a)2 , b, c) if a = [σ(∨), (a)1 , (a)2],
subtlL((a)1 , b) if a = [σ(⌝), (a)1],
subtlL((a)2 , b, c) ∧ (⌝ frL((a)2 , b) ∨ ⌝ frL(c, (a)1)) if a = [σ(∃), (a)1 , (a)2] ∧ (a)1 1 b,
0 = 0 otherwise;

(x) paxL(a)↔ fmL(a) ∧ a = [σ(∨), [σ(⌝), (a)2], (a)2];
(xi) saxL(a)↔ fmL(a) ∧ a = [σ(∨), [σ(⌝), (a)1,1], [σ(∃), (a)2,1 , (a)2,2]]

∧ ∃b<a(tmL(b) ∧ subtlL((a)2,2 , (a)2,1 , b) ∧ (a)1,1 = sub((a)2,2 , (a)2,1 , b));
(xii) iaxL(a)↔ a = [σ(=), (a)1 , (a)1] ∧ vbleL((a)1);
(xv) axL(a)↔ paxL(a) ∨ saxL(a) ∨ iaxL(a) ∨ feaxL(a) ∨ peaxL(a);
(xvi) ctrL(a, b)↔ fmL(a) ∧ b = [σ(∨), a, a];
(xvii) expL(a, b)↔ fmL(a) ∧ a = [σ(∨), (a)1 , b];
(xviii) assocL(a, b)↔ fmL(a) ∧ a = [σ(∨), [σ(∨), (a)1,1 , (a)1,2], (a)2]

∧ b = [σ(∨), (a)1,1 , [σ(∨), (a)1,2 , (a)2]];
(xix) cutL(a, b, c)↔ fmL(b) ∧ fmL(c) ∧ b = [σ(∨), (b)1 , (b)2] ∧ c = [σ(∨), [σ(⌝), (b)1], (c)2]

∧ a = [σ(∨), (b)2 , (c)2];
(xx) intrL(a, b)↔ fmL(a) ∧ a = [σ(∨), [σ(⌝), [σ(∃), (a)1,1,1 , (a)1,1,2]], (a)2]

∧ b = [σ(∨), [σ(⌝), (a)1,1,2], (a)2] ∧ ⌝ frL((a)2 , (a)1,1,1).
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�e predicates feaxL and peaxL require somemore work. Let f be the binary function de�ned by f (a, n) =
(a)2,.. . ,2 with n occurrences of 2. �en f is recursive because

f (a, n) =
⎧⎪⎪⎨⎪⎪⎩
a if n = 0,
f (a, n − 1)2 otherwise.

Now if a is the expression number of an equality axiom for, say, an n-ary function symbol f and if 0 ≤ i ≤ n,
then f (a, i) is the expression number of

xi+1 = yi+1 → ⋯→ xn = yn → fx1 . . . xn = fy1 . . . yn .

We thus have the relations
(xiii) feaxL(a)↔ ∃n<a( f (a, n) = [σ(=), f (a, n)1 , f (a, n)2]

∧ len( f (a, n)1) = n + 1 ∧ len( f (a, n)2) = n + 1
∧ funcσ ( f (a, n)1,0 , n) ∧ f (a, n)1,0 = f (a, n)2,0
∧ ∀i<n(vbleL( f (a, n)1, i+1) ∧ vbleL( f (a, n)2, i+1))
∧ ∀i<n( f (a, i) = [σ(∨), [σ(⌝), [σ(=), f (a, i)1,1,1 , f (a, i)1,1,2]], f (a, i + 1)]
∧ f (a, i)1,1,1 = f (a, n)1, i+1 ∧ f (a, i)1,1,2 = f (a, n)2, i+1)) and

(xiv) peaxL(a)↔ ∃n<a( f (a, n) = [σ(∨), [σ(⌝), f (a, n)1,1], f (a, n)2]
∧ len( f (a, n)1,1) = n + 1 ∧ len( f (a, n)2) = n + 1
∧ predσ ( f (a, n)1,1,0 , n) ∧ f (a, n)1,1,0 = f (a, n)2,0
∧ ∀i<n(vbleL( f (a, n)1,1, i+1) ∧ vbleL( f (a, n)2, i+1))
∧ ∀i<n( f (a, i) = [σ(∨), [σ(⌝), [σ(=), f (a, i)1,1,1 , f (a, i)1,1,2]], f (a, i + 1)]
∧ f (a, i)1,1,1 = f (a, n)1,1, i+1 ∧ f (a, i)1,1,2 = f (a, n)2, i+1))

showing that feaxL and peaxL are recursive.
We de�ne a unary function g by

g(a) =
⎧⎪⎪⎨⎪⎪⎩
[σ(⌝), [σ(∃), µb(frL(a, b)), [σ(⌝), a]]] if ⌝ clL(a),
a otherwise;

�en g is recursive and g(‘A’) is A if A is closed and ∀xA otherwise, where x is the variable free in A
which comes �rst in the alphabetical ordering of all the variables free in A. We observe that there cannot
be more than ‘A’ variables free in A because each of them has a di�erent nonzero expression number. We
then de�ne

h(a, n) =
⎧⎪⎪⎨⎪⎪⎩
a if n = 0,
h(g(a), n − 1) otherwise,

and �nally clos(a) = h(a, a). �en clos is recursive and clos(‘A’) is the expression number of the closure
of A, as desired.
If L is numerical, we have

num(a) =
⎧⎪⎪⎨⎪⎪⎩
[σ(0̇)] if a = 0,
[σ(S), num(a − 1)] otherwise,

and hence num is recursive.
Suppose that T is a �rst-order theory with language L. We observe that

(xxii) derT(a, b)↔ sq(b) ∧ len(b) 1 0 ∧ a = β(b, len(b)) ∧ ∀c<len(b)(axL(c) ∨ nlaxT(c)
∨ ∃d<c(ctrL((b)c , (b)d ) ∨ expL((b)c , (b)d ) ∨ assocL((b)c , (b)d ) ∨ ∃e<c cut((b)c , (b)d , (b)e)
∨ intrL((b)c , (b)d ))); and

(xxiii) thmT(a)↔ ∃b derT(a, b).
From these relations the remaining assertions of the theorem follow.

�ere are yetmore syntactical constructionswhich become recursive functions under suitable numero-
tations. For example, if L and L′ are arithmetized from recursive numerotations σ and σ ′ by a recursive
coding function, if I is an interpretation of L in L′, and if there is a recursive function f such that for
all variables, function symbols, and predicate symbols s of L, f (σ(s)) = σ ′(sI), then there is a recursive
function which associates to the expression number of a designator of L the expression number of its
interpretation by I.
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§4 �e incompleteness theorem

4.1 �e diagonal lemma. Let L be an arithmetized numerical �rst-order language. A unary function f is
a diagonal function for L if for some variable x f , f (‘A’) = ‘A[x f ∣,A-]’ for allA. An arithmetized numerical
�rst-order theory T will be called diagonalizable if some diagonal function for L(T) is representable in T .
A unary function h is a negation function for T if for any formulaA of T , ifA′ is the closure ofA, then

h(‘A’) is the expression number of a formula B of T such that ∣−TB↔ ⌝A′. When a negation function for
T has been chosen, we de�ne a unary predicate thm′

T by thm′
T(a)↔ ∃b(derT(a, b)∧∀c<b⌝derT(h(a), c)).

Note that thm′
T(a)→ thmT(a).

Diagonal Lemma. Let T be an arithmetized numerical �rst-order theory, let f be a diagonal function
for L(T), and let h be a negation function for T . If the predicate p de�ned by p(a)↔ ⌝ thm′

T( f (a)) is
representable in T , then T is inconsistent.

Proof. �ere is a formula A of T with expression number a such that A with x f represents p in T . By
de�nition of p, ⌝p(a) implies ∣−TA[x f ∣ȧ]. But if p(a), then ∣−TA[x f ∣ȧ] because A with x f represents p in
T , so in all cases ∣−TA[x f ∣ȧ]. Choose b such that derT( f (a), b). If derT(h( f (a)), c) for some c < b, then T
is inconsistent by the closure theorem and the tautology theorem. Otherwise, ⌝p(a), and since A with x f
represents p in T , ∣−T⌝A[x f ∣ȧ]. By the tautology theorem, T is inconsistent in this case as well.
Remark. �e proof of the diagonal lemma is the only potentially nonconstructive proof on these pages.
Indeed, we might not be able to decide whether p(a) or ⌝p(a), in which case the proof does not actually
produce a derivation ofA[x f ∣ȧ] inT , butmerely establishes that the nonexistence of such a derivation leads
to a contradiction. However, in our only application of the diagonal lemma in §4.2, pwill be recursive and,
in particular, decidable.

4.2 Church’s theorem and incompleteness.We give a �rst proof of the incompleteness theorem based on
the diagonal lemma. We let T be an arithmetized numerical �rst-order theory. We must assume that the
arithmetization of T is su�ciently well-behaved. Precisely, we shall require that

(i) the predicates fmL(T) and derT are recursive;
(ii) there is a recursive diagonal function f for L(T);
(iii) there is a recursive negation function h for T .

�ese assumptions are met for example if the arithmetization of L(T) comes from a recursive numerota-
tion by a recursive coding function and if nlaxT is recursive. For then, with the notations of the theorem
of §3.2, the function f de�ned by f (a) = sub(a, [‘x’], [num(a)]) satis�es (ii), and the function h de�ned
by h(a) = f⌝(clos(a)) satis�es (iii). Note that (i) and (iii) imply that thm′

T is recursively enumerable.

Church’s Theorem. Suppose that every recursive unary predicate is representable in T . If thm′
T is

recursive, then T is inconsistent.

Proof. Since thm′
T is recursive, the predicate p de�ned by p(a) ↔ ⌝ thm′

T( f (a)) is recursive, and hence
representable in T . By the diagonal lemma, T is inconsistent.

Lemma. If T is complete, then thm′
T is recursive.

Proof. Indeed, we have⌝ thm′
T(a)↔ ⌝ fmL(T)(a)∨∃b(derT(h(a), b)∧∀c<b(⌝derT(a, c))), and so⌝ thm′

T
is recursively enumerable. By the negation lemma, thm′

T is recursive.

From Church’s theorem and the lemma, we obtain at once

Incompleteness Theorem 1. Suppose that every recursive unary predicate is representable in T . If
T is complete, then it is inconsistent.

Note that the diagonal lemma, Church’s theorem, and the above lemma can all be proved with thmT in
place of thm′

T . However, the proof of the incompleteness theorem obtained in this way is not constructive
in most cases of interest, since the proof of the lemma would depend on the consistency of T .

4.3 �e �xed point theorem. �e above proof of the incompleteness theorem is constructive, but it is
somewhat unsatisfying: if a �rst-order theory T satisfying the various hypotheses is consistent, we are
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unable to use it to �nd a closed formula A of T such that neither A nor ⌝A are theorems of T . In the
remaining of this section, we shall give a proof of the incompleteness theorem (with di�erent hypotheses
on T) by actually producing such a formula.
We let T be an arithmetized numerical �rst-order theory.

Fixed Point Theorem. Suppose that some diagonal function f for L(T) is representable in T . For
any formulaA of T , we can �nd a formula B of T , whose free variables are those ofAwithout x f , such
that ∣−TB↔ A[x f ∣,B-].

Proof. Let x be distinct from x f and not occurring in A. �ere is a formulaD of T such thatD with x f , x
represents f in T and in which no variable other than x f and x is free. Let a be the expression number of
∃x(D∧A[x f ∣x]), and let B be the formula ∃x(D[x f ∣ȧ]∧A[x f ∣x]). If b is the expression number of B, then
b = f (a). SinceD with x f , x represents f , we have

∣−TD[x f ∣ȧ]↔ x = ḃ, (1)

whence ∣−TD[x f , x∣ȧ, ḃ] by the equality theorem. �e formulaD[x f , x∣ȧ, ḃ]∧A[x f ∣ḃ]→ B is a substitution
axiom, so

∣−TA[x f ∣ḃ]→ B (2)

by the tautology theorem. By the equality theorem, ∣−Tx = ḃ → A[x f ∣x] ↔ A[x f ∣ḃ]. A tautological
consequence of this and (1) is ∣−TD[x f ∣ȧ] ∧A[x f ∣x]→ A[x f ∣ḃ]. Hence

∣−TB→ A[x f ∣ḃ] (3)

by the ∃-introduction rule. From (2) and (3), we obtain ∣−TB↔ A[x f ∣ḃ] by the tautology theorem, which
is the desired result.

As an example, we prove an interesting corollary to the �xed point theorem. A truth de�nition for T
is a formula A of T in which no variable other than x is free and such that for every closed formula B of
T , ∣−TB↔ A[x∣,B-].
Theorem on truth definitions. Suppose that T is diagonalizable. If there exists a truth de�nition
for T , then T is inconsistent.

Proof. LetA be a truth de�nition for T and let f be a diagonal function for L(T) which is representable in
T . By the �xed point theorem, we can �nd a closed formula B of T such that ∣−TB↔ ⌝A′[x∣x f ][x f ∣,B-],
where A′ is a variant of A in which x f is substitutible for x. By the variant theorem, ∣−TB ↔ ⌝A[x∣,B-].
But we also have ∣−TB↔ A[x∣,B-], so T is inconsistent by the tautology theorem.
4.4 Rosser’s formula and incompleteness. Let T be an arithmetized numerical �rst-order theory having
the binary predicate symbol < about which we make the following assumptions:
(i) T is diagonalizable;
(ii) some function f⌝ such that f⌝(‘A’) = ‘⌝A’ for all A is representable in T ;
(iii) derT is representable in T ;

and for some formula U of T in which only x is free,

(iv) for all n, ∣−TU[x∣ṅ];
(v) for all n, ∣−TU→ x < Sṅ → x = 0̇ ∨⋯ ∨ x = ṅ;
(vi) for all n, ∣−TU→ x < Sṅ ∨ ṅ < Sx.
Intuitively, we intend the formula U to mean “x is a natural number”.
Let f be a diagonal function for L(T) which is representable in T , and let x, y, z, and w be distinct

variables, distinct from x f and not occurring inU. By assumptions (ii) and (iii), there are formulae C and
D of T such that C with x, y represents f⌝ in T and such that D with y, z represents derT in T . We may
suppose that no variable other than x and y is free in C, and no variable other than y and z is free in D.
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Taking variants if necessary, we may assume that x f is substitutible for x in C and for y inD, and that w is
substitutible for z inD. Applying the �xed point theorem to the formula

∀y∀z(U[x∣z]→ C[x∣x f ]→ D[y∣x f ]→ ∃w(U[x∣w] ∧w < Sz ∧D[z∣w])),
we �nd a closed formula R of T such that

∣−TR↔ ∀y∀z(U[x∣z]→ C[x∣,R-]→ D[y∣,R-]→ ∃w(U[x∣w] ∧w < Sz ∧D[z∣w])). (4)

Incompleteness Theorem 2. With the hypotheses of this paragraph, if either ∣−TR or ∣−T⌝R, then T
is inconsistent.

Proof. Assume �rst that ∣−TR and let n be the expression number of a derivation of R in T , i.e., such
that derT(‘R’, n). By (4), the tautology theorem, and the substitution theorem, we �nd ∣−TU[x∣ṅ] →
C[x, y∣,R-, ,⌝R-] → D[y, z∣,R-, ṅ] → ∃w(U[x∣w] ∧w < Sṅ ∧D[y, z∣,⌝R-,w]). But ∣−TU[x∣ṅ] by (iv), and
∣−TC[x, y∣,R-, ,⌝R-] and ∣−TD[y, z∣,R-, ṅ] by representability, so ∣−T∃w(U[x∣w]∧w < Sṅ∧D[y, z∣,⌝R-,w])
by the detachment rule. By an instance of (v), the tautology theorem, and the distribution rule, ∣−T∃w((w =
0̇ ∧D[y, z∣,⌝R-,w]) ∨ ⋯ ∨ (w = ṅ ∧D[y, z∣,⌝R-,w])). Hence by ∃–∨ distributivity and the replacement
theorem,

∣−TD[y, z∣,⌝R-, 0̇] ∨⋯ ∨D[y, z∣,⌝R-, ṅ]. (5)

We now consider two possibilities. If derT(‘⌝R’, k) for some k with 0 ≤ k ≤ n, then ∣−T⌝R, in which case T
is inconsistent. Otherwise,⌝derT(‘⌝R’, k) for all kwith 0 ≤ k ≤ n. By representability, ∣−T⌝D[y, z∣,⌝R-, k̇]
for all k with 0 ≤ k ≤ n. Together with (5), we conclude that T is inconsistent in this case as well.
Assume now that ∣−T⌝R and let n be the expression number of a derivation of ⌝R in T . By repre-

sentability, ∣−TD[y, z∣,⌝R-, ṅ], whence ∣−T ṅ < Sz → ∃w(U[x∣w] ∧ w < Sz ∧D[y, z∣,⌝R-,w]) by (iv), the
tautology theorem, and the substitution axioms. From this by the equality theorem, ∣−T ṅ < Sz → y =
,⌝R-→ ∃w(U[x∣w] ∧w < Sz ∧D[z∣w]) whence

∣−T ṅ < Sz→ C[x∣,R-]→ ∃w(U[x∣w] ∧w < Sz ∧D[z∣w]) (6)

by representability and the equivalence theorem. As before, we consider two cases. If derT(‘R’, k) for some
k with 0 ≤ k ≤ n, then ∣−TR and T is inconsistent. Otherwise, ⌝derT(‘R’, k) for all k with 0 ≤ k ≤ n. By
representability and the equality theorem, ∣−Tz = k̇ → ⌝D[y∣,R-] for all k with 0 ≤ k ≤ n. Using an
instance of (v) and the tautology theorem, we obtain

∣−TU[x∣z]→ z < Sṅ → ⌝D[y∣,R-]. (7)

From (6), (7), and (vi) by the tautology theorem, we �nd ∣−TU[x∣z] → C[x∣,R-] → D[y∣,R-] →
∃w(U[x∣w]∧w < Sz∧D[z∣w]), whence ∣−TR by the generalization rule and (4). So T is inconsistent.

Remark. �is theorem does not imply that T[R] and T[⌝R] are inconsistent. In fact, in view of Proposi-
tion 1 of ch. ii §1.1, it implies that if either T[R] or T[⌝R] is inconsistent, then T itself is inconsistent.
We delay to the next section the introduction of a large class of arithmetized �rst-order theories which

satisfy the hypotheses of either version of the incompleteness theorem.

§5 Minimal arithmetic

5.1 Minimal arithmetic. We introduce a �rst-order theory called minimal arithmetic and denoted by N.
�e nonlogical symbols of L(N) are the constant 0̇, the unary function symbol S, the binary function
symbols + and ⋅, and the binary predicate symbol <. In particular, L(N) is numerical. We abbreviate the
terms +ab and ⋅ab by (a + b) and (a ⋅ b), respectively. As usual, we shall drop the parentheses whenever
possible. �e nonlogical axioms of N are

N1 Sx 1 0̇;
N2 Sx = Sy → x = y;
N3 x + 0̇ = x;
N4 x + Sy = S(x + y);
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N5 x ⋅ 0̇ = 0̇;
N6 x ⋅ Sy = (x ⋅ y) + x;
N7 ⌝(x < 0̇);
N8 x < Sy↔ x < y ∨ x = y;
N9 x < y ∨ x = y ∨ y < x.

5.2 Properties of N.We intend to prove that N satis�es the hypotheses of (both versions of) the incom-
pleteness theorem. We begin by investigating some basic properties of N.

(i) If m 1 n, then ∣−Nṁ 1 ṅ;
(ii) if m + n = p, then ∣−Nṁ + ṅ = ṗ;
(iii) if mn = p, then ∣−Nṁ ⋅ ṅ = ṗ;
(iv) if m < n, then ∣−Nṁ < ṅ;
(v) if m ≥ n, then ∣−N⌝(ṁ < ṅ);
(vi) ∣−Nx < Sy ∨ y < Sx;
(vii) ∣−Nx < Sṅ↔ x = 0̇ ∨⋯ ∨ x = ṅ;
(viii) ∣−N∃x(x < Sṅ ∧A)↔ A[x∣0̇] ∨⋯ ∨A[x∣ṅ];
(ix) ∣−N∀x(x < Sṅ → A)↔ A[x∣0̇] ∧⋯ ∧A[x∣ṅ];
(x) if a0 is x and an+1 is San , then ∣−Nx + ṅ = an ;
(xi) if b0 is 0̇ and bn+1 is bn + x, then ∣−Nx ⋅ ṅ = bn .

To prove (i) we may assume n < m by the symmetry theorem. Using k = m − n instances of N2 and the
tautology theorem, ∣−Nṁ = ṅ → k̇ = 0̇. But ∣−N k̇ 1 0̇ by N1 and the substitution rule, so ∣−Nṁ 1 ṅ by the
tautology theorem.
We prove (ii) by induction on n. If n = 0, then p = m and ṁ + 0̇ = ṁ is an instance of N3. Suppose

that ∣−Nṁ + (n −̇ 1) = p −̇ 1. By the equality axioms, ∣−NS(ṁ + (n −̇ 1)) = ṗ, whence ∣−Nṁ + ṅ = ṗ by an
instance of N4 and the equality theorem. �e proof of (iii) is also by induction on n. If n = 0, then p = 0
and ṁ ⋅ 0̇ = 0̇ is an instance of N5. Suppose that ∣−Nṁ ⋅ (n −̇ 1) = p −̇m. By N6, ∣−Nṁ ⋅ ṅ = (ṁ ⋅ (n −̇ 1))+ ṁ,
whence ∣−Nṁ ⋅ ṅ = (p −̇m) + ṁ by the equality theorem. By (ii), ∣−N(p −̇m) + ṁ = ṗ, so ∣−Nṁ ⋅ ṅ = ṗ by
the equality theorem.
We prove (iv) by induction on n. Suppose that m < n + 1. If m < n then ∣−Nṁ < ṅ by induction

hypothesis, whence ∣−Nṁ < Sṅ by an instance N8 and the tautology theorem. Otherwise m = n and (iv)
is a tautological consequence of ∣−N ṅ = ṅ and an instance of N8.
If n = 0, (v) is an instance of N7. Suppose that n ≥ 1 and thatm ≥ n+1. �enm ≥ n and so ∣−N⌝(ṁ < ṅ)

by induction hypothesis. But alsom 1 n and hence ∣−Nṁ 1 ṅ by (i). From these by an instance of N8 and
the tautology theorem, ∣−N⌝(ṁ < Sṅ).

�e formula (vi) is a tautological consequence of N8 and N9. �e implication from right to le� in (vii)
follows from (iv) with the tautology theorem. We prove the other implication by induction on n. If n = 0,
the result is a tautological consequence of N7 and an instance of N8. Suppose that n ≥ 1. By N8, ∣−Nx <
Sṅ → x < ṅ ∨ x = ṅ and so (vii) follows from the induction hypothesis and the tautology theorem.
By an instance of (vii), the tautology theorem, and the equivalence theorem, ∣−N∃x(x < Sṅ ∧ A) ↔

∃x((x = 0̇∧A)∨⋯∨ (x = ṅ∧A)), whence ∣−N∃x(x < Sṅ∧A)↔ ∃x(x = 0̇∧A)∨⋯∨∃x(x = ṅ∧A) by ∃–∨
distributivity. From this by the replacement theorem and the equivalence theorem, we obtain (viii). �e
proof of (ix) is identical using ∀–∧ distributivity and the other statement of the replacement theorem.

�e last two assertions are proved by induction on n, being axioms of N if n = 0. By N4 and the
substitution rule, ∣−Nx+Sṅ = S(x+ ṅ), so by induction hypothesis and the tautology theorem, ∣−Nx+Sṅ =
San , that is, ∣−Nx + Sṅ = an+1. Similary, by N6 and the substitution rule, ∣−Nx ⋅ Sṅ = (x ⋅ ṅ) + x, so by
induction hypothesis and the equality theorem, ∣−Nx ⋅ Sṅ = bn+1.
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5.3 �e representability theorem.

Representability Theorem. All recursive functions and recursive predicates are representable in N.

Proof. By (i), ∣−N0̇ 1 1̇. �us by the proposition of §2.3, it su�ces to show that every recursive function
is representable in N. For this it will su�ce to prove that initial functions are representable in N, and that
the composition and minimization of functions representable in N are representable in N.† We start by
proving that initial functions are representable in N. By (ii) and (iii), x + y with x, y represents + in N
and x ⋅ y with x, y represents ⋅ in N. By the proposition of §2.2, + and ⋅ are representable in N. By (iv)
and (v), x < y with x, y represents < in N; since ∣−N0̇ 1 1̇, χ< is representable in N by the proposition
of §2.3. Finally, x i with x1, . . . , xn represents πn

i in N by the identity axioms and the substitution rule, so
πn
i is representable in N by the proposition of §2.2.
Suppose that f is the composition of g, h1, . . . , hk , and that g, h1, . . . , hk are representable in N. �en

there are formulae B, C1, . . . , Ck such that B with y1, . . . , yk , z represents g in N and Ci with x1, . . . , xn , y i
represents h i in N, for all i. We may assume that no variable other than y1, . . . , yk , z is free in B. Let A be

∃y1 . . . ∃yk(C1 ∧⋯ ∧Ck ∧ B).

Suppose that h i(a1 , . . . , an) = c i and that f (a1 , . . . , an) = g(c1 , . . . , ck) = b. �en for all i, ∣−NCi[x1 , . . . ,
xn ∣ȧ1 , . . . , ȧn] ↔ y i = ċ i , whence ∣−NA[x1 , . . . , xn ∣ȧ1 , . . . , ȧn] ↔ (y1 = ċ1 ∧ ⋯ ∧ yk = ċk ∧ B) by the
equivalence theorem. By k uses of the replacement theorem, we obtain ∣−NA[x1 , . . . , xn ∣ȧ1 , . . . , ȧn] ↔
B[y1 , . . . , yk ∣ċ1 , . . . , ċk]. But ∣−NB[y1 , . . . , yk ∣ċ1 , . . . , ċk] ↔ z = ḃ by representability and hence ∣−NA[x1 ,
. . . , xn ∣ȧ1 , . . . , ȧn]↔ z = ḃ by the tautology theorem. �us, A with x1, . . . , xn , z represents f in N.
Finally, suppose that f is the minimization of g and that g is representable in N. �ere is a formula B

such that B with x1, . . . , xn , y, z represents g in N. Let A be

B[z∣0̇] ∧ ∀w(w < y → ⌝B[y, z∣w , 0̇]).

Suppose that f (a1 , . . . , an) = b. �en g(a1 , . . . , an , b) = 0 and g(a1 , . . . , an , k) = ck 1 0 for k < b. By
representability, ∣−NB[x1 , . . . , xn , y∣ȧ1 , . . . , ȧn , ḃ]↔ z = 0̇, so

∣−NB[x1 , . . . , xn , y, z∣ȧ1 , . . . , ȧn , ḃ, 0̇] (1)

by the equality theorem and the tautology theorem, and hence

∣−N y = ḃ → B[x1 , . . . , xn , z∣ȧ1 , . . . , ȧn , 0̇] (2)

by the equality theorem. Also by representability, ∣−NB[x1 , . . . , xn , y∣ȧ1 , . . . , ȧn , k̇] ↔ z = ċk if k < b.
Since ∣−N ċk 1 0̇ by (i), ∣−N y = k̇ → ⌝B[x1 , . . . , xn , z∣ȧ1 , . . . , ȧn , 0̇] by the tautology theorem and the
equality theorem. By (ix), this implies ∣−N y < ḃ → ⌝B[x1 , . . . , xn , z∣ȧ1 , . . . , ȧn , 0̇]), whence

∣−NB[x1 , . . . , xn , z∣ȧ1 , . . . , ȧn , 0̇]→ ⌝(y < ḃ) (3)

by the tautology theorem, and

∣−N y = ḃ → ∀w(w < y → ⌝B[x1 , . . . , xn , y, z∣ȧ1 , . . . , ȧn ,w , 0̇]) (4)

by the substitution rule, the generalization rule, and the equality theorem. By the substitution theorem, (1),
and the tautology theorem, ∣−N∀w(w < y → ⌝B[x1 , . . . , xn , y, z∣ȧ1 , . . . , ȧn ,w , 0̇]) → ⌝(ḃ < y). From this,
(3), and an instance of N9, we obtain

∣−NA[x1 , . . . , xn ∣ȧ1 , . . . , ȧn]→ y = ḃ (5)

by the tautology theorem. From (2), (4), and (5) we get ∣−NA[x1 , . . . , xn ∣ȧ1 , . . . , ȧn] ↔ y = ḃ by the
tautology theorem. So A with x1, . . . , xn , y represents f in N.

†�is statement holds in fact for any extension T of N, as will be apparent from the proof. But we shall never use this stronger
result.
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5.4 �e incompleteness of arithmetic. It is easy to devise a recursive numerotation for L(N). For example,
we can set the symbol number of the (n + 1)th variable to be n + 9, and assign the numbers 0 through 8 to
the other symbols of L(N). For any arithmetization of N, nlaxN is recursive, because if n1, . . . , n9 are the
expression numbers of N1–N9 then nlaxN(a)↔ a = n1 ∨⋯∨ a = n9. �us N itself can be arithmetized so
that it satis�es the hypotheses of both versions of the incompleteness theorem (taking U to be x = x for
the second version).
More generally, suppose that T is a �rst-order theory which is arithmetized from a recursive numero-

tation by a recursive coding function in such a way that nlaxT is recursive, and suppose given an interpre-
tation I of N in T for which =I is =. Renaming the symbols of T if necessary, we may assume that 0̇I is 0̇,
SI is S, and <I is <. By the representability theorem and the proposition of §2.4, every recursive function
or predicate is representable in T , and hence T satis�es the hypotheses of the �rst version of the incom-
pleteness theorem. Taking U to be the formula UIx, we see that T is also subject to the second version of
the incompleteness theorem.

Theorem. Let T be a �rst-order theory and I an interpretation of N in an extension by de�nitions of T
such that =I is =. Assume that T is arithmetized from a recursive numerotation by a recursive coding
function in such a way that nlaxT is recursive. If T is complete, then T is inconsistent.

Proof. Let σ be the given numerotation of T , β the given coding function, and T ′ the given extension by
de�nitions of T . If T ′ is obtained from T by the adjunction of n de�ned symbols, we can devise a recursive
numerotation σ ′ for T ′ by letting σ ′(s) be σ(s) + n if s is a symbol of T and by assigning the numbers 0
to n − 1 to the new symbols. Let T ′ be arithmetized from σ ′ by β, and let a1, . . . , an be the expression
numbers of the new nonlogical axioms of T ′. De�ne recursive functions f and g by

f (b) = µa(len(a) = len(b) ∧ (a)0 = (b)0 + n ∧ ∀i<len(b)−1((a)i+1 = f ((b)i+1))),
g(a) = µb(len(b) = len(a) ∧ (b)0 = (a)0 − n ∧ ∀i<len(a)−1((b)i+1 = g((a)i+1))).

�en
nlaxT′(a)↔ (nlaxT(g(a)) ∧ a = f (g(a))) ∨ a = a1 ∨⋯ ∨ a = an ,

so nlaxT′ is recursive. By the theorem on de�nitions, T ′ is also complete, so it is inconsistent by the
preceding discussion. But T ′ is a conservative extension of T , so T is inconsistent.

We end this section by noting that N is, in fact, consistent and, therefore, incomplete. Observe that all
the nonlogical axioms of N are open, so by the corollary to the consistency theorem, 0̇ 1 0̇ is a theorem of
N if and only if 0̇ 1 0̇ is a tautological consequence of instances of equality rules and nonlogical axioms
of N. By Proposition 2 of ch. i §3.3, this will be the case if and only if 0̇ 1 0̇ is a tautological consequence
of closed instances of equality rules and nonlogical axioms of N. Let A1, . . . , An be such closed instances.
De�ne a truth valuation V on L(N) as follows: ifA is elementary, V assigns T toA if and only ifA is 0̇ = 0̇
or an atomic subformula ofA1, . . . , An for whichAν (see ch. iv §1.4 for the de�nition of the predicateAν).
By analyzing each axiom in turn, we see that V (Ai) is T for all i. But clearly V (0̇ 1 0̇) is F, and so 0̇ 1 0̇ is
not a theorem of N.

•



Chapter Four
First-Order Number�eory

§1 Recursive extensions

1.1 Numerical realizations. Let L be a �rst-order language. Anumerical realization α of L is the association
of an n-ary function fα to each n-ary function symbol f of L and of two n-ary predicates p+α and p−α to
each n-ary predicate symbol p of L, with the requirement that both =+α and =−α be =. When p+α and p−α are
the same predicate, we say that α decides p. We de�ne a function or predicate uα for every designator u of
L. We �rst de�ne u+α and u−α simultaneously by induction on the length of u. Let x1, . . . , xn be the variables
free in u in alphabetical order. If u is a variable, set u±α(a) = a. If u is fa1 . . . an and if x j i (1), . . . , x j i (k i ) are
the variables occurring in ai in alphabetical order, set

u±α(a1 , . . . , an) = fα((a1)±α(a j1(1) , . . . , a j1(k1)), . . . , (an)
±
α(a jn (1) , . . . , a jn (kn ))).

If u is pa1 . . . an and if x j i (1), . . . , x j i (k i ) are the variables occurring in ai in alphabetical order, set

u±α(a1 , . . . , an)↔ p±α((a1)
±
α(a j1(1) , . . . , a j1(k1)), . . . , (an)

±
α(a jn (1) , . . . , a jn (kn )))

If u is B ∨ C and if xi1 , . . . , xik (resp. x j1 , . . . , x j l ) are the variables occurring in B (resp. in C) in alpha-
betical order, set u±α(a1 , . . . , an) ↔ B±α(a i1 , . . . , a ik ) ∨ C±α(a j1 , . . . , a j l ). If u is ⌝B, set u±α(a1 , . . . , an) ↔
⌝B∓α(a1 , . . . , an). Finally, if u is ∃xB, set u±α(a1 , . . . , an) ↔ B±α(a1 , . . . , an) if x is not free in B and
u±α(a1 , . . . , an) ↔ ∃aB±α(a1 , . . . , a i , a, a i+1 , . . . , an) otherwise, where i is such that x precedes xi+1 and is
preceded by xi in the alphabetical order (0 ≤ i ≤ n). Let uα be u+α .
Two formulae A and B of a �rst-order language L will be called numerically equivalent if

(i) A and B have exactly the same free variables;
(ii) A↔ B is derivable without nonlogical axioms;
(iii) for every numerical realization α of L the predicates Aα and Bα are equal.

We shall use the notation A ~ B (in this section only) to mean that A and B are numerically equivalent.
Observe that numerical equivalence is an equivalence relation.
If u is a designator of the form su1 . . . un , we see at once from the inductive de�nition of u±α that u±α

depends only on each (ui)±α and on which variables are free in which ui . Also, condition (iii) implies that
A−

α and B−α are equal for every α, as we see by considering the “opposite” realization. �ese two remarks,
together with the equivalence theorem, immediatly imply the following result.

Proposition 1. If B is obtained fromA by replacing an occurence ofC byD and ifC ~ D, thenA ~ B.

Proposition 2. �e formulae A[x∣a] and ∃x(x = a∧A) are numerically equivalent, provided that a is
substitutible for x in A, that x is free in A, and that x does not occur in a

Proof. Condition (i) is obvious and condition (ii) is true by the replacement theorem. To prove (iii), con-
sider the more general situation of a designator u in which x is free and a is substitutible for x. Let x1, . . . ,
xn be the variables free in u[x∣a], xi1 , . . . , xik those among them free in u, and x j1 , . . . , x j l those among
them occurring in a (all arranged in alphabetical order). Suppose that x comes between xir and xir+1 in
the alphabetical order. It is then easily proved by induction on the length of u that

u[x∣a]±α(a1 , . . . , an) is u±α(a i1 , . . . , a ir , aα(a j1 , . . . , a j l ), a ir+1 , . . . , a ik ),

i.e., the le�-hand and right-hand sides are the same number if u is a term and are equivalent if u is a
formula. On the other hand, since =+α is =, we have

(∃x(x = a ∧A))α(a1 , . . . , an)↔ ∃a(a = aα(a j1 , . . . , a j l ) ∧Aα(a i1 , . . . , a ir , a, a ir+1 , . . . , a ik )),

whence the result.

56
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1.2 RE-formulae. Let L be a �rst-order language. �e strict RE-formulae of L are de�ned inductively as
follows:

(i) y = fx1 . . . xn is a strict RE-formula;
(ii) px1 . . . xn and ⌝px1 . . . xn are strict RE-formulae;
(iii) if A and B are strict RE-formulae, then A ∨ B and A ∧ B are strict RE-formulae;
(iv) if L has the binary predicate symbol < and ifA is a strict RE-formula, then ∀x(x < y → A) is a strict

RE-formula;
(v) if A is a strict RE-formula, then ∃xA is a strict RE-formula.

A formula A of L is called an RE-formula if it is numerically equivalent to a strict RE-formula of L. It is a
PR-formula if both A and ⌝A are RE-formulae.
We shall establish the following closure properties of the classes of RE-formulae and of PR-formulae.

(i′) Open formulae are PR-formulae.
(ii′) Any instance of an RE-formula is an RE-formula.
(iii′) If A and B are RE-formulae, then A ∨ B, A ∧ B, ∀x(x < a→ A), and ∃xA are RE-formulae.
(iv′) If A and B are PR-formulae, then A ∨ B, ⌝A, ∃x(x < a ∧A), and ∀x(x < a→ A) are PR-formulae.

We �rst show that x = a is an RE-formula by induction on the length of a. If a is a variable, x = a is a
strict RE-formula. Suppose that a is fa1 . . . an and choose new variables x1, . . . , xn . �en by Proposition 2
of §1.1, we have

x = a ~ ∃x1(x1 = a1 ∧⋯∃xn(xn = an ∧ x = fx1 . . . xn)⋯ ),
which is an RE-formula by the induction hypothesis and Proposition 1 of §1.1.
We now prove (i′). It su�ces to prove that any open formula A is an RE-formula, and we proceed by

induction on the length of A. If A is pa1 . . . an and if x1, . . . , xn do not occur in A, then

A ~ ∃x1(x1 = a1 ∧⋯∃xn(xn = an ∧ px1 . . . xn)⋯ )

by Proposition 2 of §1.1, and this is an RE-formula by the preliminary result and Proposition 1 of §1.1. �e
same proof shows that ⌝pa1 . . . an is an RE-formula. If A is B∨C with B and C open, A is an RE-formula
by induction hypothesis and Proposition 1 of §1.1. Finally, suppose thatA is ⌝BwithB open. IfB is atomic,
we have already seen that A is an RE-formula. If B is of the form ⌝C, then clearly A ~ C and C is an RE-
formula by induction hypothesis, soA is an RE-formula. If B is C∨D, thenA ~ ⌝C∧⌝D and ⌝C and ⌝D
are RE-formulae by induction hypothesis, so A is an RE-formula by Proposition 1 of §1.1.
To prove (ii′), it su�ces to prove that if A is an RE-formula and x does not occur in a, then A[x∣a] is

an RE-formula, since arbitrary instances can be obtained by taking several instances of this form. If x is
not free in A, there is nothing to prove. Otherwise, (i′) and Propositions 1 and 2 of §1.1 immediatly show
that A[x∣a] is an RE-formula.
Finally, the assertions (iii′) and (iv′) are easy consequences of (i′) and Propositions 1 and 2 of §1.1.

1.3 Recursive extensions. Let L be a �rst-order language and let T be a numerical �rst-order theory whose
language is an extension of L. A function symbol f of T is called recursive on L in T if ∣−T y = fx1 . . . xn ↔ A
for some RE-formulaA of L. A predicate symbol p of T is called recursive on L in T if ∣−T(px1 . . . xn ∧ y =
0̇)∨ (⌝px1 . . . xn ∧ y = 1̇)↔ A for some RE-formulaA of L. A predicate symbol p of T is called recursively
enumerable on L in T if ∣−Tpx1 . . . xn ↔ A for some RE-formulaA of L. Observe that if ∣−Tpx1 . . . xn ↔ A
for some PR-formula A of L, then p is recursive on L in T . In these de�nitions we sometimes identify a
list of nonlogical symbols of T with the �rst-order language having these symbols as its only nonlogical
symbols, and we o�en drop the reference to T when the context makes it clear which T is intended.
Let L′ be another �rst-order language of which L(T) is an extension. We say that L′ is recursive on L

in T if every nonlogical symbol of L′ is recursive on L in T . Note that L is always recursive on extensions
of itself in T since y = fx1 . . . xn and (px1 . . . xn ∧ y = 0̇) ∨ (⌝px1 . . . xn ∧ y = 1̇) are RE-formulae. We say
that T is recursive on L if L(T) is recursive on L in T . A recursive extension of T is an extension of T that
is recursive on L(T).
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Proposition. Let L and L′ be numerical �rst-order languages having the binary predicate symbol <
and let T be a �rst-order theory in which L′ is recursive on L. Suppose that ∣−T 0̇ 1 1̇. �en for every
RE-formula A of L′, we can �nd an RE-formula A′ of L such that ∣−TA↔ A′.

Proof. We may suppose that A is a strict RE-formula, and we proceed by induction on the length of A.
Suppose thatA is y = fx1 . . . xn . Since f is recursive on L, there is an RE-formulaA′ of L such that ∣−TA↔
A′, and the proposition is proved in this case. Suppose that A is px1 . . . xn . Since p is recursive on L, there
is an RE-formula B of L such that ∣−T(px1 . . . xn ∧ y = 0̇) ∨ (⌝px1 . . . xn ∧ y = 1̇) ↔ B for some y distinct
from x1, . . . , xn . Since ∣−T 0̇ 1 1̇, we have ∣−Ty = 0̇ → px1 . . . xn ↔ B by the tautology theorem and the
equality theorem, whence ∣−Tpx1 . . . xn ↔ B[y∣0̇] by the equality theorem, and the right-hand side is an
RE-formula of L. We derive similarly ∣−T⌝px1 . . . xn ↔ B[y∣1̇], and the right-hand side is again an RE-
formula of L. If A is B ∨ C (resp. B ∧ C), then the desired result follows by the induction hypothesis and
the tautolgy theorem. Finally, suppose that A is ∀x(x < y → B) (resp. ∃xB). By induction hypothesis,
there is an RE-formula B′ of L such that ∣−TB↔ B′. By the tautology theorem and the distribution rule,
∣−TA↔ ∀x(x < y → B′) (resp. ∣−TA↔ ∃xB′), and the right-hand side is an RE-formula of L.

�e proposition can be rephrased as follows. For any numerical �rst-order theory T such that ∣−T 0̇ 1 1̇,
the relation “L′ is recursive on L” is transitive in the collection of numerical �rst-order languages having
L(T) as an extension and containing the symbol <. A special case of this situation that is worthmentioning
is obtained when T ′ is an extension by de�nitions of T with exactly one new nonlogical symbol s: if it has
been previously proved that T is recursive on L, then it su�ces that s be recursive on L(T) in T ′ for T ′ to
be recursive on L, and the former certainly happens e.g. if the right-hand side of the de�ning axiom of s
is a PR-formula or, if s is a function symbol, an RE-formula.
Remark. A recursive function or predicate symbol is intended to be a formal analogue to a recursive func-
tion or predicate. However, even if T is a substantial extension of N, it is not always true that a recursive
function or predicate can be represented by a symbol recursive on L(N) in an extension by de�nitions of
T . A function or predicate is sometimes called provably recursive in T if it has the latter property. If we use
the construction given in the proposition of ch. iii §2.2 to obtain a de�ned function symbol representing
a given recursive function, this function symbol need not be recursive on L(N) since its de�ning axiom
might not be an RE-formula. We shall prove in chapter v that the recursive functions and predicates asso-
ciated with a �rst-order theory arithmetized from a recursive numerotation by a recursive coding function
are provably recursive in Peano arithmetic (see §2) if the numerotation and the coding function are.

1.4 �e theoremonRE-formulae. Let L be a �rst-order language and α a numerical realization of L. If T is
a numerical �rst-order theory whose language is an extension of L, we say that α is faithful in T if for every
function symbol f of L, f represents fα in T , and for every predicate symbol p of L, p positively (negatively)
represents p+α (p−α) in T . We say that α is well-founded in T either if L does not have the binary predicate
symbol < or if for all n there exist a1, . . . , ak with a i <−α n such that ∣−Tx < ṅ → x = ȧ1 ∨⋯ ∨ x = ȧk .

Theorem on re-formulae. Let L be a �rst-order language, T a numerical �rst-order theory whose
language is an extension of L, and α a numerical realization of L that is faithful and well-founded in
T . If A is an RE-formula of L and if x1, . . . , xn are the variables free in A in alphabetical order, then A
with x1, . . . , xn positively represents Aα in T .

Proof. We need only prove the theorem when A is a strict RE-formula. We assume that Aα(a1 , . . . , an)
and we proceed by induction on the length of A. Let A′ be A[x1 , . . . , xn ∣ȧ1 , . . . , ȧn], the formula to be
derived. If A is y = fx1 . . . xn , then A′ has the form ȧ = f ḃ1 . . . ḃn where a =+α fα(b1 , . . . , bn), so ∣−TA′

by representability and the equality theorem. If A is px1 . . . xn (resp. ⌝px1 . . . xn) then A′ has the form
pḃ1 . . . ḃn (resp. ⌝pḃ1 . . . ḃn) where p+α(b1 , . . . , bn) (resp. ⌝p−α(b1 , . . . , bn)), and hence ∣−TA′ by positive
(resp. negative) representability. If A is B ∨ C or B ∧ C, the result follows from the induction hypothesis
by the tautology theorem. If A is ∀x(x < y → B), then A′ has the form ∀x(x < ṅ → B′) and by induction
hypothesis ∣−TB′[x∣ṁ] for all m <−α n. By the equality theorem, ∣−Tx = ṁ → B′ for all m <−α n, whence by
well-foundedness and the tautology theorem, ∣−Tx < ṅ → B′. By the generalization rule, ∣−TA′. Finally,
suppose that A is ∃xB and that A′ is ∃xB′. �en ∣−TB′[x∣ṅ] for some n by induction hypothesis. Hence
∣−TA′ by the substitution axioms.

Let α be faithful and well-founded in T . If A is PR-formula of L with free variables x1, . . . , xn in
alphabetical order, the theorem on RE-formulae shows that A with x1, . . . , xn positively represents Aα in
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T and negatively represents A−
α in T . �us in case α decides the predicate symbols occurring in A, we

obtain that A with x1, . . . , xn represents Aα in T .
We de�ne a numerical realization ν of L(N) as follows: 0̇ν is 0, Sν(a) = a + 1, +ν is +, ⋅ν is ⋅, =±ν are

both =, and <±ν are both <. By (i)–(v) and (x) of ch. iii §5.2, ν is faithful in N. By (vii) of ch. iii §5.2, ν is
well-founded in N.

Corollary. Let A be an RE-formula (resp. a PR-formula) of L(N) and x1, . . . , xn the variables free in
A in alphabetical order. �en A with x1, . . . , xn positively represents (resp. represents) Aν in N.

Here is an important example of application of this theorem. Let L be a �rst-order language and T
a numerical �rst-order theory whose language is an extension of L. Suppose given a faithful and well-
founded realization α of L. �en the theorem on RE-formula gives a method to derive representability
conditions for symbols recursive on L in T . Suppose for instance that ∣−T y = fx1 . . . xn ↔ A for some
RE-formula A of L in which precisely x1, . . . , xn , y are free. If there is an n-ary function f such that for
all numbers a1, . . . , an , Aα( f (a1 , . . . , an), a1 , . . . , an), then f represents f in T . For by the theorem on RE-
formulae, ∣−TA[x1 , . . . , xn , y∣ȧ1 , . . . , ȧn , ḟ (a1 , . . . , an)], whence ∣−T ḟ (a1 , . . . , an) = f ȧ1 . . . ȧn . A similar
conclusion holds for recursive predicate symbols: if ∣−T(px1 . . . xn ∧ y = 0̇) ∨ (⌝px1 . . . xn ∧ y = 1̇) ↔ A
for some RE-formula A of L in which exactly x1, . . . , xn , y are free, and if we can �nd a predicate p such
that for all numbers a1, . . . , an ,Aα(χp(a1 , . . . , an), a1 , . . . , an), we obtain ∣−T(pȧ1 . . . ȧn ∧ χ̇p(a1 , . . . , an) =
0̇) ∨ (⌝pȧ1 . . . ȧn ∧ χ̇p(a1 , . . . , an) = 1̇); then if ∣−T 0̇ 1 1̇, we conclude that p represents p in T .
We see that the theorem on RE-formulae is a powerful tool to obtain constructive proofs of repre-

sentability of functions and predicates in recursive extensions.

§2 �e �rst-order theory PA

2.1 Peano arithmetic. We introduce a �rst-order theory known as Peano arithmetic and denoted by PA.
�e language of PA is L(N) and the axioms of PA are the axioms N1–N8 of N and all the formulae of the
form

A[x∣0̇]→ ∀x(A→ A[x∣Sx])→ A, (1)

called induction axioms.
An extension P of PA is called a good extension if the formula (1) is a theorem of P for any formula A

of P. Such a formula is then also called an induction axiom of P. It is certainly the case that if P is obtained
from PA by the adjunction of new constants and new axioms, then P is a good extension of PA (by the
substitution rule). Note also that if P is a good extension of PA and if P′ is an extension by de�nitions of
P, then P′ is a good extension as well. For a translation of (1) into P is simply obtained by replacing A by
a translation A∗, and hence is an induction axiom of P.

2.2 PA is an extension of N.We note that PA is an extension of N by deriving N9 in PA. We have ∣−PA0̇ <
0̇ ∨ 0̇ = 0̇ by the identity axioms and, by N8, ∣−PA0̇ < y ∨ 0̇ = y → 0̇ < Sy ∨ 0̇ = Sy, whence

∣−PA0̇ < y ∨ 0̇ = y (2)

by the induction axioms. Let A be the formula x < y → Sx < Sy. By N7, ∣−PAA[y∣0̇], and by two instances
of N8 and the equivalence theorem, ∣−PAA[y∣Sy] ↔ x < y ∨ x = y → Sx < Sy ∨ Sx = Sy. By the
equality axioms, ∣−PAx = y → Sx = Sy, and so by the tautology theorem, ∣−PAA → A[y∣Sy]. Hence ∣−PAA
by the induction axioms. Let B be N9. By (2), ∣−PAB[x∣0̇]. �e formula B → B[x∣Sx] is a tautological
consequence of x = y ∨ x < y → y < Sx and A. But ∣−PAx = y ∨ y < x → y < Sx by an instance of N8,
the symmetry theorem, and the tautology theorem. Hence ∣−PAB → B[x∣Sx], and we conclude using the
induction axioms.

2.3 A few theorems of PA.We introduce some de�nitions: x ≤ y↔ x < y∨x = y, Div xy↔ ∃z(x = y ⋅ z),
and z = −xy↔ (y ≤ x ∧ x = y + z) ∨ (x < y ∧ z = 0̇). We must check that

∣−PA∃z((y ≤ x ∧ x = y + z) ∨ (x < y ∧ z = 0̇)) and
∣−PA(y ≤ x ∧ x = y + z) ∨ (x < y ∧ z = 0̇)→ (y ≤ x ∧ x = y + z′) ∨ (x < y ∧ z = 0̇)→ z = z′ .

�ese follow from (i), (vi), and (x) below. We abbreviate −ab by (a − b).
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(i) ∣−PAx + y = y + x;
(ii) ∣−PAx + (y + z) = (x + y) + z;
(iii) ∣−PAx ⋅ y = y ⋅ x;
(iv) ∣−PAx ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z;
(v) ∣−PAx ⋅ (y + z) = (x ⋅ y) + (x ⋅ z);
(vi) ∣−PAx + z = y + z → x = y;
(vii) ∣−PAz 1 0̇→ x ⋅ z = y ⋅ z → x = y;
(viii) ∣−PAx 1 0↔ ∃y(x = Sy);
(ix) ∣−PAx < y↔ ∃z(y = x + Sz);
(x) ∣−PAx ≤ y↔ ∃z(y = x + z);
(xi) ∣−PAx 1 0̇↔ 0̇ < x;
(xii) ∣−PA0̇ ≤ x;
(xiii) ∣−PAx < y → y < z → x < z;
(xiv) ∣−PAx = y → ⌝(x < y)
(xv) ∣−PAx < y → ⌝(x = y ∨ y < x);
(xvi) ∣−PAx < y → z ≤ w → x + z < y +w;
(xvii) ∣−PAw 1 0̇→ x < y → z ≤ w → x ⋅ z < y ⋅w;
(xviii) ∣−PAx < x + Sy;
(xix) ∣−PAx ≤ x + y;
(xx) ∣−PA y 1 0̇→ x ≤ x ⋅ y;
(xxi) ∣−PA(x + y) − y = x;
(xxii) ∣−PA y ≤ x → (x − y) + y = x;
(xxiii) ∣−PAx − y ≤ x;
(xxiv) ∣−PAx 1 0̇→ y 1 0̇→ x − y < x;
(xxv) ∣−PADiv xy↔ ∃z(z < Sx ∧ x = y ⋅ z);
(xxvi) ∣−PAx 1 0̇→ Div xy → y ≤ x;
(xxvii) ∣−PADiv 0̇x;
(xxviii) ∣−PADiv 1̇x → x = 1̇;
(xxix) ∣−PADiv x0̇↔ x = 0̇;
(xxx) ∣−PADiv xy → Div yz → Div xz;
(xxxi) ∣−PADiv xy → Div(x ⋅ z)(y ⋅ z);
(xxxii) ∣−PAz 1 0̇→ Div(x ⋅ z)(y ⋅ z)→ Div xy;
(xxxiii) ∣−PADiv xz → Div yz → Div(x + y)z;
(xxxiv) ∣−PADiv xz → Div(x + y)z → Div yz;
By the identity axioms, ∣−PA0̇ + 0̇ = 0̇ + 0̇, and by N1, N4, and the equality theorem, ∣−PAx + 0̇ = 0̇ + x →
Sx + 0̇ = 0̇ + Sx, so

∣−PAx + 0̇ = 0̇ + x (3)

by the induction axioms. By N1 and the equality theorem, ∣−PASy + 0̇ = S(y + 0̇), and by N4 ∣−PASy + Sx =
S(Sy + x) whence ∣−PASy + x = S(y + x) → Sy + Sx = SS(y + x). But by N4 and the equality theorem,
∣−PASS(y + x) = S(y + Sx), so by the equality theorem, ∣−PASy + x = S(y + x) → Sy + Sx = S(y + Sx). By
the induction axioms ∣−PASy + x = S(y + x), whence by N4 and the equality theorem, ∣−PASy + x = y + Sx.
�erefore by N4 and the equality theorem,

∣−PAx + y = y + x → x + Sy = Sy + x . (4)

From (3) and (4) by the induction axioms, we obtain (i).
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�e derivations of (ii)–(xxxiv) are of a similar nature and are omitted. Complete derivations of many
of them can be found in [5].
Clearly ≤ and − are recursive on L(N). By (xxv), Div is also recursive on L(N). �e above theorems

and N1–N9 allow us to derive all the elementary identities of arithmetic, such as (x + y) ⋅ (x + y) = ((x ⋅
x)+ (2̇ ⋅ (x ⋅ y)))+ (y ⋅ y), using only the logical rules. All such results will o�en be used tacitly a�erwards
as the complexity increases.

§3 De�nitions in PA

3.1 Complete induction. In this section we shall prove general methods for building extensions by de�-
nitions of PA and introduce such extensions which will be useful later on. In this paragraph, P is a good
extension of PA.

Principle of Complete Induction. Let A be a formula of P and x, y distinct variables such that y
does not occur in A. �en ∣−P∀x(∀y(y < x → A[x∣y])→ A)→ ∀xA.

Proof. Let B be ∀y(y < x → A[x∣y]). By N7 and the tautology theorem, ∣−Py < 0̇→ A[x∣y], whence
∣−PB[x∣0̇] (1)

by the generalization rule. By N8 and the tautology theorem, ∣−P(y < Sx → A[x∣y])↔ (y < x → A[x∣y]) ∧
(y = x → A[x∣y]). From this by the equivalence theorem,∀–∧ distributivity, and the replacement theorem,
∣−PB[x∣Sx]↔ B ∧A. Now by the substitution theorem and the tautology theorem,

∣−P∀x(B→ A)→ B→ B ∧A, (2)

so ∣−P∀x(B→ A)→ B→ B[x∣Sx], and hence
∣−P∀x(B→ A)→ ∀x(B→ B[x∣Sx]) (3)

by the ∀-introduction rule. From (1), (3), and the induction axioms, ∣−P∀x(B → A) → B, and by (2), the
tautology theorem, and the ∀-introduction rule, ∣−P∀x(B→ A)→ ∀xA.

�e following corollary will also be called the principle of complete induction.

Corollary. Let A be a formula of P and x1, . . . , xn , y1, . . . , yn distinct variables such that y1, . . . , yn do
not occur in A. If f is an n-ary function symbol of P, then

∣−P∀x1 . . .∀xn(∀y1 . . .∀yn(fy1 . . . yn < fx1 . . . xn → A[x1 , . . . , xn ∣y1 , . . . , yn])→ A)→ ∀x1 . . .∀xnA.
Proof. Let z and w be distinct from x1, . . . , xn , y1, . . . , yn and not occurring in A and let B be the formula
∀x1 . . .∀xn(z = fx1 . . . xn → A). Using prenex operations, the equality theorem, and the equivalence
theorem, we �nd

∣−P∀x1 . . .∀xn(∀y1 . . .∀yn(fy1 . . . yn < fx1 . . . xn → A[x1 , . . . , xn ∣y1 , . . . , yn])→ A)
↔ ∀z(∀w(w < z→ B[z∣w])→ B).

We also clearly have ∣−P∀zB→ ∀x1 . . .∀xnA. By the principle of complete induction, ∣−P∀z(∀w(w < z→
B[z∣w])→ B)→ ∀zB. �e desired theorem is a tauological consequence of those three formulae.
Least Number Principle. Let A be a formula of P and x, y distinct variables such that y does not
occur in A. �en ∣−P∃xA→ ∃x(A ∧ ∀y(y < x → ⌝A[x∣y])). If ∣−P∃xA, then existence and uniqueness
conditions for x in A ∧ ∀y(y < x → ⌝A[x∣y]) are theorems of P.

Proof. �e �rst assertion follows from the principle of complete induction (with ⌝A instead of A) by the
tautology theorem and the equivalence theorem. Assuming ∣−P∃xA, the existence condition is obtained
from the �rst assertion by the detachment rule. A uniqueness condition has the form

A ∧ ∀y(y < x → ⌝A[x∣y])→ A[x∣x′] ∧ ∀y(y < x′ → ⌝A[x∣y])→ x = x′ (4)

for some suitable x′. By the substitution theorem and the tautology theorem, ∣−PA ∧ ∀y(y < x′ →
⌝A[x∣x′]) → ⌝(x < x′) and ∣−PA[x∣x′] ∧ ∀y(y < x → ⌝A) → ⌝(x′ < x). Now (4) is a tautological con-
sequence of these formulae and an instance of N9.
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�us if x, x1, . . . , xn are distinct and include the variables free in A and if y does not occur in A, the
�rst-order theory obtained from P by the adjunction of a new n-ary function symbol f and the axiom
x = fx1 . . . xn ↔ A ∧ ∀y(y < x → ⌝A[x∣y]) is an extension by de�nitions of P. We shall o�en abbreviate
the de�ning axiom of f by fx1 . . . xn = µxA. �e loss of the variable y in this abbreviation does not matter
since di�erent choices of y, as long as they do not occur inA, yield equivalent extensions by de�nitions by
the variant theorem. Sometimes we even use µxA as a term, the necessary extension by de�nitions being
taken implicitly.
It is clear that if ∣−PA↔ B for some PR-formula B of P, and if f is de�ned as above, then f is recursive

on any language containing < and the nonlogical symbols occurring in B.
We remark now once and for all that if A has the form x = a ∨ B where x does not occur in a, then

since ∣−P∃x(x = a) and ∣−Px = a→ x = a∨B, we have ∣−P∃xA by the distribution rule and the detachment
rule. �us in this particular case, the hypothesis of the least number principle is veri�ed.

3.2 �e theorem on sequences. We de�ne RP xy ↔ ∀z(Div(x ⋅ z)y → Div zy), OP xy = ((x + y) ⋅ (x +
y)) + Sx, and

Bxy = µz(z = x − 1̇ ∨ ∃x′∃y′(x′ < x ∧ y′ < x ∧ x = OP x′y′ ∧Div x′S(SOP zy ⋅ y′))).
Note that ∣−PAx < OP xy ∧ y < OP xy, ∣−PAOP xy 1 0̇, and ∣−PABxy ≤ x − 1̇. It is clear that OP and B are
recursive on L(N). By the theorem on RE-formulae, we see that B represents in PA the coding function β
of ch. iii §1.2.

Lemma 1. ∣−PA y 1 0̇→ RP xy → RP yx.
Proof. Let P be the �rst-order theory obtained from PA by the adjunction of new constants e1, e2, e3 and
the axioms e2 1 0̇, RP e1e2, and Div(e2 ⋅ e3)e1. By the deduction theorem and the de�nition of RP, it will
su�ce to prove ∣−PDiv e3e1. By the substitution axioms, the de�nition of Div, and the symmetry theorem,
∣−Pe2 ⋅ e3 = e1 ⋅ z → Div(e1 ⋅ z)e2, whence

∣−Pe2 ⋅ e3 = e1 ⋅ z → Div ze2 (5)

by de�nition of RP and the new axioms. By the equality theorem, ∣−Pe2 ⋅ e3 = e1 ⋅ z ∧ z = e2 ⋅ z′ → e2 ⋅ e3 =
e1 ⋅ (e2 ⋅ z′), whence ∣−Pe2 ⋅ e3 = e1 ⋅ z ∧ z = e2 ⋅ z′ → e2 ⋅ e3 = (e2 ⋅ e1) ⋅ z′ by properties of ⋅. From this by the
distribution rule and prenex operations, ∣−Pe2 ⋅ e3 = e1 ⋅ z ∧Div ze2 → Div(e2 ⋅ e3)(e2 ⋅ e1). Using (5) and
the ∃-introduction rule, ∣−PDiv(e2 ⋅ e3)e1 → Div(e2 ⋅ e3)(e2 ⋅ e1), and �nally ∣−PDiv(e2 ⋅ e3)e1 → Div e3e1
because ∣−Pe2 1 0̇. By the axioms of P, ∣−PDiv e3e1.

Lemma 2. ∣−PAOP xy = OP x′y′ ↔ x = x′ ∧ y = y′.

Proof. �e implication from right to le� is tautologically equivalent to an equality axiom. To derive the
other implication, we shall �rst prove

∣−PAx + y < x′ + y′ → OP xy < OP x′y′ and (6)
∣−PAx′ + y′ < x + y → OP x′y′ < OP xy. (7)

We have ∣−PAS(x+ y) ⋅S(x+ y) = ((x+ y) ⋅(x+ y))+(S(x+ y)+(x+ y)), and since ∣−PASx ≤ S(x+ y)+(x+ y),
we �nd

∣−PAOP xy ≤ S(x + y) ⋅ S(x + y). (8)

On the other hand we can easily derive

∣−PA(x′ + y′) ⋅ (x′ + y′) < OP x′y′ . (9)

Now ∣−PAx+ y < x′+ y′ → S(x+ y) ≤ x′+ y′. Combining this with (8) and (9) we obtain (6). �e derivation
of (7) is similar. From (6) and (7), we obtain

∣−PAOP xy = OP x′y′ → x + y = x′ + y′ (10)

whence ∣−PAOP xy = OP x′y′ → (x + y) ⋅ (x + y) = (x′ + y′) ⋅ (x′ + y′). From this by de�nition of OP
and properties of +, ∣−PAOP xy = OP x′y′ → Sx = Sx′, and hence ∣−PAOP xy = OP x′y′ → x = x′ by N2.
Together with (10) and properties of +, this implies ∣−PAOP xy = OP x′y′ → y = y′.
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Lemma 3. ∣−PADiv xy → RPS((z + y) ⋅ x)S(z ⋅ x).
Proof. Let P be obtained from PA by the adjunction of new constants e1, e2, e3, and e4, and the axioms
Div e1e2 and Div(S((e3 + e2) ⋅ e1) ⋅ e4)S(e3 ⋅ e1) (henceforth referred to as �rst and second axiom). By the
deduction theorem and the de�nition of RP, the lemma is reduced to

∣−PDiv e4S(e3 ⋅ e1). (11)

We shall �rst prove
∣−PARP xS(z ⋅ x). (12)

We know that ∣−PADiv((w ⋅ z) ⋅ x)x and ∣−PADiv((w ⋅ z) ⋅ x)x → Div(w + ((w ⋅ z) ⋅ x))x → Divwx, whence
∣−PADiv(w + ((w ⋅ z) ⋅ x))x → Divwx. Since ∣−PAS(z ⋅ x) ⋅w = w + ((w ⋅ z) ⋅ x), we obtain (12).
We have ∣−PS((e3 + e2) ⋅ e1) ⋅ e4 = (S(e3 ⋅ e1) ⋅ e4) + ((e2 ⋅ e1) ⋅ e4). Using ∣−PDiv(S(e3 ⋅ e1) ⋅ e4)S(e3 ⋅ e1)

and the second axiom, we infer ∣−PDiv((e2 ⋅ e1) ⋅ e4)S(e3 ⋅ e1). By an instance of (12) and properties of ⋅, we
obtain

∣−PDiv(e4 ⋅ e2)S(e3 ⋅ e1) (13)

By the �rst axiomand properties ofDiv, ∣−PDiv(e4 ⋅e1)(e4 ⋅e2). By (13) and the transitivity ofDiv, ∣−PDiv(e4 ⋅
e1)S(e3 ⋅ e1), and hence (11) by an instance of (12) and the substitution theorem.
Lemma 4. Let P be a good extension of PA, a a term of P. If x and z do not occur in a, then ∣−P∃x∀y(y <
z→ a < x).

Proof. Let A be the formula to be derived. We have ∣−PA[z∣0̇] and ∣−P∀y(y < z → a < x) → ∀y(y < Sz →
a < Sx + a[y∣z]), whence ∣−PA → A[z∣Sz] by the substitution axioms and the ∃-introduction rule. By the
induction axioms, ∣−PA.

Lemma 5. Let P be a good extension of PA, A and B formulae of P, and x, y, z variables such that y, z
are not free in A and x, z are not free in B. Suppose that

(i) ∣−P∃z(A→ x < z);
(ii) ∣−P⌝B[y∣1̇]; and
(iii) ∣−PA→ B→ RP xy.
�en ∣−P∃z(∀x(A→ Div zx) ∧ ∀y(B→ ⌝Div zy)).

Proof. Let w be distinct from x, y, z and not occurring in A. We �rst derive in P the formula ∃zC, where
C is

∀x(x < w → A→ Div zx) ∧ ∀y(B→ ⌝Div zy),
using an induction axiom. We have ∣−PB → y 1 1̇ by (ii), whence ∣−PB → ⌝Div 1̇y by properties of Div.
By N7 and the tautology theorem, ∣−Px < 0̇→ A→ Div 1̇x. From the last two formulae, we �nd

∣−P∃zC[w∣0̇]. (14)

We claim that

∣−PC→ A[x∣w]→ x < w → A→ Div(z ⋅w)x, (15)
∣−PC→ A[x∣w]→ x = w → A→ Div(z ⋅w)x, (16)
∣−PC→ A[x∣w]→ B→ ⌝Div(z ⋅w)y, (17)
∣−PC→ ⌝A[x∣w]→ x < w → A→ Div zx, (18)
∣−PC→ ⌝A[x∣w]→ x = w → A→ Div zx, (19)
∣−PC→ ⌝A[x∣w]→ B→ ⌝Div zy. (20)

To obtain (15), apply the substitution theorem to the le�-hand side of C, and use ∣−PDiv zx → Div(z ⋅w)x.
To obtain (16), use ∣−PDiv(z ⋅ x)x and the equality theorem. By hypothesis (iii) and the de�ning axiom of
RP, ∣−PA[x∣w]→ B→ ⌝Div zy → ⌝Div(z ⋅w)y; (17) is a tautological consequence of the latter and ∣−PC→
B→ ⌝Div zy. Finally, (18) and (20) are straightforward and (19) is obtained from the tautology⌝A[x∣w]→
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A[x∣w]→ Div zw using the equality theorem. �e following formulae are tautological consequences of an
instance of N8 and (15)–(16) (resp. (18)–(19)):

∣−PC→ A[x∣w]→ x < Sw → A→ Div(z ⋅w)x, (21)
∣−PC→ ⌝A[x∣w]→ x < Sw → A→ Div zx. (22)

From (17) and (21) by the ∀-introduction rule, we obtain ∣−PC→ A[x∣w]→ C[z,w∣z ⋅w, Sw] and similarly
from (20) and (22), ∣−PC → ⌝A[x∣w] → C[z,w∣z ⋅ w, Sw]. Using the substitution axioms, these become
∣−PC → A[x∣w] → ∃zC[w∣Sw] and ∣−PC → ⌝A[x∣w] → ∃zC[w∣Sw]. Combining these two formulae with
the tautology theorem and using the ∃-introduction rule, we obtain

∣−P∃zC→ ∃zC[w∣Sw]. (23)

From (14) and (23) by the induction axioms, we �nd ∣−P∃zC. We let D be the formula (x < w → A →
Div zx)∧(B→ ⌝Div zy), andD′ the formula (A→ Div zx)∧(B→ ⌝Div zy). �en (A→ x < w)∧D→ D′ is
a tautology. Using the distribution rule thrice and the ∃-introduction rule, we obtain ∣−P∃w∃z∀x∀y((A→
x < w) ∧D)→ ∃z∀x∀yD′, whence ∃w(A→ x < w) ∧ ∃zC→ ∃z(∀x(A→ Div zx) ∧ ∀y(B→ ⌝Div zy)) by
prenex operations. Using the hypothesis (i) and our previous result, we obtain ∣−P∃z(∀x(A → Div zx) ∧
∀y(B→ ⌝Div zy)) as desired.
We are now able to prove the main result of this section.

Theorem on sequences. Let P be a good extension of PA, a a term of P, and x, y, z variables such
that x and z do not occur in a. �en ∣−P∃x∀y(y < z→ Bxy = a).

Proof. Let x1, . . . , xn be the variables other than y occurring in a, and let x′, w, w′ be variables distinct
from x, y, and z and not occuring in a. By lemma 4, ∣−P∃x∀y(y < z → SOP ay < x). De�ne fzx1 . . . xn =
µx∀y(y < z → SOP ay < x). �e hypotheses of lemma 5 are clearly satis�ed when A and B are x <
fzx1 . . . xn ∧ x 1 0̇ and y = 0̇. Hence we can de�ne g by gzx1 . . . xn = µw(∀x(x < fzx1 . . . xn ∧ x 1 0̇ →
Divwx) ∧ ∀y(y = 0̇→ ⌝Divwy)). We denote by b the term gzx1 . . . xn . Note that since ∣−PDiv 0̇0̇,

∣−Pb 1 0̇. (24)

Using ∣−Pz < y → z + (y − z) = y, ∣−Pz < y → y − z 1 0̇, and lemma 3, we obtain ∣−Pz < y →
x 1 0̇ → Div x(y − z) → RPS(y ⋅ x)S(z ⋅ x), an instance of which is ∣−Pz < y → gwx1 . . . xn 1 0̇ →
Div gwx1 . . . xn(y − z)→ RPS(y ⋅ gwx1 . . . xn)S(z ⋅ gwx1 . . . xn). But the de�nition of g is such that ∣−Pz <
y → y < fwx1 . . . xn → Div gwx1 . . . xn(y − z), and so, using (24),

∣−Pz < y → y < fwx1 . . . xn → RPS(y ⋅ gwx1 . . . xn)S(z ⋅ gwx1 . . . xn). (25)

Inverting the rôles of y and z in the above formula and using lemma 1, we obtain

∣−P y < z → z < fwx1 . . . xn → RPS(y ⋅ gwx1 . . . xn)S(z ⋅ gwx1 . . . xn). (26)

From (25) and (26),

∣−P y 1 z → y < fwx1 . . . xn → z < fwx1 . . . xn → RPS(y ⋅ gwx1 . . . xn)S(z ⋅ gwx1 . . . xn). (27)

We let A be ∃y(y < z ∧ w = S(SOP ay ⋅ b)) and B be ∃x(x < fzx1 . . . xn ∧ 1̇ < x ∧ ∀y(y < z → x 1
SOP ay) ∧w′ = S(x ⋅ b)) ∨w′ = 0̇. We claim that

∣−P∃x(A→ w < x), (28)
∣−P⌝B[w′∣1̇], and (29)

∣−PA→ B→ RPww′ . (30)

Now by the de�nition of f and (24), ∣−PA→ w < S(fzx1 . . . xn ⋅b), and thus (28) holds. Also by (24), ∣−P 1̇ <
x → S(x ⋅ b) 1 1̇ and hence (29) holds. By the de�nition of f , ∣−Py < z → SOP ay < fzx1 . . . xn and by the
substitution theorem, ∣−Py < z→ ∀y(y < z→ x 1 SOP ay)→ x 1 SOP ay. From these and (27) we obtain
∣−Py < z→ x < fzx1 . . . xn → ∀y(y < z→ x 1 SOP ay)→ w = S(SOP ay ⋅ b)→ w′ = S(x ⋅ b)→ RPww′. By
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the tautology theorem, the ∃-introduction rule, and prenex operations, we obtain (30). �us by lemma 5,
we may de�ne h by hzx1 . . . xn = µx′(∀w(A→ Div x′w) ∧ ∀w′(B→ ⌝Div x′w′)). We let c be hzx1 . . . xn .
We now show that ∣−Py < z → BOP cby = a. By the generalization rule and the substitution axioms,

this will complete the proof of the theorem. By the de�nition of B, it will su�ce to prove

∣−Py < z→ c < OP cb ∧ b < OP cb ∧Div cS(SOP ay ⋅ b), (31)
∣−Py < z→ x < a→ x 1 OP cb − 1̇, and (32)

∣−Py < z→ x < a→ w < OP cb→ w′ < OP cb→ OP cb 1 OPww′ ∨ ⌝DivwS(SOP xy ⋅w′)). (33)

Now (31) follows at once from the de�nition of h and the fact that ∣−Px < OP xy∧ y < OP xy. To prove (32),
since ∣−POP xy 1 0̇ and ∣−P y < OP xy, it will su�ce to prove

∣−Py < z→ a < b (34)

But by de�nition of g, ∣−Py < z → Div bSOP ay, and so by (24), ∣−Py < z → SOP ay < b, whence (34). By
lemma 2, ∣−Pw 1 c ∨w′ 1 b → OP cb 1 OPww′, and so to prove (33) we need only prove ∣−Py < z → x <
a→ ⌝Div cS(SOP xy ⋅ b). Given the de�nition of h, it su�ces to prove

∣−Py < z→ x < a→ SOP xy < fzx1 . . . xn ∧ 1̇ < SOP xy ∧ ∀y(y < z→ SOP xy 1 SOP ay).
�is easily follows from the de�nition of f and the properties of OP.

3.3 Coding function symbols. A binary function symbol f of an extension P of PA will be called a coding
function symbol in P if ∣−Pfxy ≤ x − 1̇, and if whenever a is a term of an extension by de�nitions P′ of P
in which x and z do not occur, ∣−P′∃x∀y(y < z→ fxy = a). We have just proved that there exists a coding
function symbol in any good extension of PA which is recursive on L(N) in PA, namely B. From now on
we �x a good extension P of PA and a coding function symbol B in P.
In the sequel, applications of the theorem on sequences will appear as de�nitions of the form

fzx1 . . . xn = µxA where ∣−PA ↔ ∀y(y < z → Bxy = gx1 . . . xn) for some de�ned function symbol g.
It will usually be obvious how to de�ne g suitably.
We abbreviate BaSb by (a)b, and ((a)b)c by (a)b,c. If n is a natural number, we also write (a)n instead

of (a)ṅ . In the same way that coding functions were used to de�ne recursive n-ary sequence functions,
we can use coding function symbols to discuss sequences of numbers in PA. We now introduce de�ned
symbols for this purpose.

(i) Len x = Bx0̇;
(ii) Sq x ↔ ∀y(y < x → ∃z(z < SLen x ∧ Bxz 1 Byz));
(iii) x ∈ y↔ Sq y ∧ ∃z(z < Len y ∧ x = (y)z);
(iv) ∗xy = µz(Len z = Len x + Len y ∧ ∀w(w < Len x → (z)w = (x)w) ∧ ∀w(w < Len y → (z)w+Len x =

(y)w));
(v) Ini xy = µz(Len z = y ∧ ∀w(w < y → (z)w = (x)w));
(vi) z = Rmv xy↔ (y 1 0̇∧Sq z∧Len z = Len x−1̇∧∀w(w < Len x−1̇→ w < y → (z)w = (x)w)∧∀w(w <

Len x − 1̇→ y ≤ w → (z)w = (x)Sw)) ∨ (y = 0̇ ∧ z = x).

We abbreviate ∗ab by (a ∗ b). Observe that Len, Sq, ∈, ∗, Ini, and Rmv are recursive on L(N) with B. �e
fundamental property of Sq is the theorem

∣−PSq x → Sq y → ∀z(z < SLen x → Bxz = Byz)→ x = y (35)

which we now derive. We have ∣−PSq x → y < x → ∃z(z < SLen x ∧ Bxz 1 Byz) by de�nition of Sq. By
rudimentary operations, ∣−P⌝∃z(z < SLen x ∧ Bxz 1 Byz)↔ ∀z(z < SLen x → Bxz = Byz). From these
by the tautology theorem,

∣−PSq x → ∀z(z < SLen x → Bxz = Byz)→ ⌝(y < x), (36)

whence by the substitution rule and the symmetry theorem,

∣−PSq y → ∀z(z < SLen y → Bxz = Byz)→ ⌝(x < y). (37)
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By the substitution theorem and the de�nition of Len, ∣−P∀z(z < SLen x → Bxz = Byz) → 0̇ < SLen x →
Len x = Len y. Since ∣−P 0̇ < SLen x, we obtain ∣−P∀z(z < SLen x → Bxz = Byz) → Len x = Len y,
whence

∣−P∀z(z < SLen x → Bxz = Byz)→ ∀z(z < SLen y → Bxz = Byz) (38)

by the equality theorem. From (36), (37), (38), and N9 by the tautology theorem, we obtain (35).
Other properties of these symbols are listed below. All of them are immediate consequences of the

de�nitions.

(i) ∣−PLen(x ∗ y) = Len x + Len y;
(ii) ∣−PSq(x ∗ y);
(iii) ∣−Px ∗ (y ∗ z) = (x ∗ y) ∗ z;
(iv) ∣−PSq y → Sq z → x ∈ y ∗ z↔ x ∈ y ∨ x ∈ z;
(v) ∣−PLen Ini xy = y;
(vi) ∣−PSq Ini xy;
(vii) ∣−P y = 0̇→ Rmv xy = x;
(viii) ∣−P y 1 0̇→ LenRmv xy = Len x − 1̇;
(ix) ∣−P y 1 0̇→ SqRmv xy.
(x) ∣−PSq x → Len x = 0̇→ x = 0̇;

�e proof of (x) uses the fact that ∣−PBxy ≤ x − 1̇.
3.4 Sequences in PA.We now show how sequences can be de�ned in P. Let a be a term of P and x, x1, . . . ,
xn , y, z, and w distinct variables such that x1, . . . , xn , and y include the variables occurring in a. De�ne
a function symbol g by z = gywx1 . . . xn ↔ (y = 0̇ ∧ z = w) ∨ (y 1 0̇ ∧ z = a[y∣y − 1̇]), and let f be
de�ned by fzwx1 . . . xn = µx∀y(y < z → Bxy = gywx1 . . . xn). We then de�ne an (n + 1)-ary function
symbol h by hwx1 . . . xn = fSwwx1 . . . xn . Intuitively, it is understood that hwx1 . . . xn is a number for the
sequence of a as y varies from 0̇ to w − 1̇ (being the empty sequence if w = 0̇). Observe that h is recursive
on any language containing L(N), B, and the nonlogical symbols of a. In the particular case when x1, . . . ,
xn are exactly the variables occurring in a other than y in alphabetical order, we shall abbreviate the term
hbx1 . . . xn to [a]y<b. Note that y does not occur in [a]y<b unless it occurs in b.
Suppose now that f is the (n + 1)-ary function symbol de�ned by y = fxx1 . . . xn ↔ (x = 0̇ ∧ y =

x1) ∨ ⋯ ∨ (x = n −̇ 1 ∧ y = xn) ∨ (⌝(x = 0̇ ∨ ⋯ ∨ x = n −̇ 1) ∧ y = 0̇). We introduce the n-ary function
symbol []n by []nx1 . . . xn = [fxx1 . . . xn]x<ṅ . By ch. iii §5.2 (ix), we have

∣−P[]nx1 . . . xn = µx(Bx0̇ = ṅ ∧ Bx 1̇ = x1 ∧⋯ ∧ Bxṅ = xn).

We use [a1 , . . . , an] as an abbreviation of []na1 . . . an . All the symbols []n are recursive on L(N) with B.
Let x, x1, . . . , xn , y, and z be distinct variables and a, b terms of P such that x1, . . . , xn are the variables

occurring in a in alphabetical order except x and the variables occurring in b in alphabetical order except
x. De�ne f byw = fzxx1 . . . xn ↔ (x < z∧w = a)∨ (⌝(x < z)∧w = b[y∣x−z]) and g byw = gzxx1 . . . xn ↔
(x < z→ w = a) ∨ (⌝(x < z) ∧w = a[x∣Sx]). �en
(i) ∣−Py < z→ ([a]x<z)y = a[x∣y]
(ii) ∣−PLen[a]x<z = z;
(iii) ∣−PSq[a]x<z;
(iv) ∣−P∀x(x < z→ a = b)→ [a]x<z = [b]x<z;
(v) ∣−PIni[a]x<zy = [a]x<y;
(vi) ∣−P[a]x<y ∗ [b]x<z = [fyxx1 . . . xn]x<y+z;
(vii) ∣−Py < z→ Rmv[a]x<zSy = [gyxx1 . . . xn]x<z−1̇;

and for all natural numbers k and n,

(viii) ∣−P[a]x<Sṅ = [a[x∣0̇], . . . , a[x∣ṅ]];
(ix) if 1 ≤ k ≤ n, ∣−PB[x1 , . . . , xn]k̇ = xk ;
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(x) ∣−PLen[x1 , . . . , xn] = ṅ;
(xi) ∣−PSq[x1 , . . . , xn];
(xii) if 1 ≤ k ≤ n, ∣−PIni[x1 , . . . , xn]k̇ = [x1 , . . . , xk];
(xiii) if 1 ≤ k ≤ n, ∣−PRmv[x1 , . . . , xn]k̇ = [x1 , . . . , xk−1 , xk+1 , . . . , xn];
(xiv) ∣−P[]0 = 0̇.

Again, these are straightforward consequences of the de�nitions.

3.5 �e recursion principle.

Recursion Principle 1. Let P be a good extension of PA, B a coding function symbol in P, and g an
(n + 2)-ary function symbol of P. �en there is a de�ned (n + 1)-ary function symbol f of P which is
recursive on L(N) with B and g such that ∣−Pfxxn = g[fxxn]x<xxxn .

Proof. Let A be Len y = x ∧ ∀z(z < x → BySz = g Ini yzzxn). We prove ∣−P∃yA. Using the induction
axioms, it will su�ce to prove

∣−P∃yA[x∣0̇] and (39)
∣−P∃yA→ ∃yA[x∣Sx]. (40)

Since ∣−PLen[]0 = 0̇, we clearly have ∣−PA[x , y∣0̇, []0], whence (39). We denote by a the term y ∗
[g Ini yxxxn] and we prove ∣−PA → A[x , y∣Sx , a]. We can then infer (40) by the substitution axioms
and the ∃-introduction rule. By properties of ∗ and Ini, we have

∣−PLen y = x → z < Sx → Ini yz = Ini az (41)

and ∣−PLen y = x → z < x → BySz = BaSz. From these we obtain
∣−PLen y = x → z < x → BySz = g Ini yzzxn → BaSz = g Ini azzxn (42)

by the equality theorem. Also, by the choice of a, we have

∣−PLen y = x → Len a = Sx and (43)
∣−PLen y = x → BaSx = g Ini yxxxn . (44)

From (44) and (41) we obtain ∣−PLen y = x → z = x → BaSz = g Ini azzxn . From this, (43), and (42), we
obtain (40).

�us we can legitimately de�ne a function symbol f ′ by f ′xxn = µyA. �e actual de�nition of f is
then fxxn = Bf ′SxxnSx. Since Ini is recursive on L(N) with B, f is recursive on L(N) with B and g. By the
de�nition of f ′, we have

∣−PBf ′SxxnSx = g Ini f ′Sxxnxxxn and (45)
∣−PLen f ′Sxxn = Sx . (46)

�e latter implies ∣−Pz < Sx → B Ini f ′SxxnxSz = Bf ′SxxnSz. By the de�nition of f ′, ∣−Pz < Sx →
Bf ′SxxnSz = Bf ′SzxnSz, whence ∣−Pz < Sx → B Ini f ′SxxnxSz = fzxn by the previous formula and the
de�nition of f . But by properties of sequences, ∣−Pz < Sx → B[fxxn]x<xSz = fzxn , and so

∣−Pz < Sx → B Ini f ′SxxnxSz = B[fxxn]x<xSz. (47)

We also have ∣−PLen Ini f ′Sxxnx = x and ∣−PLen[fxxn]x<x = x, and together with (47) we obtain
∣−PIni f ′Sxxnx = [fxxn]x<x by (35) of §3.3. From this and (45) by the equality theorem, ∣−PBf ′SxxnSx =
g[fxxn]x<xxxn , which is the desired conclusion.

We remark that if f and f ′ both satisfy the conclusion of the recursion principle, then an easy applica-
tion of the principle of complete induction shows that ∣−Pfxxn = f ′xxn , so in that sense f is “unique”. Some-
times we use fxxn = g[fxxn]x<xxxn as if it were the de�ning axiom of f . It is also possible to de�ne predi-
cate symbols by recursion. If p is an n-ary predicate symbol in a numerical theory T such that ∣−T 0̇ 1 1̇, an
n-ary function symbol Xp can be de�ned by y = Xpx1 . . . xn ↔ (px1 . . . xn ∧ y = 0̇)∨ (⌝px1 . . . xn ∧ y = 1̇).
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Recursion Principle 2. Let P be a good extension of PA, B a coding function symbol in P, and q an
(n + 2)-ary predicate symbol of P. �en there is a de�ned (n + 1)-ary predicate symbol p of P which is
recursive on L(N) with B and q such that ∣−Ppxxn ↔ q[Xpxxn]x<xxxn .

Proof. De�ne f by the recursion principle so that ∣−Pfxxn = Xq[fxxn]x<xxxn , and de�ne p by pxxn ↔
fxxn = 0̇. �en clearly ∣−Pfxxn = Xpxxn and ∣−Ppxxn ↔ q[Xpxxn]x<xxxn .

3.6 Examples of recursion.We end this chapter by discussing a few examples of application of the recur-
sion principle. First, it is useful to know that if f is de�ned so that ∣−Pfxxn = g[fxxn]x<xxxn , then we can
“unroll” this formula to obtain ∣−Pf k̇xn = a where f does not occur in a. We show this by induction on k.
If k = 0, then ∣−P[fxxn]x<0̇ = 0̇ and so ∣−Pf0̇xn = g0̇0̇xn . Now if k ≥ 1 and for all r < k, ∣−Pf ṙxn = ar for a
term ar in which f does not occur, then ∣−Pf k̇xn = g[a0 , . . . , ak−1]k̇xn .
Let f be an (n + 1)-ary function symbol in P. De�ne the (n + 3)-ary function symbol g by

w = gzyxxn ↔ (y = 0̇ ∧w = x) ∨ (y 1 0̇ ∧w = Bzy).

By the recursion principle, we can de�ne an (n + 2)-ary function symbol f ′ so that ∣−Pf ′yxxn =
g[f ′yxxn]y<y yxxn . Now ∣−P y 1 0̇ → B[f ′yxxn]y<y y = f ′(y − 1̇)xxn , and hence from the de�nition
of g we obtain ∣−Pf ′0̇xxn = x and ∣−P y 1 0̇ → f ′yxxn = ff ′(y − 1̇)xxnxn . For these reasons the function
symbol f ′ so de�ned is called the iteration of f , and we abbreviate f ′baa1 . . . an to fbaa1 . . . an .
[include further examples]

•



Chapter Five
Arithmetical�eories

§1 �e Hilbert–Bernays–Löb derivability conditions

1.1 Löb’s theorem. Let U be a numerical �rst-order theory and let T be an arithmetized extension of U .
LetD be a formula of U and x a variable. We say thatD with x satis�es in U the derivability conditions for
T if no variable other than x is free inD and if for every closed formulae A and B of T

(i) ∣−UD[x∣,A-] whenever A is a theorem of T ;
(ii) ∣−UD[x∣,A→ B-]→ D[x∣,A-]→ D[x∣,B-];
(iii) ∣−UD[x∣,A-]→ D[x∣,D[x∣,A-]-].

Löb’s Theorem. Suppose that T is diagonalizable, and let A be a closed formula of T . Let D with x
satisfy in T the derivability conditions for T . If ∣−TD[x∣,A-]→ A, then ∣−TA.

Proof. Let f be a diagonal function for L(T) that is representable in T and let D′ be a variant of D in
which x f is substitutible for x. Using the �xed point theorem, we �nd a closed formula B of T such that
∣−TB↔ D′[x∣,B-]→ A, and so by the variant theorem,

∣−TB↔ D[x∣,B-]→ A. (1)

From this by the tautology theorem and (i), we obtain ∣−TD[x∣,B→ D[x∣,B-]→ A-], whence

∣−TD[x∣,B-]→ D[x∣,D[x∣,B-]-]→ D[x∣,A-]

by (ii) and the tautology theorem. As a tautological consequence of this, (iii), and the hypothesis, we
obtain

∣−TD[x∣,B-]→ A, (2)

so ∣−TB by (1) and the tautology theorem. By (i), ∣−TD[x∣,B-], whence ∣−TA by (2) and the detachment
rule.

1.2. Löb’s theorem has the following consequence, which is a very general version of Gödel’s second in-
completeness theorem.

Corollary. Suppose that T is diagonalizable. LetD with x satisfy in T the derivability conditions for
T . If ∣−T⌝D[x∣,A-] for some closed formula A of T , then T is inconsistent.

Proof. From ∣−T⌝D[x∣,A-] we obtain ∣−TD[x∣,A-]→ A by the tautology theorem. Hence by Löb’s theorem,
∣−TA. By (i), this implies ∣−TD[x∣,A-]. So T is inconsistent.

If the formulaD[x∣,A-] is taken tomean “A is derivable in T”, then any formula of the form ⌝D[x∣,A-]
means “T is consistent”. With this interpretation inmind, wemight say of a formulaC of T that it expresses
the consistency of T if for some formulaD of T which with x satis�es in T the derivability conditions for T
and for some closed formula A of T , ∣−TC → ⌝D[x∣,A-]. �us, the corollary can be rephrased as follows:
if T is diagonalizable and if some formula C expressing the consistency of T is a theorem of T , then T is
inconsistent.

�ere are two more steps to take before this result becomes meaningful. First, we must �nd concrete
examples of �rst-order theories for which the hypotheses of the corollary can be proved in a constructive
manner: the remaining of this chapter is devoted to the resolution of this issue. We should also intuitively
justify the interpretation ofD[x∣,A-] as “A is derivable in T” in these cases.

69
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§2 Arithmetical languages and theories

2.1 Arithmetical languages. In chapter iv we have seen that many recursive functions and predicates that
we de�ned in chapter iii can be “introduced” in PA by means of suitable de�ning axioms. Our goal is to
pursue this formalization further in order to be able to express statements about �rst-order languages and
�rst-order theories in PA. We begin with a formal analogue to numerotations of �rst-order languages.
Let L be a numerical �rst-order language and n a natural number. An arithmetical language L in L

with n parameters is given by

(i′) an n-ary predicate symbol Ω of L;
(ii′) an (n + 1)-ary function symbol Vr of L;
(iii′) a (n + 2)-ary predicate symbol Func of L;
(iv′) a (n + 2)-ary predicate symbol Pred of L;
(v′) n-ary function symbols ∨̇, ⌝̇, ∃̇, =̇, 0̈, and Ṡ of L.
We agree to the convention that the symbols forming an arithmetical language will always be abbreviated
to Ω, Vr, Func, Pred, ∨̇, ⌝̇, ∃̇, =̇, 0̈, and Ṡ, the only possible variation being the uniform adjunction of
superscripts or subscripts. Accordingly, the name of that arithmetical language will be L with the same
superscripts and subscripts. For example, the arithmetical language L1 is composed of the symbols Ω1,
Vr1, Func1, Pred1, ∨̇1, ⌝̇1, ∃̇1, =̇1, 0̈1, and Ṡ1.
Let P be a numerical �rst-order theory. An arithmetical language L in P with n parameters is an

arithmetical language in L(P) with n parameters such that

(i) ∣−P∃x1 . . . ∃xnΩxn ;
(ii) ∣−PΩxn → x < y → Vr xxn < Vr yxn ;
(iii) ∣−PΩxn → ⌝(FuncVr xxn yxn ∨ PredVr xxn yxn);
(iv) ∣−PΩxn → ⌝Func xyxn ∨ ⌝Pred xzxn ;
(v) ∣−PΩxn → y 1 z → Func xyxn → ⌝Func xzxn ;
(vi) ∣−PΩxn → y 1 z → Pred xyxn → ⌝Pred xzxn ;
(vii) ∣−PΩxn → ⌝(Vr xxn = ∨̇xn ∨Vr xxn = ⌝̇xn ∨Vr xxn = ∃̇xn);
(viii) ∣−PΩxn → ⌝(Func ∨̇xnxxn ∨ Func ⌝̇xnxxn ∨ Func ∃̇xnxxn);
(ix) ∣−PΩxn → ⌝(Pred ∨̇xnxxn ∨ Pred ⌝̇xnxxn ∨ Pred ∃̇xnxxn);
(x) ∣−PΩxn → ⌝(∨̇xn = ⌝̇xn ∨ ∨̇xn = ∃̇xn ∨ ⌝̇xn = ∃̇xn); and
(xi) ∣−PΩxn → Pred =̇xn 2̇xn .
An arithmetical language L in P with n parameters is numerical if moreover

(xii) ∣−PΩxn → Func 0̈xn 0̇xn and
(xiii) ∣−PΩxn → Func Ṡxn 1̇xn .
In practice, we are mostly interested in arithmetical languages with no parameters. In this case, Ω is

a truth value and condition (i) is reduced to ∣−PΩ, so that we can forget about Ω in (ii)–(xiii). In an arith-
metical language with n parameters, Ω should be thought of as the parameter space: replacing the variable
parameters by closed terms in the parameter space yields an arithmetical language without paremeters.
Of course, an arithmetical language with n parameters is much more than a collection of arithmetical lan-
guage without parameters. To simplify the notations, we shall usually omit these parameters and discuss
all arithmetical languages as arithmetical languages without parameters, but it will be clear that no such
restriction is necessary. When we do not specify the number of parameters of an arithmetical language,
it must be understood that our discussion applies to arithmetical languages with any number of parame-
ters by introducing the symbol Ω as needed. When, on the other hand, some development is speci�c to
arithmetical languages with a speci�c number of parameters, we mention it explicitely.
If L and L′ are arithmetical languages (with as many parameters) in P, we say that L′ is an extension

of L in P if ∣−PΩ↔ Ω′, ∣−PVr x = Vr′ x, ∣−PFunc xy → Func′ xy, ∣−PPred xy → Pred′ xy, and for every f
among ∨̇, ⌝̇, ∃̇, =̇, 0̈, and Ṡ, ∣−Pf = f ′.
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2.2. From now on we let P be a good extension of PA and we �x a coding function symbol B in P. LetL be
an arithmetical language in P. We use this data to de�ne new nonlogical symbols in P. For convenience,
we �rst de�ne Disj xy = [∨̇, x , y]; Neg x = [⌝̇, x]; Inst xy = [∃̇, x , y]; Imp xy = [∨̇, [⌝̇, x], y]; Cnj xy =
[⌝̇, [∨̇, [⌝̇, x], [⌝̇, y]]]; Gen xy = [⌝̇, [∃̇, x , [⌝̇, y]]]; Eqv xy = [⌝̇, [∨̇, [⌝̇, [∨̇, [⌝̇, x], y]], [⌝̇, [∨̇, [⌝̇, y], x]]]].
�ese de�nitions must be modi�ed in the obvious way ifL has parameters. For example, Disj is an (n+2)-
ary function symbolwhose actual de�nition isDisj xyxn = [∨̇xn , x , y]. Inwhat followswe de�ne predicate
symbols with formulae of the form px1 . . . xn ↔ A. In order to restore the parameters, these should be
read px1 . . . xn ↔ Ω ∧A. We also de�ne function symbols with formulae of the form y = fx1 . . . xn ↔ A,
which should be read y = fx1 . . . xn ↔ (Ω ∧A) ∨ (⌝Ω ∧ y = 0̇).

(i) Sym x ↔ x = ∨̇ ∨ x = ⌝̇ ∨ x = ∃̇ ∨ ∃y(Func xy ∨ Pred xy ∨ x = Vr y);
(ii) Vble x ↔ x = [(x)0] ∧ ∃y(y < x ∧Vr y = (x)0);
(iii) Tm x ↔ Vble x ∨ Sq x ∧ Len x 1 0̇ ∧ Func(x)0(Len x − 1̇) ∧ ∀y(y < Len x − 1̇→ Tm(x)Sy);
(iv) Atfm x ↔ Sq x ∧ Len x 1 0̇ ∧ Pred(x)0(Len x − 1̇) ∧ ∀y(y < Len x − 1̇→ Tm(x)Sy);
(v) Fm x ↔ Atfm x∨(x = Disj(x)1(x)2∧Fm(x)1∧Fm(x)2)∨(x = Neg(x)1∧Fm(x)1)∨(x = Inst(x)1(x)2∧
Vble(x)1 ∧ Fm(x)2);

(vi) Des x ↔ Tm x ∨ Fm x;
(vii) Occ xy↔ Des x ∧Des y ∧ (x = y ∨ ∃z(z < Len x − 1̇ ∧Occ(x)Sz y));
(viii) Fr xy↔ Des x∧Vble y∧ ((Tm x∨Atfm x)∧Occ xy)∨ (x = Disj(x)1(x)2∧Fr(x)1 y∨Fr(x)2 y)∨ (x =

Neg(x)1 ∧ Fr(x)1 y) ∨ (x = Inst(x)1(x)2 ∧ Fr(x)2 y ∧ y 1 (x)1);
(ix) Cl x ↔ Des x ∧ ∀y(y < x → ⌝Fr xy);
(x) Subtl xyz↔ Des x∧Vble y∧Tm z∧(x = Disj(x)1(x)2∧Subtl(x)1 yz∧Subtl(x)2 yz)∨(x = Neg(x)1∧
Subtl(x)1 yz)∨(x = Inst(x)1(x)2∧y 1 (x)1∧Subtl(x)2 yz∧⌝Fr(x)2 y∨⌝Fr z(x)1)∨Tm x∨Atfm x∨y =
(x)1;

(xi) w = Sub xyz ↔ (Vble x ∧ x ∈ y ∧ w = (z)fx y) ∨ (⌝Vble x ∧ w = µw(Lenw = Len x ∧ (w)0 =
(x)0∧∀x′(x′ < Len x− 1̇→ (w)Sx′ = Sub(x)Sx′ Rmv ygxyRmv zgxy)))∨(Vble x∧⌝(x ∈ y)∧w = x)
where fxy = µz(⌝(x ∈ y) ∨ x = (y)z) and gxy = µz((x)0 1 ∃̇ ∨ ⌝((x)1 ∈ y) ∨ z 1 0̇ ∧ (x)1 = Byz);

(xii) Σub xy↔ Sq x ∧ Sq y ∧ Len x = Len y ∧ ∀z(z < Len x → Vble(x)z ∧ Tm(y)z ∧ ∀w(w < z → (x)z 1
(x)w));

(xiii) Pax x ↔ Fm x ∧ x = Imp(x)2(x)2;
(xiv) Sax x ↔ Fm x ∧ x = Imp(x)1,1 Inst(x)2,1(x)2,2 ∧ ∃z(z < x ∧ Tm z ∧ Subtl(x)2,2(x)2,1z ∧ (x)1,1 =

Sub(x)2,2(x)2,1z);
(xv) Iax x ↔ x = [=̇, (x)1 , (x)1] ∧Vble(x)1;
(xvi) Feax x ↔ ∃y(y < x ∧ Byx3̇ = [=̇, (Byx3̇)1 , (Byx3̇)2] ∧ Len(Byx3̇)1 = Sy ∧ Len(Byx3̇)2 = Sy ∧

Func(Byx3̇)1,0 y ∧ (Byx3̇)1,0 = (Byx3̇)2,0 ∧ ∀z(z < y → Vble(Byx3̇)1,Sz ∧ Vble(Byx3̇)2,Sz ∧ Bzx3̇ =
Imp[=̇, (Bzx3̇)1,1,1 , (Bzx3̇)1,1,2]BSzx3̇ ∧ (Bzx3̇)1,1,1 = (Byx3̇)1,Sz ∧ (Bzx3̇)1,1,2 = (Byx3̇)2,Sz));

(xvii) Peax x ↔ ∃y(y < x ∧ Byx3̇ = Imp(Byx3̇)1,1(Byx3̇)2 ∧ Len(Byx3̇)1,1 = Sy ∧ Len(Byx3̇)2 = Sy ∧
Pred(Byx3̇)1,1,0 y∧ (Byx3̇)1,1,0 = (Byx3̇)2,0 ∧∀z(z < y → Vble(Byx3̇)1,1,Sz ∧Vble(Byx3̇)2,Sz ∧Bzx3̇ =
Imp[=̇, (Bzx3̇)1,1,1 , (Bzx3̇)1,1,2]BSzx3̇ ∧ (Bzx3̇)1,1,1 = (Byx3̇)1,1,Sz
∧ (Bzx3̇)1,1,2 = (Byx3̇)2,Sz));

(xviii) Ax x ↔ Pax x ∨ Sax x ∨ Iax x ∨ Feax x ∨ Peax x;
(xix) Ctr xy↔ Fm x ∧ y = Disj xx;
(xx) Exp xy↔ Fm x ∧ x = Disj(x)1 y;
(xxi) Assoc xy↔ Fm x ∧ x = DisjDisj(x)1,1(x)1,2(x)2 ∧ y = Disj(x)1,1Disj(x)1,2(x)2;
(xxii) Cut xyz↔ Fm y ∧ Fm z ∧ y = Disj(y)1(y)2 ∧ z = Imp(y)1(z)2 ∧ x = Disj(y)2(z)2;
(xxiii) Intr xy↔ Fm x ∧ x = Imp Inst(x)1,1,1(x)1,1,2(x)2 ∧ y = Imp(x)1,1,2(x)2 ∧ ⌝Fr(x)2(x)1,1,1;
(xxiv) Inf xy ↔ Sq y ∧ ∃z(z < Len y ∧ (Ctr xBySz ∨ Exp xBySz ∨ Assoc xBySz ∨ ∃w(w < Len y ∧

Cut xBySzBySw) ∨ Intr xBySz));
(xxv) y = Num x ↔ (x = 0̇ ∧ y = 0̈) ∨ (x 1 0̇ ∧ y = [Ṡ, Num(x − 1̇)]).
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All these de�ned symbols are subject to the same notational convention as arithmetical languages: we
require that they inherit the superscripts and subscripts of the arithmetical language from which they are
de�ned. �us from the arithmetical language L∗ are de�ned Vble∗, Tm∗, etc. We observe that all of them
except (i) are recursive on L(P), and in fact on any extension of L(N) on which B and the symbols of L are
recursive.
We now list some consequences of the de�nitions.

(i′) ∣−Px ≤ Vr x;
(ii′) ∣−PVble x ↔ x = [(x)0] ∧ ∃y(Vr y = (x)0);
(iii′) ∣−PTm x → ⌝Fm x;
(iv′) ∣−POcc xy → y ≤ x;
(v′) ∣−PVble x → Occ xy → x = y;
(vi′) ∣−POcc xy → Occ yz → Occ xz;
(vii′) ∣−PFr xy → Occ xy;
(viii′) ∣−PTm x → Vble y → Tm z → Subtl xyz;
(ix′) ∣−PFm x → Vble y → Tm z → ∀w(Vblew → Occ xw → ⌝Occ zw)→ Subtl xyz;
(x′) ∣−PFm x → Vble y → Tm z → x = Inst(x)1(x)2 → Occ z(x)1 → Subtl xyz → ⌝Fr xy;
(xi′) ∣−PTm x → Σub yz → TmSub xyz;
(xii′) ∣−PFm x → Σub yz → FmSub xyz;
(xiii′) ∣−PDes x → Σub yz → ∀w(w < Len y → ⌝Fr x(y)w)→ Sub xyz = x;
(xiv′) ∣−PDes x → Σub yz → w < Len y → ⌝Fr x(y)w → Sub xyz = Sub x Rmv ySw Rmv zSw;
(xv′) ∣−PDes x → Σub yz → ∀w(Vblew → Fr xw → w ∈ y)→ ∀w(w < Len z → Cl(z)w)→ Cl Sub xyz;
(xvi′) ∣−PDes x → Σub yz → Vble y′ → Tm z′ → ∀w(w < Len y → Subtl x(y)w(z)w) → ∀w(w < Len y →

Occ(z)w y′ → Subtl x(y)wz′)→ Subtl Sub xyzy′z′;
(xvii′) ∣−PDes x → Σub yy′ → Σub y′z → ∀w(w < Len y → Subtl x(y)w(y′)w ∧ ⌝Fr x(y′)w) →

Sub Sub xyy′y′z = Sub xyz;

By the recursion principle we can de�ne a function symbol h′ so that ∣−Ph′0̇xyz = x and ∣−Pw 1 0̇ →
h′wxyz = Subh′(w − 1)xyz[Byw][Bzw], and we set hxyz = h′ Len yxyz.

(xviii′) ∣−PDes x → Σub yz → ∀w∀w′(w′ < Len y → w < w′ → ⌝Occ(z)w(y)w′)→ hxyz = Sub xyz;
(xix′) ∣−PDes x → Σub yz → Σub y′z′ → ∀w∀w′(w < Len y → w′ < Len y′ → ⌝Fr(z′)w′(y)w ∧

⌝Fr(z)w(y′)w′)→ Sub Sub xyzy′z′ = Sub Sub xy′z′yz;
(xx′) ∣−PAx x → Fm x;

and if L is numerical,

(xxi′) ∣−PTmNum x;
(xxii′) ∣−PClNum y.

[insert a few examples of derivations]

Proposition. If L′ is an extension of L, then for every n-ary predicate symbol p among (i)–(xxv),
∣−Ppx1 . . . xn → p′x1 . . . xn , ∣−PSub xyz = Sub′ xyz, and ∣−PNum x = Num′ x.

�e proof is straightforward using the de�ning axioms and the principle of complete induction when
the symbol is de�ned by recursion.

2.3 Arithmetical theories. An arithmetical theory T in P with n parameters consists of an arithmetical
language L(T) in P with n parameters, called the language of T, and an (n + 1)-ary predicate symbol Nlax
of P such that ∣−PΩxn → Nlax xxn → Fm xxn , where Fm is de�ned from L(T). We agree that when
an arithmetical theory in T has the name T possibly with superscripts or subscripts, then the associated
predicate symbol will be Nlax with the same superscripts and subscripts, and, unless otherwise speci�ed,
its language will be L with the same superscripts and subscripts. An arithmetical theory is numerical if its
language is numerical. Our remarks on parameters in §2.1 also apply to arithmetical theories.
If T is an arithmetical theory in P, we de�ne
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(i) Der xy↔ Sq y ∧ Len y 1 0̇ ∧ ∀z(z < Len y → Ax(y)z ∨Nlax(y)z ∨ Inf(y)z Ini yz)
∧ x = By Len y;

(ii) �m x ↔ ∃yDer xy;
(iii) Con↔ ∃x(Fm x ∧ ⌝�m x);
(iv) Cm↔ ∀x(Fm x → Cl x →�m x ∨�mNeg x);
(v) Hk↔ ∀x(Fm x → Cl x → x = Inst(x)1(x)2
→ ∃y(Func y0̇ ∧�mImp Inst(x)2(x)1 Sub(x)2[(x)1][[y]])).

As for arithmetical languages, the above de�ned symbols inherit the superscripts and subscripts of the
name of the arithmetical theory from which they are de�ned. Note that the predicate symbols Con, Cm,
and Hk express the consistency, the completeness, and the Henkin property of T, respectively. It is clear
that Der is recursive on L(N) with B and the symbols of T. Moreover, if B and the symbols of L(T) are
recursive on an extension L of L(N) and if Nlax is recursively enumerable on L, then Der and �m are
recursively enumerable on L.
We list a few easily veri�ed results about arithmetical theories.

(i′) ∣−PAx x →�m x;
(ii′) ∣−PNlax x →�m x;
(iii′) ∣−PDer xy → ∀z(z < Len y →�m(y)z);
(iv′) ∣−PDer xy → z < Len y → Der(y)z Ini ySz.
If T and T′ are arithmetical theories (with as many parameters) in P, we say that T′ is an extension of

T in P if L(T′) is an extension of L(T), and if ∣−PNlax x →�m′ x.

2.4 Extension and restriction. Let T be a arithmetical theory in P with n paremeters. We associate to T
two useful arithmetical theories T[] and T↾ with n + 1 parameters in a recursive extension by de�nitions
of P. We shall abbreviate Vr[]aba1 . . . an to Vr[b]aa1 . . . an , Vr↾aba1 . . . an to Vr↾b aa1 . . . an , and similarly
for other symbols. As usual, we take n = 0 to simplify the notations. �e symbols of T[] are de�ned by:
Ω[x] ↔ Ω ∧ Sq x ∧ ∀y(y < Len x → Fm(x)y); Vr[z]x = Vr x; Func[z]xy ↔ Func xy; Pred[z]xy ↔
Pred xy; for f among ∨̇, ⌝̇, ∃̇, =̇, 0̈, and Ṡ, f[z] = f ; Nlax[z]x ↔ Nlax x ∨ x ∈ z.

�e arithmetical theory T↾ has the same language as T[], except for Ω↾z ↔ Ω, and we de�ne
Nlax↾z x ↔ Nlax x ∧ x < z. It is clear that T[] and T↾ are arithmetical theories in a recursive extension by
de�nitions of P. �e fundamental properties of these arithmetical theories in relation to T are expressed
below.

(i) ∣−PΩ[y]→�m[y]x → ∀z(z < Len y →�m(y)z)→�m x;
(ii) ∣−P�m x ↔ ∃z�m↾z x;
(iii) ∣−PCon↔ ∀zCon↾z .
[(i) is never used]
Note that ∣−PAx↾z x ↔ Ax x and ∣−PInf↾z xy ↔ Inf xy. �e implication from right to le� in (ii) is an
easy consequence of this and the de�nition of �m. �e other implication is derived from ∣−PDer xy →
Der↾y xy which again is immediate from the de�nition of Der. �en we have ∣−P⌝�m x ↔ ∀z⌝�m↾z x,
whence (iii).

2.5 Change of numerotation. Let L and L′ be arithmetical languages in P with n parameters. An (n + 1)-
ary function symbol f of P is called a change of numerotation from L to L′ if

(i) ∣−PΩxn ↔ Ω′xn ;
(ii) ∣−PΩxn → Sym xxn → fxxn = f yxn → x = y;
(iii) ∣−PΩxn → Vr′ xxn = f Vr xxnxn ;
(iv) ∣−PΩxn → Func xyxn ↔ Func′ fxxn yxn ;
(v) ∣−PΩxn → Pred xyxn ↔ Pred′ fxxn yxn ;
(vi) for g among ∨̇, ⌝̇, ∃̇, =̇, 0̈, and Ṡ, ∣−PΩxn → g′xn = fgxnxn ;
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�e condition (ii) allows the de�nition of an (n + 1)-ary function symbol f−1 by y = f−1xxn ↔ (Ωxn ∧
Sym yxn ∧ x = f yxn) ∨ (⌝(Ωxn ∧ ∃z(Sym zxn ∧ fzxn = x)) ∧ y = 0̇). Using (iii)–(vi) we deduce that
∣−PΩxn → Sym′ xxn ↔ ∃y(Sym yxn ∧ x = f yxn). From this it is easy to check that f−1 is a change of
numerotation from L′ to L. De�ne temporarily hf by recursion so that

∣−Phfxxn = µy(Len y = Len x ∧ (y)0 = f(x)0xn ∧ ∀z(z < Len x − 1̇→ (y)Sz = hf(x)Szxn)).

We then de�ne f∗ by y = f∗xxn ↔ (Des x ∧ y = hfxxn) ∨ (⌝Des x ∧ y = 0̇) and f∗ by f∗xxn = (f−1)∗xxn .
Let L be an arithmetical language in P and f a function symbol of P such that (ii) holds. We can then

de�ne an arithmetical language Lf in an extension by de�nitions of P as follows: Ωf ↔ Ω; Vrf x = f Vr x;
Funcf xy↔ Func f−1xy; Predf xy↔ Pred f−1xy; and for g among ∨̇, ⌝̇, ∃̇, =̇, 0̈, and Ṡ, gf = fg. �en f is a
change of numerotation from L to Lf .
Let T and T′ be arithmetical theories in P. A function symbol f of P is a change of numerotation from

T to T′ if it is a change of numerotation from L(T) to L(T′) and if ∣−PNlax′ x ↔ Nlax f∗x.
As before, if T is an arithmetical theory in P with n parameters and f an (n + 1)-ary function symbol

of P satisfying (ii), we can de�ne an arithmetical theory Tf in an extension by de�nitions of P so that f is
a change of numerotation from T to Tf : let the language of Tf be Lf and de�ne Nlaxf x ↔ Nlax f∗x.
We say that L and L′ (resp. T and T′) di�er by a change of numerotation in P if there is a change of

numerotation from L to L′ (resp. from T to T′) in an extension by de�nitions of P. We should now make
a long list of theorems of the form ∣−PFm x ↔ Fm′ f∗x, but since we do not intend to derive any of them,
we simply state the �nal result which will be used in §5.2.

Proposition. If T and T′ di�er by a change of numerotation in P, then ∣−PCon↔ Con′.
2.6 �e formalized substitution rule.With the de�nition of an arithmetical theory in P and its associated
de�ned symbols, it is now possible to express and derive in P formal versions of the general results on
�rst-order theories for arithmetical theories: the derived rules, the tautology theorem, the equivalence
and equality theorems, the theorems on de�nitions, the interpretation theorem, etc. For instance, the
tautology theorem becomes the formula Taut xy →�m[y]x for some suitably de�ned predicate symbol
Taut meaning “the formula x is a tautological consequence of the formulae z ∈ y”. �is is obviously a very
laborious task, so we shall be content with deriving only those few results which will be required later
on. �ese include a few instances of the tautology theorem, the substitution rule, and the interpretation
theorem. We begin by proving a result expressing that an application of a rule of inference to theorems
yields a theorem.

Lemma 1. Let T be an arithmetical theory in P.

(i) ∣−T�m x → Ctr yx →�m y.
(ii) ∣−T�m x → Exp yx →�m y.
(iii) ∣−T�m x → Assoc yx →�m y.
(iv) ∣−T�m x →�m y → Cut zxy →�m z.
(v) ∣−T�m x → Intr yx →�m y.
(vi) ∣−TInf xy → ∀z(z < Len y →�m(y)z)→�m x.

Proof. We shall only prove (i); (ii)–(v) are completely analogous and (vi) is an easy consequence of (i)–(v).
By the substitution axioms and the ∃-introduction rule, it will su�ce to prove ∣−PDer xz → Ctr yx →
Der y(z ∗ [y]). Let P′ be obtained from P by the adjunction of new constants e1, e2, e3 and the axioms
Der e1e3 and Ctr e2e1. We must then prove ∣−PDer e2(e3 ∗ [e2]). We let a stand for e3 ∗ [e2]. �en ∣−P′Sq a,
∣−P′Len a 1 0̇, and ∣−P′e2 = BaLen a. Since ∣−P′x < a→ x < Len e3 ∨ x = Len e3, it remain to prove

∣−P′x < Len e3 → Ax(a)x ∨Nlax(a)x ∨ Inf(a)x Ini ax , and (1)
∣−P′x = Len e3 → Inf(a)x Ini ax . (2)

Now (1) follows at once from the axiom Der e1e3. From this axiom we also derive ∣−P′e1 = Be3 Len e3.
From this and the axiom Ctr e2e1, we obtain ∣−P′Inf e2e3. But ∣−P′e2 = (a)Len e3 and ∣−P′e3 = Ini aLen e3,
and hence (2) by the equality theorem.
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Lemma 2. If T′ is an extension of T, then ∣−P�m x →�m′ x and ∣−PCon′ → Con.
Proof. �e second assertion is a direct consequence of the �rst. By (vi) of lemma 1 and the substitution
rule,

∣−PInf ′ BySz Ini yz → ∀w(w < Len Ini yz →�m′ B Ini yzSw)→�m′ BySz.

Using ∣−PLen Ini yz = z and ∣−Pw < z → B Ini yzSw = BySw, we obtain ∣−PInf ′ BySz Ini yz → ∀w(w <
z →�m′ BySw)→�m′ BySz, whence

∣−Pz < Len y → Inf ′ BySz Ini yz → ∀w(w < z → w < Len y →�m′ BySw)→�m′ BySz. (3)

By de�nition ofDer, we have ∣−PDer xy → z < Len y → AxBySz∨NlaxBySz∨Inf BySz Ini yz. SinceL(T′)
is an extension ofL(T), we have ∣−PAxBySz →�m′ BySz and ∣−PInf BySz Ini yz → Inf ′ BySz Ini yz, and
since T′ is an extension of T, ∣−PNlaxBySz →�m′ BySz. �us

∣−PDer xy → z < Len y →�m′ BySz ∨ Inf ′ BySz Ini yz. (4)

From (3) and (4) by the tautology theorem, ∣−PDer xy → ∀w(w < z → w < Len y →�m′ BySw) → z <
Len y → �m′ BySz. By the ∀-introduction rule and the principle of complete induction, ∣−PDer xy →
∀z(z < Len y → �m′ BySz), whence ∣−PDer xy → Len y − 1̇ < Len y → �m′ x by the substitution
theorem. But ∣−PDer xy → Len y− 1̇ < Len y, and hence we �nd ∣−PDer xy →�m′ x. We conclude using
the ∃-introduction rule.
Remark. For any arithmetical theories T and T′ in P, we have ∣−P∀x(Nlax x → �m′ x) → �m x →
�m′ x, which by the deduction theorem is equivalent to ∣−P[Nlax x→Thm′ x]�m x → �m′ x. �is is, in
fact, a consequence of the lemma, for T′ is certainly an extension of T in P[Nlax x → �m′ x] which is
also a good extension of PA. A similar argument can be made in many other situations.
We now use lemma 1 to derive some elementary formalized rules.

(i) ∣−P�mDisj xy →�mDisj yx;
(ii) ∣−P�mImp xy →�m x →�m y;
(iii) ∣−P�mImp xy →�mImpNeg yNeg x;
(iv) ∣−P�mImpNeg xy →�mImpNeg yx;
(v) ∣−P�m x ∨�m y →�mDisj xy;
(vi) ∣−P�mCnj xy↔�m x ∧�m y;
(vii) ∣−P�mNegDisj xy↔�mCnjNeg xNeg y;
(viii) ∣−P�mEqv xy →�m x ↔�m y;
(ix) ∣−PVble x →�m y →�mGen xy;
(x) ∣−P�m x →�mNeg x → Fm y →�m y;
(xi) ∣−PCon↔ ∀x(Fm x → ⌝�m x ∨ ⌝�mNeg x);
(xii) ∣−PCon↔ ∀x(Fm x → Cl x → ⌝�m x ∨ ⌝�mNeg x);
(xiii) ∣−PCon→ Cm→ Fm x → Cl x →�mNeg x ↔ ⌝�m x.

We remark that (i) is a formalized commutativity rule. In order to derive it, we �rst remember how to prove
commutativity rule: B ∨A is the conclusion of a cut rule with premises A ∨ B and ⌝A ∨A, and the latter
is a propositional axiom. We have ∣−PFm x → Pax Imp xx by de�nition of Pax, and ∣−PFm x → Fm y →
CutDisj yxDisj xy Imp xx by the de�nitions of Cut. From the former, ∣−PFm x →�mImp xx, and from
the latter and (iv) of lemma 1, ∣−PFm x → Fm y → �mDisj xy → �mImp xx → �mDisj yx. Now
∣−P�mDisj xy → Fm x ∧ Fm y, so by the tautology theorem we �nd ∣−P�mDisj xy → �mDisj yx.
Derivations of (ii)–(x) are found in the same way, using lemma 1. We derive (x) as a further example.
By de�nition of Exp, ∣−PFm x → Fm y → ExpDisj yxx ∧ ExpDisj yNeg xNeg x, whence ∣−P�m x →
�mNeg x → Fm y →�mDisj yx ∧�mDisj yNeg x by (ii) of lemma 1. Using the formalized commu-
tativity rule, we obtain

∣−P�m x →�mNeg x → Fm y →�mDisj xy ∧�mDisjNeg xy. (5)
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By de�nition of Cut, ∣−PFm x → Fm y → CutDisj yyDisj xyDisjNeg xy, and by de�nition of Ctr,
∣−PFm y → Ctr yDisj yy. From these by (i) and (iv) of lemma 1, ∣−P�m x → �m y → �mDisj xy →
�mNeg xy →�m y. Together with (5), we obtain (x).
Let a be a variable-free term of P such that ∣−PFm a ∧Cl a, for example [∃̇, Vr 0̇, [=̇, [Vr 0̇], [Vr 0̇]]]. By

the substitution theorem, ∣−P∀x(Fm x → Cl x → ⌝�m x ∨ ⌝�mNeg x) → Fm a → Cl a → ⌝�m a ∨
⌝�mNeg a, whence by the tautology theorem, ∣−P∀x(Fm x → Cl x → ⌝�m x∨⌝�mNeg x)→ Fm a∧
⌝�m a ∨ ⌝�mNeg a. From this by the substitution axioms and the tautology theorem, we obtain the
implication from right to le� in (xii). �e implication from le� to right in (xi) follows from (x). Taken
together, these implications prove (xi) and (xii). Finally, (xiii) follows from (xi) and the de�nition of Cm.
We call (ii) and its instances the formalized detachment rule.

Lemma 3. Let T be an arithmetical theory in P. �en

∣−P�m x → Vble y → Tm z → Subtl xyz →�mSub x[y][z].

Proof. From the de�nition of Sax and Sub, we infer ∣−PFm x → Vble y → Tm z → Subtl xyz →
Sax ImpNeg Sub x[y][z] Inst yNeg x. Hence by (iv) and the de�nition of Gen, ∣−PFm x → Vble y →
Tm z → Subtl xyz → �mImpGen yx Sub x[y][z]. By the formalized detachment rule, ∣−PFm x →
Vble y → Tm z → Subtl xyz → �mGen yx → �mSub x[y][z], and by (ix), ∣−PFm x → Vble y →
Tm z → Subtl xyz → �m x → �mSub x[y][z]. Since ∣−P�m x → Fm x, the desired result follows by
the tautology theorem.

Lemma 4. Let T be an arithmetical theory in P and let h be the function symbol de�ned in §2.2. �en

∣−P�m x → Σub yz → ∀w(w < Len y → Subtl x(y)w(z)w)
→ ∀w∀w′(w < Len y → w′ < w → ⌝Occ(z)w′(y)w)→�mhxyz.

Proof. Let h′ be de�ned as in §2.2. We shall prove ∣−PA where A is

∣−P�m x → Σub yz → ∀w(w < Len y → Subtl x(y)w(z)w)
→ ∀w∀w′(w < Len y → w′ < w → ⌝Occ(z)w′(y)w)→ w < Len y

→ Subtlh′wxyz(y)w(z)w ∧�mh′Swxyz

using the induction axioms. �e conclusion follows by substituting Len y − 1̇ for w in A. Now since
∣−Ph′0̇xyz = x and ∣−P 0̇ < Len y → ∀w(w < Len y → Subtl x(y)w(z)w) → Subtl x(y)0(z)0, the �rst
conjunct of A[w∣0̇] is derivable. Since ∣−Ph′1̇xyz = Sub x[(y)0][(z)0], the second is derivable as well by
lemma 3, so we have ∣−PA[w∣0̇]. Recall that ∣−Ph′Swxyz = Subh′wxyz[(y)w][(z)w]. If we substitute
h′wxyz for x, [(y)w ] for y, [(z)w] for z, (y)Sw for y′, and (z)Sw for z′ in (xvi′) of §2.2, we obtain

∣−PDesh′wxyz → Σub[(y)w][(z)w]→ Vble(y)Sw → Tm(z)Sw
→ Subtlh′wxyz(y)w(z)w → (Occ(z)w(y)Sw → Subtl x(y)w(z)Sw)

→ Subtlh′Swxyz(y)Sw(z)Sw . (6)
Now it is clear that ∣−PA → Sw < Len y → Desh′wxyz ∧ Σub[(y)w][(z)w] ∧ Vble(y)Sw ∧ Tm(z)Sw ∧
(Occ(z)w(y)Sw → Subtl x(y)w(z)Sw), so by (6) and the tautology theorem,

∣−PA→ Sw < Len y → Subtlh′Swxyz(y)Sw(z)Sw . (7)

By this and lemma 3, we have ∣−PA → Sw < Len y →�mSubh′Swxyz[(y)Sw][(z)Sw ], but by de�nition
of h′ this gives

∣−PA→ Sw < Len y →�mh′SSwxyz. (8)

From (7) and (8) by the tautology theorem, ∣−PA→ A[w∣Sw]. By the induction axioms, ∣−PA.

Formalized Substitution Rule. Let T be an arithmetical theory in P. �en

∣−P�m x → Σub yz → ∀w(w < Len y → Subtl x(y)w(z)w)→�mSub xyz.
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Proof. Let h be the function symbol de�ned in §2.2. De�ne fxyz = µw(Lenw = Len y∧∀x′(x′ < Len y →
(w)x′ = [Vr((x ∗ (y ∗ z)) + Sx′)])). �en clearly ∣−PLen fxyz = Len y and

∣−P∀w(w < Len y → Vble(fxyz)w ∧ ∀w′(w′ < w → (fxyz)w 1 (fxyz)w′)), (9)

and so, by de�nition of Σub,
∣−PΣub yz → Σub yfxyz ∧ Σub fxyzz. (10)

and by (v′) of §2.2, ∣−Pw < Len y → w′ < Len y → Occ(fxyz)w′(fxyz)w → w = w′, whence

∣−Pw < Len y → w′ < Len y → ∀w(w < Len y → Subtl x(y)w(z)w)
→ Occ(fxyz)w′(fxyz)w → Subtl x(y)w(z)w′ . (11)

By (i′), (iv′), and (v′) of §2.2 and the de�nition of f , we have

∣−Pw < Len y → w′ < Len y → ⌝Occ x(fxyz)w ∧ ⌝Occ(fxyz)w(y)w′ ∧ ⌝Occ(z)w(fxyz)w′ , (12)

whence by (v′) and (viii′) of §2.2,

∣−PDes x → Σub yz → w < Len y → Subtl x(y)w(fxyz)w . (13)

From (10), (12), and (13) by (vii′) and (xvii′) of §2.2,

∣−PDes x → Σub yz → Sub Sub xyfxyzfxyzz = Sub xyz. (14)

From (10) and (12) by (xviii′) of §2.2,

∣−PDes x → Σub yz → Sub xyfxyz = hxyfxyz and (15)
∣−PDes x → Σub yz → Sub Sub xyfxyzfxyzz = hhxyfxyzfxyzz. (16)

From (14) and (16),
∣−PDes x → Σub yz → Sub xyz = hhxyfxyzfxyzz. (17)

In view of this we need only prove

∣−P�m x → Σub yz → ∀w(w < Len y → Subtl x(y)w(z)w)→�mhhxyfxyzfxyzz. (18)

If we substitute fxyz for z, (fxyz)w′ for y′, and (z)w′ for z′ in (xvi′) of §2.2, we obtain

∣−PDes x → Σub yfxyz → Vble(fxyz)w′ → Tm(z)w′
→ ∀w(w < Len y → Subtl x(y)w(fxyz)w)→ ∀w(w < Len y → Occ(fxyz)w(fxyz)w′

→ Subtl x(y)w(z)w′)→ Subtl Sub xyfxyz(fxyz)w′(z)w′

From this by (9), (10), (11), and (13),

∣−PDes x → Σub yz → ∀w(w < Len y → Subtl x(y)w(z)w)
→ w′ < Len y → Subtlhxyfxyz(fxyz)w′(z)w′ . (19)

From (12), (13) and (19), we obtain (18) by two instances of lemma 4.

2.7 Arithmetical interpretations. We have introduced so far formalizations of the notions of �rst-order
language and �rst-order theory. We are now going to introduce a notion corresponding to interpretations.
For obvious reasons we shall only formalize interpretations that have 0 parameters. Let P be a good ex-
tension of PA and L and L′ arithmetical languages in P with n parameters such that ∣−PΩxn ↔ Ω′xn .
An arithmetical interpretation I in P of L in L′ consists of an n-ary function symbol UI of P called the
universe of I and an (n + 1)-ary function symbol ()I of P such that
(i) ∣−PΩxn → Pred′ UIxn 1̇xn ;
(ii) ∣−PΩxn → ()IVr xxnxn = Vr′ xxn ;
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(iii) ∣−PΩxn → Func xyxn → Func′()Ixxn yxn ;
(iv) ∣−PΩxn → Pred xyxn → Pred′()Ixxn yxn .
We take n to be 0 from now on, and we abbreviate ()Ia to (a)I. We de�ne a unary function symbol f by
recursion so that

∣−P y = fx ↔ Sq y
∧ (Tm x ∧ Len y = Len x ∧ (y)0 = ((x)0)I ∧ ∀z(z < Len x − 1̇→ (y)Sz = f(x)Sz))
∨ (Atfm x ∧ Len y = Len x ∧ (y)0 = ((x)0)I ∧ ∀z(z < Len x − 1̇→ (y)Sz = f(x)Sz))
∨ (Fm x ∧ x = Disj(x)1(x)2 ∧ y = Disj′ f(x)1f(x)2)
∨ (Fm x ∧ x = Neg(x)1 ∧ y = Neg′ f(x)1)
∨ (Fm x ∧ x = Inst(x)1(x)2 ∧ y = Inst′((x)1)ICnj′[UI , ((x)1)I]f(x)2)
∨ (⌝Des x ∧ y = 0̇).

De�ne the unary function symbol g by gx = µy(Cl′ x ∨ Fr′ xy), and the binary function symbol h by
recursion so that ∣−Pz = hxy ↔ ((y = 0̇ ∨ Cl′ x ∨ ⌝Fm′ x) ∧ z = x) ∨ (y 1 0̇ ∧ ⌝Cl′ x ∧ Fm′ x ∧ z =
Imp′[UI , ghx(y − 1̇)]hx(y − 1̇)).
We then de�ne a unary function symbol Int by Int x = hfxx. Intuitively, Int x corresponds to the

interpretation of the designator x by I.
An arithmetical interpretation I of L in L(T′) is an arithmetical interpretation of L in T′ if ∣−P�m′

Inst′[Vr′ 0̇][UI , [Vr′ 0̇]] and ∣−PFunc xy → �m′ hµz(Len z = SSy ∧ (z)0 = UI ∧ (z)1 = (x)I ∧ ∀w(w <
y → (z)SSw = [Vr′w]))y.
Let I be an arithmetical interpretation of L(T) in L(T′). We de�ne a new arithmetical theory TI: the

language of TI is L(T) and NlaxI is given by

NlaxI x ↔ Nlax x ∧�m′ Int x .

Arithmetical Interpretation Theorem. If I is an arithmetical interpretation of L(T) in T′ and if
∣−PIax x ∨ Feax x ∨ Peax x →�m′ Int x, then ∣−P�mI x →�m′ Int x.

Proof. Just believe it.

Corollary. If I is an arithmetical interpretation of L(T) in T′ and if ∣−PIax x ∨ Feax x ∨ Peax x →
�m′ Int x, then ∣−PCon′ → ConI.

Proof. We have ∣−PCl x → Cl′ Int x, ∣−PFm x → Cl x → IntNeg x = Neg Int x, and by the arithmetical
interpretation theorem, ∣−P⌝�m′ Int x → ⌝�mI x. From these formulae we obtain ∣−PFm x → Cl x →
⌝�m′ Int x ∨ ⌝�m′Neg Int x → ConI by the substitution axioms. �us by the substitution theorem,
∣−P∀x(Fm x → Cl x → ⌝�m′ x ∨ ⌝�m′Neg x)→ ConI, whence ∣−PCon′ → ConI by (xii) of §2.6.
An arithmetical interpretation I of L(T) in T is an arithmetical interpretation of T in T′ if ∣−PIax x ∨

Feax x ∨ Peax x ∨Nlax x →�m′ Int x. In this case ∣−PNlaxI x ↔ Nlax x and the arithmetical interpreta-
tion theorem shows that ∣−P�m x →�m′ Int x, and the corollary that ∣−PCon′ → Con.
Proposition. If ∣−P(=̇)I = =̇′, then ∣−PIax x ∨ Feax x ∨ Peax x →�m′ Int x.

Proof. [. . . exercise!]

§3 Extensional application

3.1 Conventions. For the rest of this chapter, we �x a coding function β, a good extension P of PA, and
B a coding function symbol in P representing β in P. �e letter L with superscripts or subscripts is used
of a �rst-order language arithmetized from a numerotation by the coding function β. �is numerotation
is written σ and its associated functions and predicates vr, func, and pred, with the same superscripts and
subscripts. �e letter T with superscripts or subscripts is used of a �rst-order theory whose language is
denoted by the letter L with the same superscripts and subscripts. An arithmetical language or theory,
unless otherwise stated, has no parameters.
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3.2 Describing languages. Let L be an arithmetical language in P. We let L(L) be the extension of L(N)
containing B, Len, Sq, ∈, ∗, Ini, Rmv, []n for each n, the symbols ofL, and the symbols (i)–(xxv) of §2.2. In
applications, we wish to interpret the symbols of L(L) as describing an actual �rst-order language L. We
say that L describes L in P if

(i) Vr represents vr in P;
(ii) Func positively represents func in P;
(iii) Pred positively represents pred in P;
(iv) ∨̇, ⌝̇, ∃̇, and =̇ respectively represent σ(∨), σ(⌝), σ(∃), and σ(=) in P, and in the case that L is

numerical, 0̈ and Ṡ represent σ(0̇) and σ(S) in P, respectively.

We say that L represents L in P if (i) and (iv) holds and if Func and Pred respectively represent func and
pred in P. Note that if L describes L and L is numerical, then L is numerical.
We would like to know how the nonlogical symbols of L(L) behave when L describes or represents

L. For instance, there is an obvious similarity between these symbols and the predicates of ch. iii §3.1,
which we suggestively indicated by using the same names with a capital letter. We shall now prove that, if
L describes (resp. represents) L, almost anything (resp. anything) that should be true is true.
Given a �rst-order language L arithmetized from a numerotation, we de�ne a numerical realization α

of L(L): α extends ν; Bα is β; Lenα is len; Sq±α are sq; ∈±α are ∈; ∗α is ∗; Iniα is ini; Rmvα is rmv; ([]n)α is the n-
ary sequence function; Vrα is vr; Func+α is func; Pred+α is pred; ∨̇α is σ(∨); ⌝̇α is σ(⌝); ∃̇α is σ(∃); =̇α is σ(=);
0̈α is σ(0̇); Ṡα is σ(S); Sym+

α is sym; ifp is among (ii)–(x) or (xiii)–(xxiii), p+α is the uncapitalized counterpart
of p of ch. iii §3.1; Vble−α is vbleL ; Atfm−

α is atfmL ∨⌝ fmL ; Occ−α(a, b)↔ occL(a, b)∨⌝desL(a)∨⌝desL(b);
Fr−α(a, b)↔ frL(a, b)∨⌝desL(a); Cl−α is clL ∨⌝desL ; Subtl−α(a, b, c)↔ subtlL(a, b, c)∨⌝desL(a)∨⌝ tmL(c);
if p ends in x, then p−α is p+α ∨ ⌝ fmL ; if p is Ctr, Exp, Assoc, or Intr, p−α(a, b) ↔ p+α(a, b) ∨ ⌝ fmL(a) ∨
⌝ fmL(b); Cut−α(a, b, c)↔ cutL(a, b, c)∨⌝ fmL(a)∨⌝ fmL(b)∨⌝ fmL(c); Subα andNumα are the functions
sub and num de�ned in the proof of the theorem of ch. iii §3.2; Σub+α(a, b) if and only if a = [a1 , . . . , an],
b = [b1 , . . . , bm], n = m, vbleL(a i) for all i, tmL(b i) for all i, and the a i are pairwise distinct; Σub−α(a, b)
if and only if Σub+α(a, b) or ⌝ tmL((b)i) for some i < len(b); Inf+α(a, b) if and only if sq(b) and a is the
expression number of the conclusion of a rule of inference for L whose premises have expression numbers
in b; unspeci�ed n-ary predicates p−α are ⊺n . Let τ be the numerical realization of L(L) for which fτ is fα ,
Sym±

τ is Sym±
α , and p±τ are both p+α for p other than Sym.

Theorem. If L describes L, α is faithful in P. If L represents L, τ is faithful in P.

Proof. �is is an application of the theoremonRE-formulae. We start from the realization ν of L(N)which
is known to be faithful in P, and we extend it one symbol at a time starting from B which is assumed to
represent β, applying the theorem on RE-formulae to the previous extension to obtain the representability
conditions for the new symbol. In all cases the relevant RE-formula or PR-formula is given by the de�ning
axiom of the symbol.

3.3 A property of Sub. Let L describe L in P. �ere is one more result which is not purely extensional
in nature that we must establish. It concerns the function symbol Sub when the third argument is vari-
able. Let u be a designator of L, x1, . . . , xn distinct variables, and b1, . . . , bn terms of P. We de�ne
a term û{x1 , . . . , xn ∣b1 , . . . , bn} of P by induction on the length of u as follows. If u is xi for some i,
û{x1 , . . . , xn ∣b1 , . . . , bn} is bi . Otherwise, let u be su1 . . . um where s is a symbol of index m and u1, . . . ,
um are designators. �en û{x1 , . . . , xn ∣b1 , . . . , bn} is

[σ̇(s), û1{x1 , . . . , xn ∣b1 , . . . , bn}, . . . , ûm{x1 , . . . , xn ∣b1 , . . . , bn}],

unless u is ∃xiA for some i, in which case it is

[σ̇(∃), [σ̇(xi)], Â{x1 , . . . , xi−1 , xi+1 , . . . , xn ∣b1 , . . . , bi−1 , bi+1 , . . . , bn}].

For example, if u is fxgy, then û{x , z∣b1 , b2} is [σ̇(f), b1 , [σ̇(g), [σ̇(y)]]]. When n = 0, an easy induction
on the length of u, using the equality theorem and the fact that []n represents the n-ary sequence function,
shows that

∣−P,u- = û.
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We now prove that

∣−PSub,u-[,x1-, . . . , ,xn-][b1 , . . . , bn] = û{x1 , . . . , xn ∣b1 , . . . , bn} (1)

by induction on the length of u. We let f and g be the de�ned function symbols of P as in §2.2. We can
extend α by setting fα(a, b) = µi(⌝(a ∈ b) ∨ a = (b)i) and gα(a, b) = µi((a)0 1 σ(∃) ∨ ⌝((a)1 ∈ b) ∨ (i 1
0 ∧ (a)1 = β(b, i))). �en α remains faithful by the theorem on RE-formulae. Suppose �rst that u is xk+1
for some k < n. �en by faithfulness, ∣−PVble,u-, ∣−P,u- ∈ [,x1-, . . . , ,xn-], and ∣−Pf,u-[,x1-, . . . , ,xn-] = k̇,
so by de�nition of Sub,

∣−PSub,u-[,x1-, . . . , ,xn-][b1 , . . . , bn] = ([b1 , . . . , bn])k̇ ,

and since ∣−P([b1 , . . . , bn])k̇ = bk+1, this proves (1).
Suppose now that u is a variable which is not among the xi . By faithfulness, ∣−PVble,u- and ∣−P⌝(,u- ∈

[,x1-, . . . , ,xn-]), so the de�nition of Sub gives

∣−PSub,u-[,x1-, . . . , ,xn-][b1 , . . . , bn] = ,u-,

whence (1).
Suppose that u is su1 . . . um where s is a symbol of L of indexm that is not a variable and u1, . . . , um are

designators of L. We consider two cases. Suppose �rst that either s is not ∃ or u1 is not among the xi . �en
by faithfulness ∣−Pg,u-[,x1-, . . . , ,xn-] = 0̇, and so by de�nition of Rmv, ∣−PRmv xg,u-[,x1-, . . . , ,xn-] = x.
Using the representabiliy of len by Len, the de�nition of Sub gives

∣−PSub,u-[,x1-, . . . , ,xn-][b1 , . . . , bn] = µw(Lenw = Sṁ ∧ (w)0 = σ̇(s)
∧ ∀x′(x′ < ṁ → (w)Sx′ = Sub(,u-)Sx′ [,x1-, . . . , ,xn-][b1 , . . . , bn])). (2)

For k < m, ∣−P(,u-)Sk̇ = ,uk- by representability, so from (2), (ix) of ch. iii §5.2, and the induction hypoth-
esis, we obtain

∣−PSub,u-[,x1-, . . . , ,xn-][b1 , . . . , bn] = µw(Lenw = Sṁ ∧ (w)0 = σ̇(s)
∧ (w)1̇ = û1{x1 , . . . , xn ∣b1 , . . . , bn} ∧⋯ ∧ (w)ṁ = ûm{x1 , . . . , xn ∣b1 , . . . , bn}).

But the right-hand side is just the de�nition of []m+1, so that

∣−PSub,u-[,x1-, . . . , ,xn-][b1 , . . . , bn] = [σ̇(s), û1{x1 , . . . , xn ∣b1 , . . . , bn}, . . . , ûm{x1 , . . . , xn ∣b1 , . . . , bn}].
Now the term on the right is exactly û{x1 , . . . , xn ∣b1 , . . . , bn}. It remains to consider the case where s is
∃ and u1 is xk+1 for some k < n. By faithfulness, ∣−Pg,u-[,x1-, . . . , ,xn-] = Sk̇. By properties of Rmv,
∣−PRmv[x1 , . . . , xn]Sk̇ = [x1 , . . . , xk , xk+2 , . . . , xn]. From this by induction hypothesis,

∣−PSub,ur-Rmv[,x1-, . . . , ,xn-]g,u-[,x1-, . . . , ,xn-]Rmv[b1 , . . . , bn]g,u-[,x1-, . . . , ,xn-]
= ûr{x1 , . . . , xk , xk+2 , . . . , xn ∣b1 , . . . , bk , bk+2 , . . . , bn}. (3)

When we inject this in the de�nition of Sub, we obtain as above with (ix) of ch. iii §5.2

∣−PSub,u-[,x1-, . . . , ,xn-][b1 , . . . , bn] = µw(Lenw = Sṁ ∧ (w)0 = σ̇(s)
∧ (w)1̇ = û1{x1 , . . . , xk , xk+2 , . . . , xn ∣b1 , . . . , bk , bk+2 , . . . , bn}

∧⋯ ∧ (w)ṁ = ûm{x1 , . . . , xk , xk+2 , . . . , xn ∣b1 , . . . , bk , bk+2 , . . . , bn}).

Simplifying the right-hand side with the de�nition of []m+1, we �nd the desired result.
In the above proof, we had to use that ∣−PB[x1 , . . . , xn]k̇ = xk , that ∣−PRmv x0̇ = x, and that

∣−PRmv[x1 , . . . , xn]k̇ = [x1 , . . . , xk−1 , xk+1 , . . . , xn], and in this only does it di�er from a proof of the
representability of sub by Sub obtained from the theorem on RE-formulae. �ese are intensional proper-
ties of B and Rmv of which only numerical instances can be derived from representability conditions.

3.4 Describing theories. Let T be an arithmetical theory in P. We say that T describes T in P if L(T) de-
scribes L(T) and if Nlax positively represents nlaxT in P. We say thatT represents T in P ifL(T) represents
L(T) and if Nlax represents nlaxT in P.
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We let L(T) be the extension of L(L(T)) containing the symbols Nlax, Der, and �m. Let α and τ be
the numerical realizations of L(L(T)) de�ned in §3.2. We extend them to numerical realizations of L(T),
which we continue to denote by α and τ, as follows: Nlax+α and Nlax±τ are nlaxT ; Nlax−α is ⊺1; Der+α and
Der±τ are derT ; Der−α is ⊺2; �m+

α and�m+
τ are thmT ; �m−

α and�m−
τ are ⊺1.

Theorem. If T describes T , α is faithful in P. If T represents T , τ is faithful in P.

Proof. By the theorem on RE-formulae using the de�ning axioms of the symbols of L(T).

3.5 Describing interpretations. Let L and L′ be arithmetical languages in P with no parameters. We say
that an arithmetical interpretation I in P of L in L′ describes in P an interpretation I of L in L′ if

(i) L describes L in P and L′ describes L′ in P;
(ii) UI represents σ ′(UI) in P;
(iii) for every variable, function symbol, or predicate symbol s of L, ∣−P(σ̇(s))I = σ̇ ′(sI).

Let f (a) denote the expression number of the interpretation of the designator with expression number
a if indeed a is the expression number of a designator, and 0 otherwise. We now have two numerical
realizations, one of L(L) associated with L and L, and one of L(L′) associated with L′ and L′. We let α
extend them both and we further let (UI)α be σ ′(UI) and Intα be f . Using (i)–(iii) and the de�ning axiom
of Int, an application of the theorem on RE-formulae shows that if I describes an interpretation I of L in
L′, then α is faithful in P, i.e.,

∣−PInt,a- = ,aI-′ and (4)
∣−PInt,A- = ,AI-′ . (5)

Proposition. Suppose that T describes (resp. represents) T , that T′ describes T ′, that I is an arith-
metical interpretation of L(T) in L(T′), and that I describes an interpretation I of T in T ′. �en TI

describes (resp. represents) T .

Proof. Let A be a nonlogical axiom of T . �en ∣−T′AI and hence ∣−P�m′,AI-′. Since ∣−P,AI-′ = Int,A-,
we obtain ∣−P�m′ Int,A-. By de�nition of NlaxI, ∣−PNlaxI,A-. If moreover T represents T and a is
not the expression number of a nonlogial axiom of T , then ∣−P⌝Nlax ȧ and so by de�nition of NlaxI,
∣−P⌝NlaxI ȧ.
3.6 Generalization through interpretations. �e de�nitions given in this section can be naturally gener-
alized with no more than a notational cost. Consider an arithmetical language L in P and a �rst-order
language L. Let I be an interpretation of P in an arbitrary �rst-order theory P′ such that =I is = and such
that di�erent symbols of P have di�erent interpretations (the latter is not an actual restriction, since we
can always “duplicate” function or predicate symbols of P′ using extensions by de�nitions). We also as-
sume that 0̇I is 0̇ and that SI is S (again, not a restriction). We shall say that L describes L with respect to
I if the interpretations by I of the representability conditions (i)–(iv) of §3.2 are theorems of P′. Given
our assumptions on =I , 0̇I , and SI , it is equivalent to require that VrI represents vr in P′ and similarly for
(ii)–(iv). Recall that, by the interpretation extension theorem, I can be extended to L(L) and still be an
interpretation in an extension by de�nitions of P′ (since there are constants in P′, for example 0̇I). We
can then de�ne a numerical realization αI on the symbols sI for s a nonlogical symbols of L(L) by letting
(sI)±αI

be s±α (here we use that di�erent symbols of P have di�erent interpretations; otherwise αI might
not be well-de�ned). �en αI is faithful in P′. Indeed, α is faithful in P[Γ] where Γ is the collection of
the representability conditions (i)–(iv), and I is an interpretation of P[Γ] in P′, whence the result by the
interpretation theorem.
We de�ne similary the expressions “L represents L with respect to I” and “T describes or represents

T with respect to I”, and we have analogous results of faithfulness. We shall only use these generalized
notions to give more applicability to the result of §4.3.

§4 �e theorems on consistency proofs

4.1 �eMain Lemma. Let P be a good extension of PA. Suppose that L(N) is arithmetized from a numero-
tation and that L is an arithmetical language in P that describes L(N). We build an arithmetical theory
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TN in (an extension by de�nitions of) P by letting L(TN) be L and by de�ning NlaxN by

NlaxN x ↔ x = ṅ1 ∨⋯ ∨ x = ṅ9

where n1, . . . , n9 are the expression numbers of the axioms N1–N9. Since L describes L(N), ∣−PNlaxN x →
Fm x, and so TN is indeed an arithmetical theory in P. It is evident that NlaxN represents nlaxN in P, so
in particular TN describes N.

�e next theorem is a formalized statement of the theorem on RE-formulae for the numerical realiza-
tion ν.

Main Lemma. Let A be an RE-formula of L(N) and let x1, . . . , xn be distinct variables including the
variables free in A. �en

∣−PA→�mN Sub,A-[,x1-, . . . , ,xn-][Num x1 , . . . , Num xn].

Proof. Before embarking on the proof itself, we recall a few facts that will be used. Let y1, . . . , yk be any
distinct variables. By (1) of §3.3, we have

∣−PSub,u-[,y1-, . . . , ,yk-][Num y1 , . . . , Num yk] = û{y1 , . . . , yk ∣Num yk , . . . , Num yk}. (1)

In view of this and the equality theorem, we need only prove the theorem for a particular choice of
the variables x1, . . . , xn . By (xxi′) of §2.2, ∣−PΣub[,y1-, . . . , ,yn-][Num y1 , . . . , Num yn], and by (ix′)
and (xxii′) of §2.2, ∣−PFm x → Vble y → Subtl xyNum z, so for any formula B of L(N), since ∣−PFm,B-
and ∣−PVble,x-, the formalized substitution rule yields

∣−P�mN,B-→�mN Sub,B-[,y1-, . . . , ,yk-][Num y1 , . . . , Num yk].

If A and B are formulae of L(N) such that ∣−NA↔ B, then

∣−P�mN Sub,A↔ B-[,y1-, . . . , ,yk-][Num y1 , . . . , Num yk]

by positive representability and the formalized substitution rule. Directly from the de�nition of Sub, we
see that ∣−PSubEqv xx′yz = Eqv Sub xyz Sub x′yz, and so we obtain

∣−P�mN Sub,A-[,y1-, . . . , ,yk-][Num y1 , . . . , Num yk]
↔�mN Sub,B-[,y1-, . . . , ,yk-][Num y1 , . . . , Num yk]

by (viii) of §2.6. �is applies in particular if A and B are numerically equivalent. �us we may suppose
thatA is a strict RE-formula. �is is our hypothesis from now on, and we prove the theorem by induction
on the length of A.
Suppose that A is x = 0̇. Since ∣−N0̇ = 0̇, we have ∣−P�mN[=̇, 0̈, 0̈] because TN describes N,

whence ∣−P�mN[=̇, Num 0̇, 0̈] by de�nition of Num. From this by the equality theorem, ∣−Px = 0̇ →
�mN[=̇, Num x, 0̈], which is the desired result by (1).
Suppose that A is y = Sx. Since ∣−Nx = x we obtain ∣−P�mN,x = x- whence ∣−P�mN[=̇, NumSx,

NumSx] by the formalized substitution rule. By de�nition of Num, ∣−PNumSx = [σ̇(S), Num x], and so
∣−P�mN[=̇, NumSx, [σ̇(S), Num x]] by the equality theorem. From this by the equality theorem, ∣−Py =
Sx →�mN[=̇, Num y, [σ̇(S), Num x]].
Suppose thatA is z = x+y. We let a be [=̇, Num(x+ y), [σ̇(+), Num x , Num y]]. Since ∣−Nx = x+ 0̇, we

have ∣−P�mN,x = x + 0̇-, whence ∣−P�mN[=̇, Num x , [σ̇(+), Num x , 0̈]] by the formalized substitution
rule. Since ∣−PNum 0̇ = 0̈, we obtain

∣−P�mN a[y∣0̇]. (2)

Since ∣−Nz = x + y → Sz = x + Sy, we have ∣−P�mN,z = x + y → Sz = x + Sy-, and hence
∣−P�mN Imp[=̇, Num z, [σ̇(+), Num x , Num y]][=̇, [Ṡ, Num z], [σ̇(+), Num x , [Ṡ, Num y]]]

by the formalized substitution rule, and

∣−P�mN Imp[=̇, Num z, [σ̇(+), Num x , Num y]][=̇, NumSz, [σ̇(+), Num x , NumSy]]
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by the de�nition of Num. From this by the substitution rule, N4, and the formalized detachment rule, we
obtain

∣−P�mN a→�mN a[y∣Sy]. (3)

From (2) and (3) by the induction axioms, ∣−P�mN a. By the equality theorem and the substitution rule,
∣−Pz = x + y →�mN[=̇, Num z, [σ̇(+), Num x, Num y]].
Suppose that A is z = x ⋅ y. We let a be [=̇, Num(x ⋅ y), [σ̇(⋅), Num x , Num y]]. Since ∣−N0̇ = x ⋅ 0̇,

we have ∣−P�mN,0̇ = x ⋅ 0̇-, whence ∣−P�mN[=̇, 0̈, [σ̇(⋅), Num x , 0̈]] by the formalized substitution rule.
Since ∣−PNum 0̇ = 0̈, we obtain

∣−P�mN a[y∣0̇]. (4)

Since ∣−Nw = z + x → z = x ⋅ y → w = x ⋅ Sy, we have ∣−P�mN,w = z + x → z = x ⋅ y → w = x ⋅ Sy-, and
hence

∣−P�mN Imp[=̇, Numw , [σ̇(+), Num z, Num x]]
Imp[=̇, Num z, [σ̇(⋅), Num x , Num y]][=̇, Numw , [σ̇(⋅), Num x , NumSy]

by the formalized substitution rule and the de�nition of Num. Substituting z + x for w and using the
formalized detachement rule, we obtain

∣−P�mN[=̇, Num(z + x), [σ̇(+), Num z, Num x]]
→�mN[=̇, Num z, [σ̇(⋅), Num x , Num y]]→�mN[=̇, Num(z + x), [σ̇(⋅), Num x , NumSy]

whence

∣−P�mN[=̇, Num z, [σ̇(⋅), Num x , Num y]]→�mN[=̇, Num(z + x), [σ̇(⋅), Num x , NumSy]

by the previous case and the detachment rule. Substituting x ⋅ y for z and using N6, we obtain
∣−P�mN a→�mN a[y∣Sy]. (5)

From (4) and (5) by the induction axioms, ∣−P�mN a. By the equality theorem and the substitution rule,
∣−Pz = x ⋅ y →�mN[=̇, Num z, [σ̇(⋅), Num x, Num y]].
Suppose that A is x = y. From ∣−Nx = x we obtain ∣−P�mN[=̇, Num x, Num x] by the formalized

substitution rule, whence ∣−PA→�mN[=̇, Num x, Num y] by the equality theorem.
Suppose that A is x < y, and let B be x < y →�mN[σ̇(<), Num x , Num y]; by the substitution rule, it

will su�ce to prove ∣−PB. By N1 and the tautology theorem,

∣−PB[y∣0̇] (6)

Since ∣−Nx < y → x < Sy and ∣−Nx = y → x < Sy, we have, using the formalized substitution rule and the
de�nition of Num,

∣−P�mN Imp[σ̇(<), Num x , Num y][σ̇(<), Num x , NumSy] and
∣−P�mN Imp[=̇, Num x , Num y][σ̇(<), Num x , NumSy].

By the formalized detachment rule, these become

∣−P�mN[σ̇(<), Num x , Num y]→�mN[σ̇(<), Num x , NumSy] and
∣−P�mN[=̇, Num x , Num y]→�mN[σ̇(<), Num x , NumSy].

By the previous case, ∣−Px = y → �mN[=̇, Num x , Num y], and since ∣−Px < Sy → x < y ∨ x = y, we
obtain

∣−PB→ B[y∣Sy] (7)

by the tautology theorem. From (6) and (7) by the induction axioms, ∣−PB.
Suppose that A is x 1 y. Let B be the formula x 1 y →�mNNeg[=̇, Num x , Num y], to be derived.

Since ∣−NSx 1 0̇ we have ∣−P�mN,Sx 1 0̇- whence ∣−P�mNNeg[=̇, NumSy, Num 0̇] by the formal-
ized substitution rule and the de�nition of Num. By the equality theorem and the ∃-introduction rule,
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∣−P∃y(x = Sy) → �mNNeg[=̇, Num x , Num 0̇]. Now ∣−Px 1 0̇ → ∃y(x = Sy), whence ∣−Px 1 0̇ →
�mNNeg[=̇, Num x , Num 0̇] by the tautology theorem, i.e., ∣−PB[y∣0̇]. By the induction axioms and the
closure theorem, it remains to prove ∣−P∀xB→ ∀xB[y∣Sy]. By the ∀-introduction rule and the tautology
theorem, we need only prove

∣−Px = 0̇→ ∀xB→ B[y∣Sy] and (8)
∣−Px 1 0̇→ ∀xB→ B[y∣Sy]. (9)

Since ∣−Nx 1 0̇→ 0̇ 1 x, we obtain

∣−P�mNNeg[=̇, Num x , Num 0̇]→�mNNeg[=̇, Num 0̇, Num x]

by the formalized substitution rule, the de�nition of Num, and the formalized detachment rule. From this
and ∣−PB[y∣0̇], ∣−Px 1 0̇ → �mNNeg[=̇, Num 0̇, Num x], whence ∣−PSy 1 0̇ → �mNNeg[=̇, Num 0̇,
NumSy] by the substitution rule. By an instance of N1 and the detachment rule, ∣−P�mNNeg[=̇, Num 0̇,
NumSy] and hence by the equality theorem, ∣−Px = 0̇ → �mNNeg[=̇, Num x , NumSy], of which (8)
is a tautological consequence. By N2, ∣−Nx 1 y → Sx 1 Sy, and so ∣−P�mNNeg[=̇, Num x′ , Num y] →
�mNNeg[=̇, NumSx′ , NumSy] by the formalized substitution rule, the de�nition of Num, and the for-
malized detachment rule. From this by the equality theorem,

∣−Px = Sx′ →�mNNeg[=̇, Num x′ , Num y]→�mNNeg[=̇, Num x , NumSy]. (10)

By the substitution theorem,

∣−P∀xB→ x′ 1 y →�mNNeg[=̇, Num x′ , Num y]. (11)

From (10), (11), and ∣−Px = Sx′ → x 1 Sy → x′ 1 y we obtain

∣−Px = Sx′ → ∀xB→ x 1 Sy →�mNNeg[=̇, Num x , NumSy] (12)

by the tautology theorem, i.e., ∣−Px = Sx′ → ∀xB → B[y∣Sy]. By the ∃-introduction rule and ∣−Px 1 0̇ →
∃x′(x = Sx′), we obtain (9).
Suppose that A is ⌝(x < y), and let B be ⌝(x < y) → �mNNeg[σ̇(<), Num x , Num y], the formula

to be derived. By N7, ∣−P�mN,⌝(x < 0̇)-, whence ∣−P�mNNeg[σ̇(<), Num x , Num 0̇] by the formalized
substitution rule and the de�nition of Num. By the tautology theorem, ∣−PB[y∣0̇]. Now by N8, ∣−N⌝(x <
y)→ x 1 y → ⌝(x < Sy), so ∣−P�mN,⌝(x < y)→ x 1 y → ⌝(x < Sy)-. Hence

∣−P�mNNeg[σ̇(<), Num x , Num y]→�mNNeg[=̇, Num x , Num y]
→�mNNeg[σ̇(<), Num x , NumSy] (13)

by the formalized substitution rule, the de�nition of Num, and the formalized detachment rule. By the
previous case,

∣−Px 1 y →�mNNeg[=̇, Num x , Num y] (14)

By (13), (14), and an instance of N8, we obtain ∣−PB → B[y∣Sy] by the tautology theorem. So ∣−PB by the
induction axioms.
Suppose that A is B ∨ C where B and C are strict RE-formulae. By the induction hypothesis and the

tautology theorem,

∣−PA→�mN Sub,B-[,x1-, . . . , ,xn-][Num x1 , . . . , Num xn]
∨�mN Sub,C-[,x1-, . . . , ,xn-][Num x1 , . . . , Num xn],

whence the desired result by (v) of §2.2. If A is B ∧C, the proof is similar using (vi) of §2.2 instead.
Suppose that A is ∀x(x < y → B), where B is a strict RE-formula. By (1), we may suppose that y is

x1 and that x is not among x1, . . . , xn . We have ∣−NA[x1∣0̇] by N7, and so ∣−P�mN Sub,A[x1∣0̇]-[,x2-, . . . ,
,xn-][Num x2 , . . . , Num xn] by the formalized substitution rule. By (1),

∣−PSub,A-[,x1-, . . . , ,xn-][Num 0̇, Num x2 , . . . , Num xn]
= Sub Sub,A-[,x1-][Num 0̇][,x2-, . . . , ,xn-][Num x2 , . . . , Num xn],
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and by the de�nition of Num, ∣−P,A[x1∣0̇]- = Sub,A-[,x1-][Num 0̇], whence

∣−P�mN Sub,A-[,x1-, . . . , ,xn-][Num 0̇, Num x2 , . . . , Num xn]

by the equality theorem. Hence

∣−PA[x1∣0̇]→�mN Sub,A-[,x1-, . . . , ,xn-][Num 0̇, Num x2 , . . . , Num xn] (15)

by the tautology theorem. Let B′ be a variant of B in which x1 is substitutible for x. From N8 we obtain
easily ∣−NA → B′[x∣x1] → A[x1∣Sx1], whence ∣−P�mN,A → B′[x∣x1] → A[x1∣Sx1]-. By the formalized
substitution rule, (1), the de�nition of Num, and the formalized detachment rule, we obtain

∣−P�mN Sub,A-[,x1-, . . . , ,xn-][Num x1 , . . . , Num xn]
→�mN Sub,B′-[,x-, ,x1-, . . . , ,xn-][Num x1 , Num x1 , . . . , Num xn]

→�mN Sub,A-[,x1-, . . . , ,xn-][NumSx1 , Num x2 , . . . , Num xn]. (16)

By induction hypothesis, the variant theorem, the substitution rule, and the remarks at the beginning of
the proof,

∣−PB′[x∣x1]→�mN Sub,B′-[,x-, ,x1-, . . . , ,xn-][Num x1 , Num x1 , . . . , Num xn]. (17)

As a tautological consequence of (16), (17), and ∣−PA[x1∣Sx1]→ A ∧ B′[x∣x1], we obtain

∣−P(A→�mN Sub,A-[,x1-, . . . , ,xn-][Num x1 , . . . , Num xn])
→ A[x1∣Sx1]→�mN Sub,A-[,x1-, . . . , ,xn-][NumSx1 , Num x2 , . . . , Num xn]. (18)

From (15) and (18) by the induction axioms, we obtain the desired result.
Finally, suppose that A is ∃xB where B is a strict RE-formula. Here we assume that x is not among

x1, . . . , xn . �e formula B → A is a substitution axiom, and hence ∣−P�mN,B → A-. By the formalized
substitution rule and the formalized detachment rule,

∣−P�mN Sub,B-[,x-, ,x1-, . . . , ,xn-][Num x, Num x1 , . . . , Num xn]
→�mN Sub,A-[,x1-, . . . , ,xn-][Num x1 , . . . , Num xn].

and so by induction hypothesis,

∣−PB→�mN Sub,A-[,x1-, . . . , ,xn-][Num x1 , . . . , Num xn].

�en by the ∃-introduction rule, we obtain the desired result.
Let L be an extension of L(N) and let L describe L in P. We de�ne an arithmetical language LN in P

as follows. We set VrN x = Vr x, FuncN xy ↔ (y = 0̇ ∧ x = σ̇(0̇)) ∨ (y = 1̇ ∧ x = σ̇(S)) ∨ (y = 2̇ ∧ x =
σ̇(+)∨x = σ̇(⋅)), PredN xy↔ (y = 2∧x = σ̇(=)∨x = σ̇(<)), ∨̇N = σ̇(∨), ⌝̇N = σ̇(⌝), ∃̇N = σ̇(∃), =̇N = σ̇(=),
0̈N = σ̇(0̇), and ṠN = σ̇(S). We let σN be the restriction of the numerotation σ to L(N), and we let L(N)
be arithmetized from σN. It is then obvious that LN describes L(N). Since L describes L and since L is an
extension of L(N), we have ∣−PFunc σ̇(f)ṅ and ∣−PPred σ̇(p)ṅ for all n-ary function and predicate symbols
of L(N), and so L is an extension of LN by de�nition of FuncN and PredN.
Suppose now that T is an extension of N and that T describes T in P. We can construct LN and σN as

above so thatLN describes L(N) andL(T) is an extension ofLN. We can then de�ne as at the beginning of
this paragraph the arithmetical theory TN with language LN which describes N, and we claim that T is an
extension of TN. It su�ces to prove ∣−P�m ṅ i for 1 ≤ i ≤ 9. �is follows from the facts that T describes
T and that N1–N9 are theorems of T . �en by lemma 2 of §2.6, we have ∣−P�mN x →�m x, and so

Corollary. Let A be an RE-formula of L(N) and let x1, . . . , xn be distinct variables including the
variables free in A. If T describes an extension T of N in P, then

∣−PA→�mSub,A-[,x1-, . . . , ,xn-][Num x1 , . . . , Num xn].
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Note that the corollary uses the fact thatNhas �nitelymany nonlogical symbols and nonlogical axioms
in an essential way.

4.2 �e theorems on consistency proofs. In this paragraph we shall prove several general versions of the
result known as Gödel’s second incompleteness theorem. We now assume that our �xed coding function
symbol B is recursive on L(N) in P. An arithmetical theory T in P will be called recursively enumerable if
Ω, Vr, Func, Pred, ∨̇, ⌝̇, ∃̇, =̇, 0̈, Ṡ are recursive on L(N) and if Nlax is recursively enumerable on L(N). In
this case, �m is recursively enumerable on L(N).

Theorem. Let P0 be an extension of PA, P a good conservative extension of P0, T an extension of P0
arithmetized from a numerotation, and T a recursively enumerable arithmetical theory in P which
describes T . LetD be a formula of P0 in which only x is free. If ∣−P�m x↔ D, thenD with x satis�es
in P0 the derivability conditions for T .

Proof. �e �rst derivability condition is a special case of the positive representability of thmT by �m in
P, and the second derivability condition follows from ∣−P,A → B- = Imp,A-,B- and an instance of (ii)
of §2.6.
Since �m is recursively enumerable on L(N), there is an RE-formula A of L(N) in which only x is

free such that ∣−P�m x↔ A. By the hypothesis on D, ∣−PD↔ A. Since P0 and hence T is an extension
of N, the corollary of §4.1 yields ∣−PA→�mSub,A-[,x-][Num x], whence

∣−PD→ D[x∣ Sub,A-[,x-][Num x]]. (19)

By conservativity, we also have ∣−P0D ↔ A, and since T is an extension of P0, ∣−TD ↔ A, whence
∣−P�m,D ↔ A- by positive representability. By the formalized substitution rule, ∣−P�mSub,D ↔
A-[,x-][Num x]. By properties of Sub and (viii) of §2.6,

∣−P�mSub,D-[,x-][Num x]↔�mSub,A-[,x-][Num x],

and hence, by the hypothesis onD,

∣−PD[x∣ Sub,D-[,x-][Num x]]↔ D[x∣ Sub,A-[,x-][Num x]].

From this and (19), we obtain
∣−PD→ D[x∣ Sub,D-[,x-][Num x]]. (20)

Let A be a closed formula of T . From (20) by the substitution rule, we obtain

∣−PD[x∣,A-]→ D[x∣ Sub,D-[,x-][Num,A-]].

But ∣−PSub,D-[,x-][Num,A-] = ,D[x∣,A-]- because L(T) describes L(T), and hence
∣−PD[x∣,A-]→ D[x∣,D[x∣,A-]-].

Since P is a conservative extension of P0, this proves that D with x satis�es in P0 the third derivability
condition for T .

Note that (ii) of §2.6 (the formalized detachment rule) and (20) above are much stronger than the
second and third derivability conditions: the latter consist of in�nitely many numerical instances of the
former.

Theorem on Consistency Proofs 1. Let P0 be an extension of PA, P a good conservative extension
of P0, T an extension of P0 arithmetized from a numerotation, and T a recursively enumerable arith-
metical theory in P which describes T . If C is a formula of P0 such that ∣−PC→ Con and if ∣−TC, then
T is inconsistent.

Proof. By (xi) of §2.6, ∣−PCon ↔ ∀x(Fm x → ⌝�m x ∨ ⌝�mNeg x), whence by the substitution the-
orem, ∣−PCon → Fm,0̇ = 0̇- → ⌝�m,0̇ = 0̇- ∨ ⌝�mNeg,0̇ = 0̇-. But ∣−PFm,0̇ = 0̇-, ∣−P�m,0̇ = 0̇-,
and ∣−PNeg,0̇ = 0̇- = ,0̇ 1 0̇- because T describes T , and so by the tautology theorem and the equality
theorem,

∣−PC→ ⌝�m,0̇ 1 0̇-. (21)
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Since T is recursively enumerable, there is a formula D of L(N) in which only x is free such that
∣−P�m x ↔ D. �en by the previous theorem,Dwith x satis�es in P0 (and therefore also in T) the deriv-
ability conditions for T . By (21), ∣−PC→ ⌝D[x∣,0̇ 1 0̇-], whence by conservativity, ∣−P0C→ ⌝D[x∣,0̇ 1 0̇-].
By the hypothesis and the detachment rule, ∣−T⌝D[x∣,0̇ 1 0̇-]. By the corollary of §1.2, T is inconsis-
tent.

Note that a formula C as in the statement of the theorem on consistency proofs always exists. �is is
because there are formulae A and B of L(N) satisfying ∣−PFm x ↔ A and ∣−P�m x ↔ B, and hence we
can take C to be the formula ∃x(A ∧ ⌝B) of L(N).
Theorem on Consistency Proofs 2. Let P0, P, T , and T be as in the �rst theorem on consistency
proofs. Let T ′ be a �rst-order theory arithmetized from a numerotation, I an interpretation of T in
T ′, T′ an arithmetical theory in P which describes T ′, and I an arithmetical interpretation in P of T
in T′ which describes I. If C is a formula of P0 such that ∣−PC → Con′ and if ∣−T′CI , then T[C] and
T ′ are inconsistent.

Proof. Wede�ne an arithmetical theoryT∗ in an extension by de�nitions P′ of P as follows. Its language is
L(T) and Nlax∗ x ↔ Nlax x∨x = ,C-. ClearlyT∗ describes T[C]. Assume ∣−T′CI . Now since ∣−PInt,C- =
,CI-′ and ∣−P�m′,CI-′, we �nd that I is an arithmetical interpretation of T∗ in T′. By the corollary to
the arithmetical interpretation theorem, ∣−PCon′ → Con∗. As T is recursively enumerable, T∗ is also
recursively enumerable. �erefore we can �nd a formula A of L(N) such that ∣−PCon∗ ↔ A, and we
have ∣−PC → A. Since P is a conservative extension of P0 and T is an extension of P0, ∣−T[C]A. By the
�rst theorem on consistency proofs applied to P0, P′, T[C], and T∗, T[C] is inconsistent. But I is an
interpretation of T[C] in T ′, so T ′ is inconsistent by the interpretation theorem.

In practice, verifying that I is an arithmetical interpretation of T in T′ can be quite technical. It turns
out that, to obtain the conlusion of the second theorem on consistency proofs, it is enough that I be an
arithmetical interpretation ofL(T) inT′, provided thatTI is recursively enumerable. For then, as we know,
I is an interpretation of TI in T′ and TI describes T , so the hypotheses of the theorem remain valid if we
replace T by TI. For TI to be recursively enumerable, it su�ces that UI and ()I be recursive on L(N) and
that T′ be recursively enumerable. We shall discuss a concrete example of this in §6.3.

4.3 A counterexample. In this paragraph we consider the following specialization of the hypotheses of
the theorems on consistency proofs: P0 is a good extension of PA and P is an extension by de�nitions of
P0. Let T be an extension of P0, and let T be an arithmetical theory in P. We say that the pair (T ,T) is
re�exive if ∣−TCon↾ṅ for all n (by this we really mean that a translation of Con↾ṅ into P0 is a theorem of T).
More generally, let I be an interpretation of P0 in T , with P0, P, and T as before. Assume that =I is = and
that I satis�es the other nonrestrictive assumptions of §3.6. We say that the pair (T ,T) is re�exive with
respect to I if ∣−T(Con↾ṅ)I for all n. �is concept is only interesting when T describes T with respect to
I, in which case its meaning is close to “T proves the consistency of all its subtheories with �nitely many
nonlogical axioms”. We shall see that this implies “T can prove its own consistency”. However, we will not
be able to deduce that T is inconsistent, because one hypothesis of the theorem on consistency proofs will
not be ful�lled, namely, that of recursive enumerability.

�e result of this paragraph was discovered by Feferman [3]. Its relevancy will only appear once we
know of interesting theories having the re�exivity property. We do not discuss the question of re�exivity
further here (but see §6.3).
We shall admit the following result without proof: if P is a good extension of PAandT is an arithmetical

theory in P, then ∣−PCon↾0̇. �is is of course a formalization of the fact that a �rst-order theory with no
nonlogical axioms is consistent (cf. ch. ii §1.2). �e reader should convince himself that the methods used
in the proof of this fact are all amenable to formalization within PA.

Lemma. Let P be a good extension of PA and T an arithmetical theory in P. Let T′ be the arithmetical
theory with the same language as T and with Nlax′ x ↔ Nlax x ∧Con↾Sx . �en ∣−PCon′.

Proof. Note that T is an extension of T′, and hence

∣−PCon→ Con′ . (22)
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By (iii) of §2.4, ∣−P⌝Con→ ∃z⌝Con↾z . By the least number principle,

∣−P⌝Con→ ∃z(⌝Con↾z ∧∀x(x < z → Con↾x )). (23)

Now ∣−PCon↾0̇, and so ∣−P⌝Con↾z → ∃y(z = Sy). From this and (23), we obtain

∣−P⌝Con→ ∃y(⌝Con↾Sy ∧∀x(x < Sy → Con↾x )). (24)

Using the obvious theorems ∣−Px < y → Sx < Sy, ∣−P∀x(x < Sy → Con↾x ) → Con↾y , and ∣−P⌝Con↾Sz →
Con↾Sx → x < z together with (24), we infer ∣−P⌝Con → ∃z(Con↾z ∧∀x(x < z ↔ Con↾Sw)). From
the de�nition of Nlax′ comes ∣−P⌝Con → ∃z(Con↾z ∧∀x(Nlax↾z x ↔ Nlax′ x)). By lemma 2 of §2.6
and the remark following it, ∣−P∀x(Nlax↾z x ↔ Nlax′ x) → Con↾z ↔ Con′, and therefore ∣−P⌝Con →
∃z(Con↾z ∧(Con↾z ↔ Con′)), whence

∣−P⌝Con→ Con′ . (25)

From (22) and (25) by the tautology theorem, ∣−PCon′.

Theorem. Let P0, P, T , and I be as above. Let T be an arithmetical theory that describes (resp. repre-
sents) T with respect to I. If (T ,T) is re�exive with respect to I, there is an arithmetical theory T′ in
an extension by de�nitions of P which describes (resp. represents) T with respect to I and such that
∣−PCon′. In particular, ∣−T(Con′)I .

Proof. De�ne T′ as in the lemma, so that ∣−PCon′. Suppose that T describes T with respect to I. Let
A be a nonlogical axiom of T . �en ∣−T(Nlax,A-)I by hypothesis and ∣−T(Con↾S,A-)I by re�exivity, so
∣−T(Nlax′,A-)I by de�nition of Nlax′ and the interpretation theorem. If moreoverT represents T and a is
not the expression number of a nonlogical axiom of T , then ∣−T(⌝Nlax ȧ)I and so ∣−T(⌝Nlax′ ȧ)I by the
tautology theorem.

§5 Arithmetical completeness

5.1 �e interpretation in PA. In this section we shall prove that any reasonable �rst-order theory T has an
interpretation in the �rst-order theory obtained from PA by adding a suitable axiom expressing the con-
sistency of T . �e proof is a direct formalization of the result of model theory known as the completeness
theorem. We begin with the de�nition of the interpretation.
Let T be a �rst-order theory arithmetized from a numerotation, and letT be an arithmetical theory in

P which describes T . We de�ne an interpretation I of L(T) in L(P′), where P′ is an extension by de�nitions
of P, by

(i) UIx ↔ Tm x ∧Cl x;
(ii) fIx1 . . . xn = [σ̇(f), x1 , . . . , xn];
(iii) pIx1 . . . xn ↔�m[σ̇(p), x1 , . . . , xn].

Lemma 1. Let u be a designator of L(T). If x1, . . . , xn are distinct variables including the variables free
in u, then ∣−PUIx1 → ⋯→ UIxn → Cl Sub,u-[,x1-, . . . , ,xn-][x1 , . . . , xn].

Proof. �is follows from §2.2 (xv′) and the fact that L(T) describes L(T).

Lemma 2. If ∣−P∃x Func x0̇, then I is an interpretation of L(T) in P′.
Proof. Wemust prove

∣−P∃xUIx (1)

and for every function symbol f of T ,

∣−PUIx1 → ⋯→ UIxn → UIfIx1 . . . xn . (2)

Now (1) follows from the hypothesis and ∣−PFunc x0̇→ UI[x] by the ∃-introduction rule and the substitu-
tion axioms. Let f be an n-ary function symbol of T . �en ∣−PTm,fx1 . . . xn-, and hence ∣−PTm fIx1 . . . xn
by (xi′) of §2.2. �en (2) follows from this and lemma 1.
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Lemma 3. For every term a of T , if x1, . . . , xn are distinct variables including the variables occurring in
a,

∣−PaI = Sub,a-[,x1-, . . . , ,xn-][x1 , . . . , xn].

Proof. By induction on the length of a. If a is a variable, then, since a is one of the xi , ∣−Pa = Sub,a-[,x1-,
. . . , ,xn-][x1 , . . . , xn]. Suppose that a is fa1 . . . an . By the de�nition of fI and the substitution rule, ∣−PaI =
[σ̇(f), (a1)I , . . . , (an)I]. By induction hypothesis,

∣−PUIx1 → ⋯→ UIxn → (ai)I = Sub,ai-[,x1-, . . . , ,xn-][x1 , . . . , xn]
for each i, and so

∣−PUIx1 → ⋯→ UIxn →
aI = [σ̇(f), Sub,ai-[,x1-, . . . , ,xn-][x1 , . . . , xn], . . . , Sub,ai-[,x1-, . . . , ,xn-][x1 , . . . , xn]]

by the tautology theorem and the equality theorem. By the de�nition of Sub, we obtain ∣−PUIx1 → ⋯ →
UIxn → aI = Sub,a-[,x1-, . . . , ,xn-][x1 , . . . , xn].

Lemma4. Suppose that ∣−PCon∧Cm∧Hk. For every formulaA of T , if x1, . . . , xn are distinct variables
including the variables free in A,

∣−PUIx1 → ⋯→ UIxn → AI ↔�mSub,A-[,x1-, . . . , ,xn-][x1 , . . . , xn].

Proof. We use induction on the length of A. We shall denote by u the two-term expression [,x1-, . . . ,
,xn-][x1 , . . . , xn]. Suppose that A is pa1 . . . ak . By lemma 3, ∣−P(ai)I = Sub,ai-u for each i. By de�nition
of pI and the equality theorem, we obtain

∣−PAI ↔�m[σ̇(p), Sub,a1-u, . . . , Sub,ak-u],

whence by properties of Sub, ∣−PAI ↔�mSub,A-u, from which the desired result follows by the tautol-
ogy theorem.
Recall that, by (xiii) of §2.6, ∣−PCon∧Cm implies

∣−PFm x → Cl x →�mNeg x ↔ ⌝�m x . (3)

Suppose that A is B ∨ C. By lemma 1, ∣−PUIx1 → ⋯ → UIxn → Cl Sub,A-u, ∣−PUIx1 → ⋯ → UIxn →
Cl Sub,B-u, and ∣−PUIx1 → ⋯→ UIxn → Cl Sub,C-u, so by (3),

∣−PUIx1 → ⋯→ UIxn →�mSub,⌝A-u↔ ⌝�mSub,A-u, (4)

∣−PUIx1 → ⋯→ UIxn →�mSub,⌝B-u↔ ⌝�mSub,B-u and UIx1 → ⋯→ UIxn →�mSub,⌝C-u↔
⌝�mSub,C-u. �us by (vi) of §2.6,

∣−PUIx1 → ⋯→ UIxn → ⌝�mSub,B-u ∧ ⌝�mSub,C-u↔�mSub,⌝B ∧ ⌝C-u. (5)

By (vii) of §2.6,
∣−P�mSub,⌝B ∧ ⌝C-u↔�mSub,⌝A-u. (6)

From (4), (5), and (6) by the tautology theorem, ∣−PUIx1 → ⋯→ UIxn →�mSub,B-u∨�mSub,C-u↔
�mSub,A-u. By induction hypothesis and the tautology theorem, we obtain ∣−PUIx1 → ⋯ → UIxn →
AI ↔�mSub,A-u, as required.
IfA is ⌝B, the result follows from (4), with B instead ofA, the induction hypothesis, and the tautology

theorem.
Finally, suppose that A is ∃xB. By properties of Sub, we may assume that x is not among x1, . . . , xn ,

and we have

∣−PUIx → Sub Sub,B-u[,x-][x] = Sub,B-[,x-, ,x1-, . . . , ,xn-][x, x1 , . . . , xn],
so by induction hypothesis, the tautology theorem, and the equality theorem

∣−PUIx → UIx1 → ⋯→ UIxn →�mSubSub,B-u[,x-][x]↔ BI . (7)
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Since ∣−PHk, ∣−PUIx1 → ⋯ → UIxn → Cl Sub,A-u, and ∣−PFunc x0̇ → UI[x], we obtain from (7) that
∣−PUIx1 → ⋯→ UIxn →�mSub,A-u→ ∃x(UIx ∧ BI), i.e.,

∣−PUIx1 → ⋯→ UIxn →�mSub,A-u→ AI . (8)

�e formula B → A is a substitution axiom of T , and so by the formalized substitution rule and the
formalized detachment rule, ∣−P�mSub,B-[,x-, ,x1-, . . . , ,xn-][x, x1 , . . . , xn] → �mSub,A-u, whence
by the induction hypothesis, the tautology theorem, and the ∃-introduction rule, ∣−PUIx1 → ⋯→ UIxn →
AI →�mSub,A-u. Together with (8), this completes the proof.

In the statement of the following theorem, “an extension by de�nitions of P[Con, Cm,Hk]” means of
course an extension by de�nitions of P′[Con, Cm,Hk] for some extension by de�nitions P′ of P in which
Con, Cm, and Hk are de�ned. We shall commit this abuse of terminology several times before the end of
this chapter.

Theorem. If ∣−P∃x Func x0̇, then I is an interpretation of T in an extension by de�nitions of P[Con,
Cm,Hk].

Proof. We prove directly that ∣−P[Con,Cm,Hk]AI for every theorem A of T . Let x1, . . . , xn be the variables
free in A in reverse alphabetical order. Since P[Con, Cm,Hk] is a good extension of PA satisfying the
hypothesis of lemma 4, we have

∣−P[Con,Cm,Hk]UIx1 → ⋯→ UIxn → AI ↔�mSub,A-[,x1-, . . . , ,xn-][x1 , . . . , xn].

Since T describes T , ∣−PUIx1 → ⋯ → UIxn →�mSub,A-[,x1-, . . . , ,xn-][x1 , . . . , xn] by the formalized
substitution rule. By the tautology theorem, ∣−P[Con,Cm,Hk]AI .

5.2 �e arithmetical completeness theorem. As in the proof of the completeness theorem, it remains to
build an extension T′ of T for which ∣−PCon→ Con′ ∧Cm′ ∧Hk′. Here we only state the relevant results
without complete proofs.

Arithmetical Henkin’s Lemma. Let P be a good extension of PA in which there is an arithmetical
theory T. �en in some recursive extension by de�nitions P′ of P there are arithmetical theories T∗
and Tc such that T∗ di�ers from T by a change of numerotation, Tc is an extension of T∗, ∣−P′Hkc,
and ∣−P′Fm∗ x →�mc x →�m∗ x.

De�ne a unary function symbol f by fx = x ⋅2̇. �en ∣−Pfx = f y → x = y. We letT∗ be the arithmetical
theory Tf , so that f is a change of numerotation from T to T∗. De�ne L(Tc) as follows: Vrc x = Vr∗ x;
Funcc xy ↔ Func∗ xy ∨ y = 0̇ ∧ ∃z(x = S(z ⋅ 2̇)); Predc xy ↔ Pred∗ xy; for e among ∨̇, ⌝̇, ∃̇, =̇, 0̈, and Ṡ,
ec = e∗. Set

Nlaxc x ↔ Nlax∗ x ∨ ∃y(y ≤ x ∧ x = Impc gy Subc(gy)2[(gy)1][[S(y ⋅ 2̇)]])

where g is de�ned by recursion so that ∣−Pgx = µy(Clc y ∧ y = Instc(y)1(y)2 ∧ ∀z(z < y → y 1 gz)).
It is then easy to prove that ∣−PHkc. �e proof of the last assertion, however, is not as easy. It mainly
requires to derive in P a formalized version of the theorem on constants. Obviously the last assertion
implies ∣−PCon∗ → Conc, and by the proposition of §2.5, we have in fact ∣−PCon→ Conc.
Of course,Tc also describes a suitably arithmetized Henkin extension Tc of T , but this is of no interest

here.

Remark. �e construction of the arithmetical Henkin extensionTc and the derivation of its conservativity
over T are the �rst step towards an arithmetical Herbrand’s theorem. As Herbrand’s theorem is a basis
for many �nitary proofs of consistency, this can be used to formalize those proofs within PA. We can
prove, for instance, that ∣−PAConN for an appropriate arithmetical theory TN describing N in PA. �is
is an argument in favour of the informal thesis that all �nitary reasonings can be formalized in PA, or at
least those used in consistency proofs; if one believes this thesis, then the theorem on consistency proofs
acquires a newmeaning, namely: we cannot hope to prove the consistency of a �rst-order theory satisfying
the hypotheses of the theorem by �nitary methods.
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Arithmetical Lindenbaum’s Lemma. Let P be a good extension of PA in which there is an arith-
metical theory T. �en in some extension by de�nitions P′ of P there is an extension T′ of T with the
same language as T such that ∣−P′Cm′ and ∣−P′Con→ Con′.
De�ne g by

y = gx ↔ (Con ∧Ω[x] ∧ y = µz(Fm z ∧Cl z ∧ ⌝(z ∈ x) ∧ ⌝�m[x]Neg z))
∨ (⌝Con ∧Ω[x] ∧ y = µz(Fm z ∧Cl z ∧ ⌝(z ∈ x))) ∨ (⌝Ω[x] ∧ y = 0̇).

�e necessary existence conditions for this de�nition follow from ∣−PFm a ∧ Cl a ∧ ⌝(a ∈ x) ∧ ⌝(Neg a ∈
x) where a is Inst[Vr x][=̇, [Vr x], [Vr x]]. �en de�ne h by recursion so that ∣−Ph0̇ = [g0̇] and ∣−Px 1
0̇ → hx = [gh(x − 1̇)] ∗ h(x − 1̇), and �nally let Nlax′ x ↔ ∃y(x = (hy)0). �e proof that ∣−PCm′ is a
straightforward inspection of the de�nitions. �e proof that ∣−PCon → Con′ uses (iii) of §2.4. �at we
cannot expect P′ to be a recursive extension of P re�ects the nonconstructivity of the classical lemma.
It is clear from the de�nition of Hk that if T′ is an extension of T with the same language as T, then

∣−PHk → Hk′.
Arithmetical Completeness Theorem. Let T be a �rst-order theory arithmetized from a numero-
tation. Let P be a good extension of PA and T an arithmetical theory in P which describes T . �en
there is an interpretation of T in an extension by de�nitions of P[Con].

Proof. LetTc be constructed fromT as in Henkin’s lemma, so that ∣−PCon→ Conc. LetT′ be constructed
fromTc as in Lindenbaum’s lemma, so that ∣−PCm′ and ∣−PConc → Con′. �en ∣−P[Con]Con′ ∧Cm′ ∧Hk′
and ∣−P∃x Func′ x0̇. Since T′ is an extension of T, T′ describes T . By the theorem of §5.1, we �nd an
interpretation I of T in an extension by de�nitions of P[Con].

§6 Application to the �rst-order theory ZF

6.1 Describing PA. In this section we choose our �xed coding function symbol B in a recursive extension
by de�nitions of PA. We begin by de�ning an arithmetical theoryP in a recursive extension by de�nitions
of PA. �e symbols associated withPwill be written with the index “PA”. �e arithmetical languageL(P)
is given by the de�ning axioms: VrPA x = x + 9̇, FuncPA xy ↔ (y = 0̇ ∧ x = 4̇) ∨ (y = 1̇ ∧ x = 5̇) ∨ (y =
2̇ ∧ x = 6̇ ∨ x = 7̇), PredPA xy ↔ (y = 2̇ ∧ x = 3̇ ∨ x = 8̇), ∨̇PA = 0̇, ⌝̇PA = 1̇, ∃̇PA = 2̇, =̇PA = 3̇, 0̈PA = 4̇,
ṠPA = 5̇. It is obvious that L(P) is an arithmetical language in (an extension by de�nitions of) PA. We let
σPA be the numerotation L(N) de�ned by: σPA(∨) = 0, σPA(⌝) = 1, σPA(∃) = 2, σPA(=) = 3, σPA(0̇) = 4,
σPA(S) = 5, σPA(+) = 6, σPA(⋅) = 7, σPA(<) = 8, and if x is the (n + 1)th variable in the alphabetical order,
set σPA(x) = n + 9; we endow L(N) with the arithmetization obtained from σPA by β. It is then equally
obvious thatL(P) represents L(N). We let n1, . . . , n8 be the expression numbers of the axioms N1–N8 and
we de�ne

NlaxPA x ↔ x = ṅ1 ∨⋯ ∨ x = ṅ8 ∨ ∃y∃z(y < x ∧ z < x ∧ FmPA y ∧VblePA z
∧ x = ImpPA SubPA y[z][0̈PA] ImpPAGenPA z ImpPA y SubPA y[z][[ṠPA , z]]y).

Observe that NlaxPA is recursive on L(N). By the results of this chapter, it is clear that ∣−PANlaxPA x →
FmPA x, so that P is an arithmetical theory in PA, and that P represents PA. Since all the hypotheses
of the �rst theorem on consistency proofs are satis�ed when P0 and T are PA and P is the extension by
de�nitions of PA just de�ned, it follows that if ∣−PAConPA, then PA is inconsistent.
In this case the arithmetical completeness theorem yields an interpretation of PA in an extension by

de�nitions of PA[ConPA].

6.2 DescribingZF.�e language of ZF has a single nonlogical symbol ∈which is a binary predicate symbol.
�e axioms of ZF are

(i) ∀z(z ∈ x ↔ z ∈ y)→ x = y (extensionality axiom);
(ii) ∃y(y ∈ x)→ ∃y(y ∈ x ∧ ⌝∃z(z ∈ x ∧ z ∈ y)) (regularity axiom);
(iii) ∃w∀y(∀z(z ∈ y → z ∈ x)→ y ∈ w) (power set axiom);
(iv) ∃x(∃y(y ∈ x ∧∀z⌝(z ∈ y))∧∀y(y ∈ x → ∃z(z ∈ x ∧∀w(w ∈ z↔ w ∈ y∨w = y)))) (in�nity axiom);
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(v) ∃z∀x(x ∈ z↔ x ∈ y∧A) where x, y, and z are distinct and y and z do not occur inA (subset axioms);
(vi) ∀x∃z∀y(A↔ y ∈ z) → ∃z∀y(∃x(x ∈ w ∧A) → y ∈ z) where x, y, z, and w are distinct and z and w

do not occur in A (replacement axioms).

In elementary developments of ZF, one proves that there is an extension by de�nitions ZF′ obtained from
ZF by the adjunction of the �ve symbols 0̇, S, Nn, ⊕, and ⊗ such that the following interpretation I is an
interpretation of PA in ZF′: UI is Nn, =I is =, 0̇I is 0̇, SI is S, +I is ⊕, ⋅I is ⊗, and <I is ∈. We de�ne an
arithmetical language L as follows: Vr x = x + S9̇, Func xy ↔ (y = 0̇ ∧ x = 5̇) ∨ (y = 1̇ ∧ x = 6̇) ∨ (y =
2̇ ∧ x = 7̇ ∨ x = 8̇), Pred xy ↔ (y = 1̇ ∧ x = 0̇) ∨ (y = 2̇ ∧ x = 4̇ ∨ x = 9̇), ∨̇ = 1̇, ⌝̇ = 2̇, ∃̇ = 3̇, =̇ = 4̇, 0̈ = 5̇,
Ṡ = 6̇. Set σZF(Nn) = 0, σZF(∨) = 1, σZF(⌝) = 2, σZF(∃) = 3, σZF(=) = 4, σZF(0̇) = 5, σZF(S) = 6, σZF(⊕) = 7,
σZF(⊗) = 8, σZF(∈) = 9, and if x is the (n + 1)th variable in the alphabetical order, set σZF(x) = n + 10.
We now arithmetize L(ZF′) from the numerotation σZF, so that L represents L(ZF′). Let m1, . . . , m4 be
the expression numbers of the formulae (i)–(iv), and m5, . . . , m9 the expression numbers of the de�ning
axioms of 0̇, S, Nn,⊕, and⊗. Wenowde�ne an arithmetical theoryZ in a recursive extension by de�nitions
of PA. Its language is L and the other symbols associated with Z will be written with the index “ZF”. We
de�ne NlaxZF by

NlaxZF x ↔ x = ṁ1 ∨⋯ ∨ x = ṁ9 ∨A ∨ B

where A is

∃y∃z∃w∃x′(y < x ∧ z < x ∧w < x ∧ x′ < x
∧Vble y ∧Vble z ∧Vblew ∧ Fm x′ ∧ y 1 z ∧ z 1 w ∧ y 1 w ∧ ⌝Occ x′z ∧ ⌝Occ x′w

∧ x = InstwGen y Eqv[σ̇ZF(∈), y,w]Cnj[σ̇ZF(∈), y, z]x′)
and B is

∃y∃z∃w∃x′∃y′(y < x ∧ z < x ∧w < x ∧ x′ < x ∧ y′ < x ∧Vble y ∧Vble z
∧Vblew ∧Vble x′ ∧ Fm y′ ∧ y 1 z ∧ y 1 w ∧ y 1 x′ ∧ z 1 w ∧ z 1 x′ ∧w 1 x′

∧ ⌝Occ y′w ∧ ⌝Occ y′x′ ∧ x = ImpGen y InstwGen z Eqv y′[σ̇ZF(∈), z,w]
InstwGen z Imp Inst yCnj[σ̇ZF(∈), y, x′]y′[σ̇ZF(∈), z,w]).

It is clear that Z represents ZF′. By the arithmetical completeness theorem, there is an interpretation of ZF
in an extension by de�nitions of PA[ConZF].

6.3 Conclusion. We let ZF′, I, P, and Z be as in the previous paragraphs. We introduce an arithmeti-
cal interpretation I of L(P) in L(Z) by UI = σ̇ZF(Nn) and (x)I = Sx so that I describes I. Since I is
an interpretation of L(N) in ZF′, we have ∣−ZF′∃xNn x, and for every n-ary function symbol f of L(N),
∣−ZF′Nn x1 → ⋯→ Nn xn → Nn fIx1 . . . xn , where x1, . . . , xn are the n �rst variables in the reverse alphabet-
ical order. By the de�nition of FuncPA and the fact that Z describes ZF′, we obtain that I is an arithmetical
interpretation of L(P) in Z, and hence is an arithmetical interpretation of PI in Z. All the de�ned sym-
bols of PA introduced so far are recursive on L(N), soPI is certainly recursively enumerable. Moreover,
PI describes (in fact represents) PA by the proposition of §3.5. �us the hypotheses of the second theorem
on consistency proofs are satis�ed when P0 and T are PA, T ′ is ZF′, I is I, T is PI, T′ is Z, I is I, P is
an extension by de�nitions of PA in whichPI, Z, and I are de�ned, and C is a translation of ConZF into
PA. Instead of translating ConZF, it is also possible, by the interpretation extension theorem, to extend I
to an interpretation of P in an extension by de�nitions of ZF. �us by the second theorem on consistency
proofs, if ∣−ZF(ConZF)I , then ZF is inconsistent.
Finally, we mention, without proof and without having seen one, that (PA,P) is re�exive and that

(ZF,Z) is re�exive with respect to I. By the theorem of §4.3, there exist arithmetical theoriesP′ and Z′ in
an extension by de�nitions of PA, representing respectively PA and ZF′, the latter with respect to I, and
satisfying ∣−PACon′PA and ∣−ZF(Con′ZF)I .

•



Chapter Six
First-Order Set�eory

§1 �e �rst-order theory ZF

1.1 �e language and the axioms. We de�ne a �rst-order theory called Zermelo–Fraenkel set theory and
denoted byZFwhose only nonlogical symbol is the binary predicate symbol ∈ (recall that, according to ch. i
§2.5 (viii), we abbreviate ∈ab by (a ∈ b), dropping parentheseswhenpossible) andwhose nonlogical axioms
are the following:

(i) ∀z(z ∈ x ↔ z ∈ y)→ x = y (extensionality axiom);
(ii) ∃y(y ∈ x)→ ∃y(y ∈ x ∧ ⌝∃z(z ∈ x ∧ z ∈ y)) (regularity axiom);
(iii) ∃w∀y(∀z(z ∈ y → z ∈ x)→ y ∈ w) (power set axiom);
(iv) ∃x(∃y(y ∈ x ∧∀z⌝(z ∈ y))∧∀y(y ∈ x → ∃z(z ∈ x ∧∀w(w ∈ z↔ w ∈ y∨w = y)))) (in�nity axiom);
(v) ∃z∀x(x ∈ z↔ x ∈ y∧A) where x, y, and z are distinct and y and z do not occur inA (subset axioms);
(vi) ∀x∃z∀y(A↔ y ∈ z) → ∃z∀y(∃x(x ∈ w ∧A) → y ∈ z) where x, y, z, and w are distinct and z and w

do not occur in A (replacement axioms).

�e �rst-order theory obtained by omitting (ii) (resp. (iv)) is denoted by ZF− (resp. ZFω). We abbreviate
⌝(a ∈ b) to (a ∉ b).
We should note that the �rst-order theory ZF is o�en de�ned with the following axioms in place of (v)

and (vi):

(v′) ∃w∀x(∃z(x ∈ z ∧ z ∈ y)→ x ∈ w) (union axiom);
(vi′) ∀x∃z∀y(A↔ y = z) → ∃z∀y(y ∈ z↔ ∃x(x ∈ w ∧A)) where x, y, z, and w are distinct and z and w

do not occur in A (replacement axioms).

It turns out that the theory de�ned in this way is equivalent to ZF. We shall only use the axioms (i)–(vi)
above.

1.2 Good extensions. An extension T of ZF is called a good extension if (v) and (vi) are theorems of T
for any formula A of T . �ose theorems are then also called subset axioms and replacement axioms of T .
�is is certainly the case if T is obtained from ZF by the adjunction of new axioms and new constants (by
the substitution rule). Note also that if T ′ is an extension by de�nitions of a good extension T , then T ′ is
a good extension as well. For a translation of (v) or (vi) into T is obtained by replacing A by a translation
A∗ of A into T , so it is a subset or replacement axiom of T .

�e individuals whose behaviour ZF is meant to formalize are called sets. �e formula a ∈ b means
that a is a member of b, or an element of b, or that a belongs to b. A set a is then viewed as the collection
of all the sets which belong to a.

§2 De�nitions in ZF

2.1 Separation 1. In this section we shall give general methods to build extensions by de�nitions of ZF, as
well as introduce such extensions. We let T be a good extension of ZF,D a formula of T , and x, y1, . . . , yn ,
y, and y′ distinct variables such that x, y1, . . . , yn include the variables free inD. Denote byD′ the formula
∀x(x ∈ y↔ D).

Lemma 1. ∣−TD′ → D′[y∣y′]→ y = y′.

Proof. Note that D′[y∣y′] is ∀x(x ∈ y′ ↔ D). �e formula (x ∈ y↔ D) ∧ (x ∈ y′ ↔ D) → (x ∈ y↔ x ∈ y′)
is a tautology. By the distribution rule, ch. i §4.1 (vii), and the equivalence theorem, ∣−T∀x(x ∈ y ↔
D)∧∀x(x ∈ y′ ↔ D)→ ∀x(x ∈ y↔ x ∈ y′), that is, ∣−TD′ ∧D′[y∣y′]→ ∀x(x ∈ y↔ x ∈ y′). Finally, we get
∣−TD′ → D′[y∣y′] → y = y′ as a tautological consequence of the latter and a version of the extensionality
axiom, as was to be shown.

93
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Lemma 2. Suppose that
∣−T∃z∀x(D→ x ∈ z) (1)

for some z distinct from x and y and not occurring inD. �en ∣−T∃yD′.
Proof. By the subset axioms, ∣−T∃y∀x(x ∈ y ↔ x ∈ z ∧ D), whence ∣−T∀x(D → x ∈ z) → ∀x(D →
x ∈ z) ∧ ∃y∀x(x ∈ y ↔ x ∈ z ∧ D) by the tautology theorem. From this by the distribution rule, the
hypothesis, and the detachment rule, we obtain ∣−T∃z(∀x(D→ x ∈ z)∧∃y∀x(x ∈ y↔ x ∈ z∧D)), whence
∣−T∃z∃y∀x((D → x ∈ z) ∧ (x ∈ y↔ x ∈ z ∧D)) by prenex operations, ch. i §4.1 (vii), and the equivalence
theorem. From this and the tautology (D → x ∈ z) ∧ (x ∈ y ↔ x ∈ z ∧ D) → (x ∈ y ↔ D), we infer
∣−T∃y∀x(x ∈ y↔ D) by the distribution rule, the ∃-introduction rule, and the detachment rule, as was to
be shown.

Theorem on set definitions 1. If ∣−T∃z∀x(D→ x ∈ z) is veri�ed for some z distinct from x and not
occurring inD, then existence and uniqueness conditions for y inD′ are theorems of T .

Proof. Note that if z is y, we may replace z by a suitable variable by the variant theorem. Hence, the
hypothesis of Lemma 2 is satis�ed.

A formula of the form of (1) with z distinct from x and not occurring in D will be called an existence
condition for the set of all x such that D.
By the theorem on functional de�nitions, if some existence condition for the set of all x such that

D is a theorem of T , the �rst-order theory obtained from T by the adjunction of a new n-ary function
symbol f and the new axiom y = fy1 . . . yn ↔ ∀x(x ∈ y ↔ D) is an extension by de�nitions of T . We
o�en abbreviate by fy1 . . . yn = {x ∣ D} the de�ning axiom of f . �is is not a strictly legit abbreviation
since the variable y appearing in the de�ning axiom cannot be recovered from it, but di�erent choice of
the variable (as long as it is distinct from x, y1, . . . , yn) yield equivalent theories by the substitution rule.
Sometimes we also abbreviate the term fa1 . . . an by {x ∣D[y1 , . . . yn ∣a1 , . . . , an]} if the ai are substitutible
for the yi . Again, this abbreviation is not really legit, for it does not contain enough information to recover
what it abbreviates. However, this will not lead to any confusion; for if the symbols f and f ′ happen to be
de�ned so that fa1 . . . an and f ′b1 . . . bm yield the same abbreviation as above, then it is easily seen using
the extensionality axiom that ∣−T′ fa1 . . . an = f ′b1 . . . bm ; so by the equality theorem, the explicit de�nition
of f does not matter.

�e following criterion is useful to prove existence conditions; it follows at once from the generaliza-
tion rule and the substitution theorem.
Proposition. If D as in this paragraph is such that ∣−TD → x ∈ a for some a (in particular if D is of
the form x ∈ a ∧C), then an existence condition for the set of all x such thatD is a theorem of T .

2.2 Separation 2. Let T be a good extension of ZF, D a formula of T , x, y1, . . . , yn , y, and w distinct
variables such that x, y1, . . . , yn include the variables free in D, and y′1, . . . , y′k variables among y1, . . . , yn .
Let f be a (k+1)-ary function symbol of T . Denote byD′ the formula ∃x(D∧y = fxy′1 . . . y′k). An existence
condition for the set of all y such that D′ is given by ∃z∀y(∃x(D ∧ y = fxy′1 . . . y′k) → y ∈ z) for some z
distinct from y and not occurring inD′.
Theorem on set definitions 2. Suppose that some existence condition for the set of all x such that
D is a theorem of T . �en an existence condition for the set of all y such thatD′ is a theorem of T .

Proof. Choose z distinct from y, x, x1, . . . , xn and not occurring in D′. By the substitution theorem,
∣−T∀y(∀z(z ∈ y → z ∈ x) → y ∈ w) → ∀z(z ∈ x → z ∈ x) → x ∈ w. From this using ∣−T∀z(z ∈
x → z ∈ x), the tautology theorem, and the distribution rule, we obtain ∣−T∃w∀y(∀z(z ∈ y → z ∈ x) →
y ∈ w) → ∃w(x ∈ w). By the power set axiom and the detachment rule, we �nd ∣−T∃w(x ∈ w), whence
∣−T∃z∀y(y = fxy′1 . . . y′k → y ∈ z) by the version theorem, the replacement theorem, and the equivalence
theorem. �is last formula is an existence condition for the set of all y such that y = fxy′1 . . . y′k . Hence
by Lemma 2 of §2.1, ∣−T∃z∀y(y ∈ z ↔ y = fxy′1 . . . y′k). From this by the generalization rule, the replace-
ment axioms, and the detachment rule we get ∣−T∃z∀y(∃x(x ∈ w ∧ y = fxy′1 . . . y′k) → y ∈ z). Let U
be the �rst-order theory obtained from T by the adjunction of a new n-ary predicate symbol g and the
new nonlogical axiom y = gy1 . . . yn ↔ ∀x(x ∈ y ↔ D); we know that U is an extension by de�nitions
of T . �en ∣−U∃z∀y(∃x(x ∈ gy1 . . . yn ∧ y = fxy′1 . . . y′k) → y ∈ z) by the substitution rule, and since
∣−Ux ∈ gy1 . . . yn ↔ D, we obtain ∣−T∃z∀y(∃x(D ∧ y = fxy′1 . . . y′k) → y ∈ z) by the equivalence theorem.
�is is a desired existence condition, for z is distinct from y and does not occur inD′.
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�us if some existence condition for the set of all x such thatD is a theorem of T , then the �rst-order
theory obtained from T by the adjunction of a new n-ary function symbol g and the new nonlogical axiom
w = gy1 . . . yn ↔ ∀y(y ∈ w ↔ ∃x(D ∧ y = fxy′1 . . . y′k)) is an extension by de�nitions of T . �e de�ning
axiom for g is o�en abbreviated to gy1 . . . yn = {fxy′1 . . . y′k ∣ D}. We sometimes abbreviate gy1 . . . yn by
{fxy′1 . . . y′k ∣D}, and similarly if the variables yi are replaced by terms ai substitutible for the yi inD. Even
though those abbreviations are not legit, they are harmless for the same reason as in §2.1.

2.3 De�ned symbols. Here is a list of de�ning axioms for new symbols.

(i) x = 0̇↔ ∀y(y ∈ x ↔ y 1 y);
(ii) x ⊆ y↔ ∀z(z ∈ x → z ∈ y);
(iii) x = Py↔ ∀w(w ∈ x ↔ ∀z(z ∈ w → z ∈ y));
(iv) z = {}2xy↔ ∀w(w ∈ z↔ w = x ∨w = y);
(v) {}1x = {}2xx;
(vi) []2xy = {}2{}1x{}2xy;
(vii) []1x = x;
(viii) for n ≥ 3, []nx1 . . . xn = []2x1[]n−1x2 . . . xn ;
(ix) z = Unw ↔ ∀y(y ∈ z↔ ∃x(x ∈ w ∧ y ∈ x));
(x) for n ≥ 3, {}nx1 . . . xn = Un{}2{}1x1{}n−1x2 . . . xn ;
(xi) ∪xy = Un{}2xy;
(xii) z = ∩xy↔ ∀w(w ∈ z↔ w ∈ x ∧w ∈ y);
(xiii) z = −xy↔ ∀w(w ∈ z↔ w ∈ x ∧ ⌝w ∈ y);
(xiv) Sx = ∪x{}1x;
(xv) 1̇ = S0̇, 2̇ = S1̇, 3̇ = S2̇, 4̇ = S3̇, 5̇ = S4̇, 6̇ = S5̇, 7̇ = S6̇, 8̇ = S7̇, 9̇ = S8̇;
(xvi) z = ×2xy↔ ∀w(w ∈ z↔ ∃x′∃y′(w = []2x′y′ ∧ x′ ∈ x ∧ y′ ∈ y));
(xvii) for n ≥ 3, ×nx1 . . . xn = ×2x1×n−1x2 . . . xn ;
(xviii) for n ≥ 1 and for 1 ≤ i ≤ n, y = πn

i x ↔ (∃x1 . . . ∃xn(x = []nx1 . . . xn ∧ y = x i)) ∨ (⌝∃x1 . . . ∃xn(x =
[]nx1 . . . xn) ∧ y = 0̇);

(i′) {a1 , . . . , an} abbreviates {}na1 . . . an ;
(ii′) [a1 , . . . , an] abbreviates []na1 . . . an ;
(iii′) (a1 ×⋯ × an) abbreviates ×na1 . . . an ;
(iv′) (a ∪ b), (a ∩ b), (a − b) abbreviate respectively ∪ab, ∩ab, −ab.
We now prove that all of them are de�ned symbols. For (v)–(viii), (x)–(xi), (xiv)–(xv), and (xvii), this

follows from the Proposition 1 of ch. ii §2.2; for (xii)–(xiii), this follows from the proposition of §2.1 and the
�rst theorem on set de�nitions. We settle the remaining cases, namely (i), (iii), (iv), (ix), (xvi), and (xviii).
As a tautological consequence of the identity axiom y = y and by the generalization rule and the

substitution theorem, we have ∣−ZF∃x∀y(y 1 y → y ∈ x). �is is an existence condition for the set of all
y such that y 1 y. So (i) is a valid de�nition by the �rst theorem on set de�nitions.
An existence condition for the set of all w such that ∀z(z ∈ w → z ∈ y) is just a version of the power

set axiom, and hence is a theorem of ZF. �is proves that (iii) is a valid de�nition.
For (iv), we must prove ∣−ZF∃x′∀w(w = x ∨w = y → w ∈ x′). We de�ne two new function symbols f

and g by w = fzxy ↔ A, where A is (z = 0̇ ∧ x = w) ∨ (⌝z = 0̇ ∧ y = w), and z = gxy ↔ ∀x′(x′ ∈ z ↔
∃w(w ∈ PP0̇ ∧ x′ = fwxy)). It is easy to derive uniqueness and existence conditions for w in A using the
proposition 2 of ch. ii §2.2, so by the second theorem on set de�nitions f and g are de�ned symbols. By the
substitution axioms, it remains to prove that ∣−ZF∀w(w = x ∨w = y → w ∈ gxy), which is inferrable from
x ∈ gxy and y ∈ gxy. Now ∣−ZF0̇ ∈ PP0̇ ∧ x = f0̇xy, so ∣−ZF∃w(w ∈ PP0̇ ∧ x = fwxy) whence ∣−ZFx ∈ gxy.
Using ∣−ZFP0̇ ∈ PP0̇ and ∣−ZF⌝P0̇ = 0̇, we �nd similarly ∣−ZF y ∈ gxy.

�e formula ∀x∃z∀y(y ∈ x ↔ y ∈ z) → ∃z∀y(∃x(x ∈ w ∧ y ∈ x) → y ∈ z) is a replacement axiom
of ZF. Since ∀x∃z∀y(y ∈ x ↔ y ∈ z) is inferred from the tautology y ∈ x ↔ y ∈ x by the substitution
theorem and the generalization rule, we have ∣−ZF∃z∀y(∃x(x ∈ w ∧ y ∈ x) → y ∈ z) by the detachment
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rule. �is is an existence condition for the set of all y such that ∃x(x ∈ w ∧ y ∈ x). �us the de�nition (ix)
is legit by the �rst theorem on set de�nitions.
To prove that (xvi) is a valid de�nition, it will su�ce to prove ∣−ZF∃x′∃y′(w = [x′ , y′] ∧ x′ ∈ x ∧ y′ ∈

y)→ w ∈ PP(x ∪ y), for then a desired existence condition is obtained by the substitution axioms and the
detachment rule. We shall use the following easily derived results:

∣−ZFx ∪ y = y ∪ x ,
∣−ZFx ∈ y → x ∈ y ∪ z, and
∣−ZFx ∈ z ∧ y ∈ z → {x , y} ∈ Pz.

From these we �nd ∣−ZFx′ ∈ x ∧ y′ ∈ y → x′ ∈ x ∪ y ∧ y′ ∈ x ∪ y, whence ∣−ZFx′ ∈ x ∧ y′ ∈ y → {x′} ∈
P(x ∪ y) ∧ {x′ , y′} ∈ P(x ∪ y), and �nally ∣−ZFx′ ∈ x ∧ y′ ∈ y → [x′ , y′] ∈ PP(x ∪ y). �e desired result
follows from the equality theorem and the ∃-introduction rule.

�e existence condition for (xviii) is easily derived, and the uniqueness condition will follow from
∣−ZF[x1 , . . . , xn] = [y1 , . . . , yn] → x1 = y1 ∧ ⋯ ∧ xn = yn , for n ≥ 1. �is is obvious when n = 1. Suppose
that n = 2, and form T by the adjunction of four new constants e1, e2, e′1, e′2 and the axiom []2e1e2 = []2e′1e′2.
In view of the deduction theorem, it will su�ce to prove ∣−Te1 = e′1 ∧ e2 = e′2. From the de�nition of {}2
and the extensionality axiom, we �nd

∣−ZF{a, b} = {c, d}↔ (a = c ∧ b = d) ∨ a = d ∧ b = c.

Using this, the de�nition of []2, and the tautology theorem, we �nd

∣−Te1 = e′1 ∨ (e1 = e′1 ∧ e1 = e′2),
∣−T(e1 = e′1 ∧ e2 = e′1) ∨ (e1 = e′1 ∧ e2 = e′2) ∨ (e1 = e′2 ∧ e2 = e′1), and
∣−T(e′1 = e1 ∧ e′2 = e1) ∨ (e′1 = e1 ∧ e′2 = e2) ∨ (e′1 = e2 ∧ e′2 = e1),

whence respectively ∣−Te1 = e′1, ∣−Te2 1 e′2 → e2 = e′1, and ∣−Te′2 1 e2 → e′2 = e1 by the tautology
theorem. From these, using the equality axioms, the symmetry theorem, and the tautology theorem, we
obtain ∣−Te2 1 e′2 → e2 = e′2, whence ∣−Te2 = e′2 by the tautology theorem. �e general case follows easily
by induction using the de�nition of []n .
We give some English terminology which will be used in the informal exposition. A set is empty if it is

equal to 0̇. We say that a is a subset of b, or is included in b, if a ⊆ b. A set of the form []na1 . . . an is called
an n-tuple, or an ordered pair if n = 2.

2.4 Separation 3. Let T be a good extension of ZF,D a formula of T , x1, . . . , xm , y1, . . . , yn , y, andw distinct
variables such that x1, . . . , xm , y1, . . . , yn include the variables free in D, and y′1, . . . , y′k variables among y1,
. . . , yn . Let f be a (k +m)-ary function symbol of T . If z1, . . . , zm are m variables distinct from x1, . . . , xm
and not occurring inD, the formula

∃z1 . . . ∃zm∀x1 . . .∀xm(D→ x1 ∈ z1 ∧⋯ ∧ xm ∈ zm)
is called a joint existence condition for the set of all x1, . . . , xm such that D.

Theorem on set definitions 3. Suppose that some joint existence condition for the set of all x1,
. . . , xm such that D is a theorem of T . �en an existence condition for the set of all y such that
∃x1 . . . ∃xm(D ∧ y = fx1 . . . xmy′1 . . . y′k) is a theorem of T .

Proof. By the �rst theorem on set de�nitions, it will su�ce to prove

∣−T∃z∀y(∃x1 . . . ∃xm(D ∧ y = fx1 . . . xmy′1 . . . y
′
k)→ y ∈ z) (2)

for a suitable variable z. Wemay suppose that su�cientlymany symbols are de�ned in T , in particular sym-
bols f ′ and h de�ned by f ′xy1 . . . yn = fπm

1 x . . . πm
mxy1 . . . yn and y = hx1 . . . xm y1 . . . yk ↔ ∀z(z ∈ y ↔

∃w(w ∈ (x1×⋯×xm)∧z = f ′wy1 . . . yn)), the latter being valid by the second theoremon set de�nitions and
the Proposition of §2.1. We then derive ∣−T fx1 . . . xm y1 . . . yn = f ′[x1 , . . . , xm]y1 . . . yn . Let T ′ be obtained
from T by the adjunction of m new constants e1, . . . , em , and let A be ∀x1 . . .∀xm(D→ x1 ∈ e1 ∧⋯∧ xm ∈
em). Using the de�nitions, we �nd ∣−T′[A]∃x1 . . . ∃xm(D ∧ y = fx1 . . . xmy′1 . . . y′k) → y ∈ he1 . . . emy′1 . . . y′k ,
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whence ∣−T′[A]∃z∀y(∃x1 . . . ∃xm(D ∧ y = fx1 . . . xmy′1 . . . y′k) → y ∈ z) by the generalization rule and the
substitution axioms. By the deduction theorem,

∣−T∀x1 . . .∀xm(D→ x1 ∈ z1 ∧⋯ ∧ xm ∈ zm)→ ∃z∀y(∃x1 . . . ∃xm(D ∧ y = fx1 . . . xmy′1 . . . y
′
k)→ y ∈ z),

whence (2) by the ∃-introduction rule and the joint existence condition.
�us if some joint existence condition for the set of all x1, . . . , xm such that D is a theorem of T , then

the �rst-order theory obtained from T by the adjunction of a new n-ary function symbol g and the new
nonlogical axiomw = gy1 . . . yn ↔ ∀y(y ∈ w↔ ∃x1 . . . ∃xm(D∧y = fx1 . . . xmy′1 . . . y′k)) is an extension by
de�nitions ofT . As for the �rst two theorems on set de�nitions (see the remarks following those theorems),
we usually write gy1 . . . yn = {fx1 . . . xmy′1 . . . y′k ∣D} for the de�ning axiom of g, and we sometimes use the
abbreviation {fx1 . . . xmy′1 . . . y′k ∣D} for gy1 . . . yn , and similarly if the variables yi are replaced by terms ai
substitutible for them inD.

2.5 More de�ned symbols.We introduce some more de�nitions.

(i) z = ×1xy↔ ∀w(w ∈ z↔ ∃x′∃y′∃z′(y′ ∈ x ∧ [x′ , z′] ∈ y ∧w = [x′ , y′ , z′]));
(ii) z = ×2xy↔ ∀w(w ∈ z↔ ∃x′∃y′∃z′(z′ ∈ x ∧ [x′ , y′] ∈ y ∧w = [x′ , y′ , z′]));
(iii) y = Dom x ↔ ∀z(z ∈ y↔ ∃w(w ∈ x ∧ z = π22w));
(iv) y = Im x ↔ ∀z(z ∈ y↔ ∃w(w ∈ x ∧ z = π21w));
(v) y = Cnv x ↔ ∀z(z ∈ y↔ ∃x′∃y′([y′ , x′] ∈ x ∧ z = [x′ , y′]));
(vi) Func x ↔ x ⊆ Im x ×Dom x ∧ ∀y∀y′∀z([y, z] ∈ x → [y′ , z] ∈ x → y = y′);
(vii) IFunc x ↔ Func x ∧ ∀y∀z∀z′([y, z] ∈ x → [y, z′] ∈ x → z = z′);
(viii) z = ↾xy↔ ∀w(w ∈ z↔ ∃x′∃x′′(w = [x′ , x′′] ∧ x′′ ∈ y) ∧w ∈ x);
(ix) z = ‘xy↔ ((Func x ∧ y ∈ Dom x) ∧ [z, y] ∈ x) ∨ (⌝(Func x ∧ ⌝y ∈ Dom x) ∧ z = 0̇);
(x) z = ○xy↔ ∀w(w ∈ z↔ ∃x′∃y′(∃z′([x′ , z′] ∈ x ∧ [z′ , y′] ∈ y) ∧w = [x′ , y′]));
(i′) (a ×i b) abbreviates ×iab;
(ii′) (a ↾ b) abbreviates ↾ab;
(iii′) (a‘b) abbreviates ‘ab;
(iv′) (a ○ b) abbreviates ○ab.
We have ∣−ZF y′ ∈ x ∧ [x′ , z′] ∈ y → x′ ∈ π21 y ∧ y′ ∈ x ∧ z′ ∈ π22 y, so (i) is a valid de�nition by the third

theorem on set de�nitions. �e validity of (ii), (iii), (iv), (v), (viii), and (x) is proved in a similar way using
the theorems on set de�nitions. For (ix), it su�ces to check that ∣−ZFFunc x ∧ y ∈ Dom x → ∃z([z, y] ∈ x)
and ∣−ZFFunc x → [z, y] ∈ x → [z′ , y] ∈ x → z = z′. Both are derived at once from the de�nitions.
In the informal exposition, Dom a is called the domain of a, Im a the image or range of a; Func ameans

that a is a function, and IFunc a that a is an injective function. A function with domain a is also called a
function on a. �e set a‘b is called the value of a at b.

§3 Ordinals and cardinals

3.1 Results on ordinals 1. We de�ne the unary predicate symbols Tr and Ord by Tr x ↔ ∀y∀z(y ∈ x →
z ∈ y → z ∈ x) and Ord x ↔ Tr x ∧∀y(y ∈ x → Tr y). In English, Tr ameans that a is transitive, and Ord a
that a is an ordinal. An n-ary function symbol f of an extension T of ZF is an ordinal function symbol if
∣−TOrd fx1 . . . xn . We o�en abbreviate ∈ by < and ⊆ by ≤ when concerned with ordinals, for reasons that
will appear shortly. We now derive some theorems involving Ord:

(i) ∣−ZFOrd x → y ∈ x → Ord y;
(ii) ∣−ZFOrd x → Ord y → Ord z → x ∈ y → y ∈ z → x ∈ z;
(iii) ∣−ZFx ∉ x;
(iv) ∣−ZF⌝(x ∈ y ∧ y ∈ x);
(v) if A is a formula of a good extension T of ZF and if y is distinct from x and not free in A,
∣−T∃x(Ord x ∧A)→ ∃x(Ord x ∧A ∧ ∀y(y ∈ x → ⌝A[x∣y]));
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(vi) ∣−ZFOrd x → Ord y → x ∈ y ∨ x = y ∨ y ∈ x;
(vii) ∣−ZFOrd x → Ord y → x ⊆ y↔ x ∈ y ∨ x = y.

Let x be an ordinal, y a member of x. �en by de�nition y is transitive, so any member of y is a member
of x, and hence is transitive. �us y is an ordinal, and (i) holds; (ii) is obvious from the transitivity of z. By
the regularity axiom, {x} has a member y such that ⌝∃z(z ∈ {x} ∧ z ∈ y); but y = x, so ⌝∃z(z = x ∧ z ∈ x),
and hence x ∉ x. �is proves (iii). By the regularity axiom, either x or y has no member in common with
{x , y}. In particular, either y ∉ x or x ∉ y, which proves (iv).
We derive (v) when x is x and y is y. Assume A for some ordinal x. If ∀y(y ∈ x → ⌝A[x∣y]), then x

satis�es the conclusion. Otherwise, {y ∣ y ∈ x ∧A[x∣y]} has a member, so by the regularity axiom it has a
member z which has no member in common with itself. �en z ∈ x, so z is an ordinal by (i), and A[x∣z].
Suppose that y ∈ z; then y ∉ {y ∣ y ∈ x ∧A[x∣y]} and by (ii), y ∈ x. So ⌝A[x∣y]. �us z is a desired ordinal.
In the informal exposition, such an ordinal is called aminimal ordinal x such thatA (we shall prove in §3.2
that such an ordinal is unique).
To derive (vi), assume that ∃x∃y(Ord x ∧ Ord y ∧ ⌝(x ∈ y ∨ x = y ∨ y ∈ x)). By (v), there is a

minimal ordinal x such that ∃y(Ord y ∧ ⌝(x ∈ y ∨ x = y ∨ y ∈ x)), and a minimal ordinal y such that
⌝(x ∈ y∨ x = y∨ y ∈ x). Let z ∈ y, and let us prove that z ∈ x. By (i), z is an ordinal, so x ∈ z∨ x = z∨ z ∈ x
by minimality of y. But if x ∈ z ∨ x = z, then x ∈ y by (ii), which contradicts ⌝(x ∈ y ∨ x = y ∨ y ∈ x).
So z ∈ x, and hence y ⊆ x. Since x 1 y, there exists w in x − y, and w is an ordinal by (i). By minimality
of x, w ∈ y ∨ w = y ∨ y ∈ w, and by choice of w, w = y ∨ y ∈ w. Hence by (ii), y ∈ x, which contradicts
∃x∃y(Ord x ∧Ord y ∧ ⌝(x ∈ y ∨ x = y ∨ y ∈ x)).

�e implication from right to le� in (vii) is a consequence of the transitivity of ordinals. To prove the
converse, let x and y be ordinals, and assume that ⌝(x ∈ y∨ x = y). �en by (vi), y ∈ x. Since y ∉ y by (iii),
we have y ∈ x − y, so ⌝(x ⊆ y).
Principle of Transfinite Induction. Let T be a good extension of ZF and A a formula of T . If y is
not free in A, then

∣−T∀x(Ord x → ∀y(y ∈ x → A[x∣y])→ A)→ ∀x(Ord x → A).

Proof. �is follows by the tautology theorem and the equivalence theorem from (v) where A is replaced
by ⌝A.

Corollary. Let T be a good extension of ZF, f an n-ary ordinal function symbol of T , andA a formula
of T . If y1, . . . , yn are not free in A, then

∣−T∀x1 . . .∀xn(∀y1 . . .∀yn(fy1 . . . yn ∈ fx1 . . . xn → A[x1 , . . . , xn ∣y1 , . . . , yn])→ A)→ ∀x1 . . .∀xnA.

Proof. Let z and w be distinct from x1, . . . , xn , y1, . . . , yn and not free in A, and let B be ∀x1 . . .∀xn(z =
fx1 . . . xn → A). Using prenex operations, the replacement theorem, and the fact that f is an ordinal
function symbol, we �nd

∣−T∀x1 . . .∀xn(∀y1 . . .∀yn(fy1 . . . yn ∈ fx1 . . . xn → A[x1 , . . . , xn ∣y1 , . . . , yn])→ A)
↔ ∀z(Ord z→ ∀w(w ∈ z→ B[z∣w])→ B),

and similarly ∣−T∀z(Ord z→ B)→ ∀x1 . . .∀xnA. By the principle of trans�nite induction, ∣−T∀z(Ord z→
∀w(w ∈ z → B[z∣w]) → B) → ∀z(Ord z → B). Combining those three formulae with the tautology
theorem, we obtain the desired result.

Informally, the principle of trans�nite induction means that in order to prove that A holds for any
ordinal x, it su�ces to prove it under the hypothesis that∀y(y ∈ x → A[x∣y]). Such a proof is called a proof
by trans�nite induction on x (or by trans�nite induction on fx1 . . . xn if we use intead the corollary). �e
formula∀y(y ∈ x → A[x∣y]) is called the induction hypothesis. Even though there is a clash in terminology,
the reader should realize that proofs by trans�nite induction are completely unrelated to usual proofs
by induction that we have already used and shall yet use. �e context will always prevent any possible
confusion.
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Remark. �e derivations of the above theorems show our �rst use of the regularity axiom. In general,
many theorems that do not involve ordinals are derivable in ZF−. We did not insist on this earlier, because
the regularity axiom is true for the meaning we have in mind for sets. However, omitting the regularity
axiom yields the theory ZF− whichmay be viewed as formalizing amore complex notion of set. Since ZF−
is weaker than ZF but su�ciently strong for most developments of set theory, it is common to investigate
�rst ZF− and mention the regularity axiom as a possible new axiom that puts a restriction on the kind of
sets we wish to study. In that setting, it is possible to re�ne the de�nition of Ord so that the above theorems
remain derivable in ZF−. To do this �rst de�ne Reg in ZF− by Reg x ↔ ∀y(y ⊆ x → ∃z(z ∈ y) → ∃z(z ∈
y ∧ ⌝∃w(w ∈ y ∧ w ∈ z))); note that the closure of the regularity axiom is equivalent in ZF− to ∀x Reg x.
�en the de�nition ofOrd isOrd x ↔ Tr x∧∀y(y ∈ x → Tr y)∧Reg x. As can be seen, the regularity axiom
is just “included” in the de�nition, so that ∣−ZF−Ord x → x ∉ x and ∣−ZF−Ord x → Ord y → ⌝(x ∈ y∧y ∈ x).
�ese theorems can then replace (iii) and (iv) in most of our future applications.

3.2. LetD be a formula of some good extension T of ZF, and let x1, . . . , xn , y, y′, and z be distinct variables
such that x1, . . . , xn , and y include the variables free inD and such that z is substitutible for y inD. Denote
by D′ the formula Ord y ∧D ∧ ∀z(z ∈ y → ⌝D[y∣z]). �is formula means that y is the �rst ordinal such
thatD.

Theorem on ordinal definitions. Suppose that ∣−T∃y(Ord y ∧D). �en existence and uniqueness
conditions for y inD′ are theorems of T .

Proof. Clearly ∣−Ty ∈ y′ → D → ⌝D′[y∣y′] by the tautology theorem and the substitution theorem, and
symmetrically ∣−Ty′ ∈ y → D[y∣y′] → ⌝D′. By (vi) of §3.1, ∣−TOrd y → Ord y′ → y 1 y′ → y ∈ y′ ∨ y′ ∈ y.
From these we obtain ∣−TD′ → D′[y∣y′] → y = y′, which is a uniqueness condition for y in D′. �e
existence condition follows directly from the hypothesis and (v) §3.1.

�us if ∣−T∃y(Ord y ∧ D), the �rst-order theory obtained from T by the adjunction of a new n-ary
function symbol f and the axiom y = fx1 . . . xn ↔ Ord y ∧ D ∧ ∀z(z ∈ y → ⌝D[y∣z]) is an extension
by de�nitions of T . We o�en abbreviate the de�ning axiom of f by fx1 . . . xn = µyD. As always, some
information is lost in this abbreviation (namely z), but di�erent choices yield equivalent theories. Wemay
even use µyD as abbreviating a term; as before, this abuse is possible by the equality theorem. Note that
we may always de�ne f by y = fx1 . . . xn ↔ (Ord y∧D∧∀z(z ∈ y → ⌝D[y∣z]))∨ (⌝∃y(Ord y∧D)∧ y = 0̇).
In both cases, the symbol so de�ned is an ordinal function symbol.

3.3 Results on ordinals 2.We derive some further results on ordinals.

(i) ∣−ZFSx = Sy↔ x = y;
(ii) ∣−ZFOrd x → OrdSx;
(iii) ∣−ZF∀y(y ∈ x → Ord y)→ OrdUn x;
(iv) ∣−ZF∃y(Ord y ∧ ∀z(z ∈ x → Ord z → z ∈ y));
(v) ∣−ZF∃y(Ord y ∧ y ∉ x);
(vi) for any (n+1)-ary function symbol f in a good extension T of ZF, ∣−T∃z∀y(∃x(Ord x∧ y = fxyn)→

y ∈ z)→ ∃x∃y(Ord x ∧Ord y ∧ x < y ∧ fxyn = f yyn).

To prove (i), assume that x ∪ {x} = y ∪ {y}. �en (x ∈ y ∨ x = y) ∧ (y ∈ x ∨ x = y), but since
⌝(x ∈ y ∧ y ∈ x), x ∉ x, and y ∉ y, we are le� with x = y ∧ x = y. �e other implication is an equality
axiom.
Let x be an ordinal. If y ∈ Sx, then y ∈ x or y = x. In both cases, y is transitive and y ⊆ Sx, so Sx is an

ordinal, proving (ii). If all the member of x are ordinals and if y ∈ Un x, then y ∈ z for some ordinal z ∈ x.
So y is transitive and y ⊆ z, whence y ⊆ Un x. �is proves (iv). Let x be a set and let y ∈ x be an ordinal.
�en y ⊆ Un{z ∣ z ∈ x ∧Ord z}. But Un{z ∣ z ∈ x ∧Ord z} is an ordinal by (iv), so y ∈ SUn{z ∣ z ∈ x ∧Ord z}.
�is proves (v), and (vi) follows from (v) and y ∉ y.
To prove (vii), we de�ne an (n+ 1)-ary function symbol g by z = gyyn ↔ (Ord z ∧ y = fzyn ∧∀w(w ∈

z → y 1 fwyn))∨(⌝∃x(Ord x∧y = fxyn)∧z = 0̇), i.e., gyyn is the �rst ordinal x such that y = fxyn if such
an ordinal exists and 0̇ otherwise. Assume that there is a set z such that∀y(∃x(Ord x∧ y = fxyn)→ y ∈ z).
By (v), there exist an ordinal w such that every ordinal in {gyyn ∣ y ∈ z} is a member of w. �en since
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fwyn ∈ z, a ∈ {gyyn ∣ y ∈ z} where a is gfwyn yn . Hence a < w by choice of w. But fayn = fwyn by
de�nition of g, whence (vii).

3.4 Trans�nite recursion. In this paragraph we consider how the principle of trans�nite induction may
be used to de�ne function symbols and predicate symbols. We let T be a good extension of ZF.

Principle of Transfinite Recursion 1. Let g be an (n + 2)-ary function symbol of T . �ere is a
de�ned (n + 1)-ary function symbol f such that ∣−TOrd x → fxyn = g{[fwyn ,w] ∣w < x}xyn .

Proof. De�ne a new function symbol h by y = hzxyn ↔ y = g(z ↾ x)xyn and a new predicate symbol r
by rzxyn ↔ Func z ∧ x ⊆ Dom z ∧ ∀w(w ∈ x → z‘w = hzwyn). �e actual de�nition of f is then

y = fxyn ↔ (Ord x ∧ ∃z(rzxyn ∧ y = hzxyn)) ∨ (⌝(Ord x ∧ ∃zrzxyn) ∧ y = 0̇).

We have to prove �rst that this de�nition is valid. �e existence condition for y in the above is obvious.
From the de�nition of r,

∣−TTr x → rzxyn → w ∈ x → rzwyn . (1)

We now derive
Ord x → rzxyn → rz′xyn → hzxyn = hz′xyn (2)

using the principle of trans�nite induction on the ordinal x. If w < x, then by (1), rzwyn and rz′wyn .
By induction hypothesis, hzwyn = hz′wyn ; since z‘w = hzwyn and z′‘w = hz′wyn , we �nd z‘w = z′‘w.
From this it follows that z ↾ x = z′ ↾ x, whence hzxyn = hz′xyn , which proves (2). �is gives the required
uniqueness condition.
We now prove that f has the desired properties. We claim that

∣−TOrd x → ∃z(rzxyn)→ fxyn = g{[fwyn ,w] ∣w < x}xyn . (3)

To prove this, let x be an ordinal, and let z be such that rzxyn . For all w < x, rzwyn by (1). So fwyn =
hzwyn = z‘w. Hence z ↾ x = {[fwyn ,w] ∣ w < x}, so fxyn = hzxyn = g(z ↾ x)xyn = g{[fwyn ,w] ∣ w <
x}xyn , as claimed.
In view of (3), it will su�ce to prove ∣−TOrd x → ∃z(rzxyn) to conclude the proof. We prove this

by trans�nite induction on x. Let a be {[fwyn ,w] ∣ w < x}, and let us verify that raxyn . Note that for
any w < x, a‘w = fwyn . We have Func a and x = Dom a, so in particular x ⊆ Dom a. Let w < x.
Applying the induction hypothesis to w and using (3), we have fwyn = g{[fw′yn ,w′] ∣ w′ < w}wyn . So
a‘w = fwyn = g{[fw′yn ,w′] ∣ w′ < w}wyn = g(a ↾ w)wyn = hawyn . �is shows that raxyn , whence
∃z(rzxyn) by the substitution axioms.
Corollary. Let g be an (m + n + 1)-ary function symbol of T , and let h be anm-ary ordinal function
symbol of T such that ∣−TOrd x → ∃z1 . . . ∃zm∀x1 . . .∀xm(hxm ≤ x → x1 ∈ z1 ∧ ⋯ ∧ xm ∈ zm). �en
there is a de�ned (m + n)-ary function symbol f such that

∣−T fxm yn = g{[]m+1fwm ynwm ∣ hwm < hxm}xm yn .

Proof. Weshall �rst use the principle of trans�nite recursion to de�ne an (n+1)-ary function symbol f ′. For
this wemust de�ne an (n+2)-ary function symbol g′. Its de�nition is g′zxyn = {[]m+1gUn Im zwm ynwm ∣
hwm = x}, which is valid by the hypothesis on h, the fact that ∣−Thwm = x → hwm ≤ x, and the third theo-
rem on set de�nitions. We then let f ′ be de�ned using g′ as in the principle of trans�nite recursion, and we
de�ne f by fxm yn = (f ′hxm yn)‘[]mxm . It remains to prove that f is as claimed. We know that ∣−TOrd x →
f ′xyn = g′{[f ′wyn ,w] ∣ w < x}xyn , so that ∣−T fxm yn = (g′{[f ′wyn ,w] ∣ w < hxm}hxm yn)‘[]mxm . �us
by de�nition of g′, ∣−T fxm yn = a where a is ({[]m+1gUn Im{[f ′wyn ,w] ∣ w < hxm}wm ynwm ∣ hwm =
hxm})‘[]mxm . But clearly ∣−Ta = gUn{f ′wyn ∣w < hxm}xm yn , so it will su�ce to prove

∣−T{[]m+1fwm ynwm ∣ hwm < hxm} = Un{f ′wyn ∣w < hxm}.
We proceed in English. Since f ′wyn is a function with domain {[]mwm ∣ hwm = w} if w is an ordinal, the
function on the right has domain {[]mwm ∣ hwm < hxm}; this is also the domain of the function on the
le�. Moreover, the two functions have the same values on their domain by de�nition of f , so they are
equal.
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A de�nition in the form of the corollary is called a de�nition by trans�nite recursion on hxm . In
practice, de�nitions by trans�nite recursion may have various forms, and we now review some of the
most common and justify them.

(i) If g is (n+1)-ary, thenwemay de�ne an (n+1)-ary f such that ∣−TOrd x → fxyn = g{fwyn ∣w < x}yn .
To prove this, de�ne g′ by g′zxyn = g Im zyn , and let f be obtained using g′ by the principle of trans�nite
recursion. �en ∣−TOrd x → fxyn = g′{[fwyn ,w] ∣w < x}xyn , whence (i) by de�nition of g′. In the more
general context of the corollary, this becomes:

(ii) If h ism-ary as in the corollary and if g is (n+ 1)-ary, then we may de�ne an (m+ n)-ary f such that
∣−T fxm yn = g{fwm yn ∣ hwm < hxm}yn .

It su�ces to de�ne g′ by g′zxm yn = g Im zyn .

(iii) Let g and h be as in the corollary and let A be a formula with free variables among x1, . . . , xm , w1,
. . . , wm such that ∣−TA→ hwm < hxm . �en we may de�ne an (m + n)-ary f such that ∣−T fxm yn =
g{[]m+1fwm ynwm ∣A}xm yn .

�is is a generalization of the corollary, but it can be seen to be a particular case by setting g′zxm yn =
g(z ↾ {[]mwm ∣A})xm yn and letting f be de�ned by g′ as in the corollary. Clearly f is as required. Another
frequently encountered form of the principle of trans�nite recursion is the following:

(iv) If g is (n+2)-ary and h is n-ary, wemay de�ne an (n+1)-ary f such that ∣−T f0̇yn = hyn , ∣−TOrd x →
x = Sx′ → fxyn = gfx′ynx′yn , and ∣−TLim x → fxyn = Un{fx′yn ∣ x′ < x}.

�is is done by de�ning y = g′zxyn ↔ (x = 0̇ ∧ y = hyn) ∨ (Ord x ∧ ∃x′(x = Sx′ ∧ y = g(z‘x′)x′yn)) ∨
(Lim x∧ y = Un{z‘x′ ∣x′ < x})∨ (⌝Ord x∧ y = 0̇) and obtaining f using g′ as in the principle of trans�nite
recursion.
We now turn to the problem of de�ning predicate symbols by trans�nite induction. �is will be a

simple application of the principle of trans�nite recursion once we note that a predicate symbol may be
characterized by a function symbol of same index taking two distinct constants as values.

Principle of Transfinite Recursion 2. Let q be an (m + n + 1)-ary predicate symbol of T , and let
h be an m-ary ordinal function symbol of T such that ∣−TOrd x → ∃z1 . . . ∃zm∀x1 . . .∀xm(hxm ≤
x → x1 ∈ z1 ∧ ⋯ ∧ xm ∈ zm). �en there is a de�ned (m + n)-ary predicate symbol p such that
∣−Tpxm yn ↔ q{[]mwm ∣ hwm < hxm ∧ pwm yn}xm yn .

Proof. De�ne by cases w = f ′zxm yn ↔ (qzxm yn ∧ w = 1̇) ∨ (⌝qzxm yn ∧ w = 0̇). �en de�ne an
(m + n + 1)-ary function symbol g by gzxm yn = f ′{[]mwm ∣ hwm < hxm ∧ z‘[]mwm = 1̇}xm yn . Using the
principle of trans�nite recursion, there is a de�ned (m + n)-ary function symbol f such that ∣−T fxm yn =
g{[]m+1fwm ynwm ∣ hwm < hxm}xm yn . We then de�ne p by pxm yn ↔ fxm yn = 1̇. Going backwards
through the de�nitions, we see that ∣−Tpxm yn ↔ qaxm yn where a is {[]mwm ∣ hwm < hxm ∧ fwm yn = 1̇},
but by de�nition of p, ∣−Ta = {[]mwm ∣ hwm < hxm ∧ pwm yn}.

As in (iii) above, we can also replace hwm < hxm by any formula A with free variables among x1, . . . ,
xm , w1, . . . , wm such that ∣−TA→ hwm < hxm .
3.5. We de�ne Max x = π21 x ∪ π22x, so that ∣−ZFOrd x → Ord y → x ⊆ y ↔ Max[x , y] = y. Our goal is to
de�ne a one to one correspondence On between ordinals and n-tuples of ordinals, for n ≥ 2. We shall do
this by listing ordered pairs of ordinals in this way: [0̇, 0̇], [0̇, 1̇], [1̇, 0̇], [1̇, 1̇], [0̇, 2̇], [1̇, 2̇], [2̇, 0̇], [2̇, 1̇], [2̇, 2̇],
[0̇, 3̇], [1̇, 3̇], etc. We now show how this can be accomplished formally. From ∣−ZF∃y(Ord y ∧ y ∉ P Im x)
we derive ∣−ZF∃y(Ord y ∧ ⌝(y × y ⊆ x)). �us we may de�ne MP0x = µy⌝(y × y ⊆ x). We then have
∣−ZF∃y(Ord y ∧ ∃z(z ∈ MP0x ∧ [y, z] ∉ x)), so we may de�ne MP1x = µy∃z(z ∈ MP0x ∧ [y, z] ∉ x), and
then MP2x = µy([MP1x , y] ∉ x). Finally, we set MP x = [MP1x , MP2x], and we de�ne a unary function
symbol O2 by trans�nite recursion so that ∣−ZFOrd x → O2x =MP{O2 y ∣ y < x}. From the de�nitions, we
derive ∣−ZF∃y∃z(Ord y∧Ord z∧MP x = [y, z]) and ∣−ZFMP x ∉ x. Intuitively,MP x is the �rst ordered pair
of ordinals in the list above that does not belong to x. For n ≥ 3, we de�neOnx = [π21O2x , On−1π22O2x]. To
prove that On is a one to one correspondence between ordinals and n-tuples of ordinals, it will obviously
su�ce to treat the case n = 2; so we shall prove
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(i) ∣−ZFOrd x → ∃y∃z(Ord y ∧Ord z ∧O2x = [y, z]);
(ii) ∣−ZFOrd x → Ord y → x 1 y → O2x 1 O2 y;
(iii) ∣−ZFOrd x → Ord y → ∃z(Ord z ∧O2z = [x , y]).

�e �rst assertion is obvious. Assume that x and y are ordinals such that x 1 y, and say x < y. �en since
O2 y ∉ {O2x ∣ x < y}, we have O2x 1 O2 y, which proves (ii). To prove (iii), we shall need

(iv) ∣−ZFMaxMP x <MP0x;
(v) ∣−ZFMaxMP x ×MaxMP x ⊆ x.
Since MP1x < MP0x and MP2x < MP0x, we have (iv), whence (v) by de�nition of MP0. Let x and y be
ordinals. By (ii) above and (vii) of §3.3, we have ⌝∃z∀y(∃x(Ord x ∧ y = O2x). So in particular, there exist
an ordinal z such that O2z does not belong to SMax[x , y]× SMax[x , y], and then both x and y belong to
MaxO2z. So by (v), [x , y] ∈ {O2w ∣w < z}, and this concludes the proof of (iii).
We prove the following additional results on O2:

(vi) ∣−ZF0̇ <MP1x → [0̇,MaxMP x] ∈ x;
(vii) ∣−ZFOrd x → Ord y →MaxO2x <MaxO2 y → x < y;
(viii) ∣−ZFOrd x →MaxO2x ≤ x;
(ix) ∣−ZFOrd x → 0̇ < π21O2x →MaxO2x < x.
Assume 0̇ < MP1x. �en by de�nition of MP1, [0̇, y] ∈ x for any y < MP0x, so using (iv) we �nd
[0̇,MaxMP x] ∈ x, as in (vi). Let x and y be ordinals. If MaxO2x < MaxO2 y, then by (v) and the de�ni-
tion ofO2, we haveO2x ∈ {O2z ∣z < y}, whence x < y by (ii). �is proves (vii). We prove (viii) by trans�nite
induction on x. We assume that x is an ordinal such that x <MaxO2x and derive a contradiction. By (iii),
there exists an ordinal y such that O2 y = [0̇, x], so that MaxO2 y = x and hence MaxO2 y < MaxO2x.
�us by (vii), y < x, so MaxO2 y ≤ y by induction hypothesis. Hence x ≤ y, but this contradicts
y < x. Finally, assume that x is an ordinal such that 0̇ < π21O2x, i.e., 0̇ < MP1{O2 y ∣ y < x}. By (vi),
[0̇,MaxO2x] ∈ {O2 y ∣ y < x}, so there exists y < x such that O2 y = [0̇,MaxO2x]. So MaxO2x =MaxO2 y,
but by (viii), MaxO2 y ≤ y, so MaxO2x < x.
Remark. �is is the appropriate place to note that all the theorems we have derived in ZF until now did not
use the in�nity axiom, i.e., we could have replaced ZF by ZFω everywhere. We shall use this observation
in ch. vii §2.4.

3.6 In�nity.We de�ne the unary predicate symbol Lim by Lim x ↔ Ord x ∧∃y(y ∈ x)∧⌝∃y(Ord y∧ x =
Sy). In English, we say that x is a limit ordinal.
We now prove ∣−ZF∃x Lim x. �is will follow from the in�nity axiom, the substitution axioms, and the

∃-introduction rule if we can prove
∣−ZF∃y(y ∈ x ∧ ∀z⌝(z ∈ y)) ∧ ∀y(y ∈ x → ∃z(z ∈ x ∧ ∀w(w ∈ z↔ w ∈ y ∨w = y)))→ Lim a

where a is Un{z ∣ z ∈ x ∧Ord z}. Assume that x is a set such that
∃y(y ∈ x ∧ ∀z⌝(z ∈ y)), and (4)

∀y(y ∈ x → ∃z(z ∈ x ∧ ∀w(w ∈ z↔ w ∈ y ∨w = y))). (5)

�en 0̇ ∈ x by (4), and S0̇ ∈ x by (5), so 0̇ ∈ a and in particular ∃y(y ∈ a). From (iv) of §3.3, a is an ordinal.
It remains to prove that ⌝∃y(Ord y ∧ a = Sy). Assume that a = Sy for some ordinal y. �en y ∈ a, so y ∈ z
for some ordinal z in x. Now by (5), Sz ∈ x, so Sz ⊆ a. Since Sy ∈ Sz, Sy ∈ a, whence a ∈ a. �is contradicts
the assumption that ∃y(Ord y ∧ a = Sy). �us, a is a limit ordinal.
By the theorem on ordinal de�nitions, we can de�ne a constant ω with the de�ning axiom y = ω ↔

Lim y ∧ ∀z(z ∈ y → ⌝Lim z), or in abbreviated form ω = µy Lim y. �us ω is the �rst limit ordinal.

3.7 �e von Neumann hierarchy. We de�ne the symbol Stg by trans�nite recursion so that ∣−ZFOrd x →
Stg x = PUn{Stg y∣y < x}. De�ne also Rk by y = Rk x ↔ (Ord y ∧ x ∈ Stg y ∧ ∀z(z < y → x ∉
Stg y)) ∨ (⌝∃z(Ord z ∧ x ∈ Stg z) ∧ y = 0̇), i.e., Rk x is the �rst ordinal y such that x ∈ Stg y if such an
ordinal exists. We shall prove that, in fact, such an ordinal always exists, that is,
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(i) ∣−ZF∃x(Ord x ∧ y ∈ Stg x).
We �rst prove

(ii) ∣−ZFOrd x → Tr Stg x;
(iii) ∣−ZFOrd x → y < x → Stg y ⊆ Stg x;
(iv) ∣−ZF∃x(Tr x ∧ y ∈ x).
Now (ii) is proved by trans�nite induction on x, noting that ∣−ZF∀y(y ∈ x → Tr y) → TrUn x and
∣−ZFTr x → TrPx, and (iii) follows at once from (ii) and the de�nition of Stg. To prove (iv), de�ne
f by trans�nite recursion so that ∣−ZFOrd x → fxy = Un{Un fzy ∪ {y} ∣ z < x}. We shall prove that
∣−ZFTr fωy ∧ y ∈ fωy. Now ∣−ZFOrd x → 0̇ < x → y ∈ fxy is clear from the de�nition, so we need only
prove that fωy is transitive. Let z be a member of fωy. �en z is a member of Un fxy∪ {y} for some x < ω,
so z ∈ fSxy, and hence z ⊆ Un fSxy. Since Sx < ω, we get z ⊆ fωy as desired.
We now prove (i). Let y be any set, and using (iv) let z be a transitive set such that y ∈ z. Let a be

{w ∣ w ∈ z ∧ ⌝∃x(Ord x ∧ w ∈ Stg x)}. It will su�ce to show that a = 0̇. Assume the contrary, and using
the regularity axiom† let x′ be a member of a which has no member in common with a. By transitivity of
z, any member of x′ is a member of z, and by choice of x′ such a member does not belong to a. Hence if
w ∈ x′, thenw ∈ Stg x for some ordinal x; in particular,w ∈ StgRkw. By (v) of §3.3, there exists an ordinal
y′ such that {Rkw ∣w ∈ x′} ⊆ y′. If w ∈ x′, then Rkw < y′, so by (iii), w ∈ Stg y′. �us x′ ⊆ Stg y′, and by
de�nition of Stg we �nd x′ ∈ Stg Sy′, in contradiction with x′ ∈ a.
In English, Rk a is the rank of a. We now derive some more results on Stg and Rk.

(v) ∣−ZFOrd x → y ∈ Stg x ↔ Rk y ≤ x;
(vi) ∣−ZFOrd x → ∃z∀y(Rk y ≤ x → y ∈ z);
(vii) ∣−ZFx ∈ y → Rk x < Rk y;
(viii) ∣−ZFRk x = Un{SRk y ∣ y ∈ x};
(ix) ∣−ZFOrd x → Rk x = x;

�e implication from le� to right in (v) is obvious, and the other implication follows at once from (iii).
From (v) we get (vi). Let y be any set. We have y ∈ StgRk y, and StgRk y = PUn{Stg z ∣ z < Rk y}. �us
if x ∈ y, then x ∈ Stg z for some z < Rk y, and hence by (v), Rk x ≤ z < Rk y, thereby proving (vii). Let x
be a set, and let a be Un{SRk y ∣ y ∈ x}. From (vii), SRk y ≤ Rk x for any y ∈ x, so a ≤ Rk x. Now if y ∈ x,
since Rk y < SRk y, we have Rk y < a, whence y ∈ Un{Stg z ∣ z < a} by (v). From this and the de�nition of
Stg, we �nd x ∈ Stg a, whence Rk x ≤ a by (v). �is proves (viii). We prove (ix) by trans�nite induction on
x. By (viii), Rk x = Un{SRk y ∣ y ∈ x}, so by induction hypothesis Rk x = Un{Sy ∣ y ∈ x} = x.

3.8 Similarity.We de�ne the binary predicate symbol ~ by x ~ y↔ ∃z(IFunc z ∧ x = Dom z ∧ y = Im z),
and we prove

(i) ∣−ZFx ~ x;
(ii) ∣−ZFx ~ y↔ y ~ x;
(iii) ∣−ZFx ~ y → y ~ z → x ~ z;
(iv) ∣−ZFSx ~ Sy↔ x ~ y;
(v) ∣−ZFx ∈ ω → ⌝(x ~ Sx);
(vi) ∣−ZFx ~ y → Px ~ Py.
Let a be {[y, y] ∣ y ∈ x}. �en ∣−ZFIFunc a ∧ x = Dom a ∧ x = Im a, whence (i). Note that

∣−ZFIFunc z ∧ x = Dom z ∧ y = Im z → IFuncCnv z ∧ y = DomCnv z ∧ x = ImCnv z,

so ∣−ZFx ~ y → y ~ x. �e other implication in (ii) is similar; (iii) follows from

∣−ZFIFunc x′ ∧ x = Dom x′ ∧ y = Im x′ → IFunc y′ ∧ y = Dom y′ ∧ z = Im y′

→ IFunc(y′ ○ x′) ∧ x = Dom(y′ ○ x′) ∧ z = Im(y′ ○ x′).
†�is is our �rst real use of the regularity axiom (see the remark in §3.1). It is in fact possible to derive in ZF− the equivalence

of the closure of the regularity axiom and the closure of (i). �us the regularity axiom can be taken to mean that all sets can be
obtained from the empty set by trans�nite applications of P and Un.
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Assume that z is an injective funtion with domain x and range y. �en z ∪ {[y, x]} is an injective function
with domain Sx and range Sy. Conversely, let z be an injective function with domain Sx and range Sy.
If z‘x = y, then z ↾ x is an injective function on x with range y. Otherwise, it is easy to check that
Cnv(Cnv(z ↾ x) ↾ y)∪ {[z‘x , (Cnv z)‘y]} is an injective function with domain x and range y. To prove (v),
we use trans�nite induction on x. Let x be an ordinal. If x = 0̇, then S0̇ = 1̇, and 0̇ 1 1̇ because 0̇ ∈ 1̇. If
0̇ < x and x < ω, then x = Sy for some ordinal y, because ω is the �rst limit ordinal. �en y < x and
by induction hypothesis ⌝(y ~ Sy). Hence by (iv), ⌝(Sy ~ SSy), that is, ⌝(x ~ Sx), as was to be shown.
Finally, if ω ≤ x, the result is tautologically veri�ed. To prove (vi), note that if z is an injective function on
x with range y, then {[{z‘w′ ∣w ∈ w},w] ∣w ∈ Px} is an injective function on Px whose range is Py.
3.9 �e axiomof choice.We introduce the unary function symbol # with the axiom y = #x ↔ Ord y∧x ~
y ∧ ∀z(z ∈ y → ⌝(x ~ z)). �us #x is the �rst ordinal y such that x ~ y. It turns out that we are unable to
derive an existence condition for y in Ord y∧ x ~ y∧∀z(z ∈ y → ⌝(x ~ z)), so we introduce a new axiom.
We de�ne the binary predicate symbol Ch by Ch xy↔ Func x ∧Dom x = Py− {0̇}∧∀z(z ∈ Dom x →

x‘z ∈ z); Ch ab means that a is a choice function on b. �e axiom of choice is a translation of the formula
∀x∃yCh yx into ZF. For de�niteness, we should now choose explicitely such a translation, but di�erent
choices yield equivalent theories by the theorem of ch. ii §2.3, so the choice is irrelevant. We denote by
ZFC the �rst-order theory obtained from ZF by the adjunction of the axiom of choice as an axiom. In
ZFC, the existence condition for the symbol # follows from this theorem, also known as the well-ordering
theorem:

Zermelo’s Theorem. ∣−ZFC∃y(IFunc y ∧OrdDom y ∧ Im y = x). More precisely,

∣−ZFCh zx → ∃y(IFunc y ∧OrdDom y ∧ Im y = x

∧ ∀w(w ∈ Dom y → x − {y‘w′ ∣w′ < w} 1 0̇ ∧ y‘w = z‘(x − {y‘w′ ∣w′ < w})))

Proof. By trans�nite recursion, we de�ne a new ternary function symbol f such that ∣−ZFOrdw → fwxz =
z‘(x − {fw′xz ∣w′ < w}). Let x be a set, and let z be a choice function on x. �en for any ordinalw, fwxz ∈
Im z∪{0̇}. Hence by (vii) of §3.3, there exist ordinalsw andw′ such thatw′ < w and fwxz = fw′xz. Suppose
that x − {fw′xz ∣w′ < w} is not empty. �en fwxz ∈ x − {fw′xz ∣w′ < w}, and in particular fwxy 1 fw′xy,
contradicting fwxz = fw′xz. So x − {fw′xz ∣w′ < w} must be empty, and hence x ⊆ {fw′xz ∣w′ < w}. Let
y be the �rst ordinal such that x ⊆ {fw′xz ∣ w′ < y}, and let a be {[fw′xz,w′] ∣ w′ < y}. We now derive
that a is an injective function on y such that Im a = x. Clearly x ⊆ Im a by the choice of y. If y′ < y, then
x − {fw′xz ∣ w′ < y′} is not empty by minimality of y, so f y′xz ∈ x − {fw′xz ∣ w′ < y′}. �is shows that
Im a ⊆ x, and hence Im a = x. Finally, a is injective by minimality of y, for if w′ < w and w < y, then
fwxz 1 fw′xz, so a‘w 1 a‘w′.

�us in particular, ∣−ZFC∃y(Ord y ∧ y ~ x), so by the theorem on ordinal de�nitions, # is a de�ned
symbol of ZFC. In ZFC, we de�ne the unary predicate symbols Card and ICard by Card x ↔ ∃y(x = #y)
and ICard x ↔ Card x ∧ ω ≤ x. �e formula Card a (resp. ICard a) means that a is a cardinal (resp. an
in�nite cardinal). We also say that #a is the cardinal of a.

3.10 Results on cardinals 1.We now derive basic results on cardinals.

(i) ∣−ZFCx ~ #x;
(ii) ∣−ZFCx ~ y↔ #x = #y;
(iii) ∣−ZFCOrd x → #x ≤ x;
(iv) ∣−ZFCCard x → #x = x;
(v) ∣−ZFCOrd x → y ⊆ x → ∃z(Ord z ∧ z ≤ x ∧ z ~ y);
(vi) ∣−ZFCx ⊆ y → #x ≤ #y;
(vii) ∣−ZFCFunc x → # Im x ≤ #Dom x;
(viii) ∣−ZFCx ∈ ω → Card x;
(ix) ∣−ZFCCardω;
(x) ∣−ZFC#x = y → #Px = #Py.
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From the de�nition of # we have (i), whence (ii) by symmetry and transitivity of ~. Since #x is the �rst
ordinal similar to x and since x ~ x, (iii) holds. Now assume that x is a cardinal, i.e., that x = #y for
some y. �en x ~ y, so #x = #y by (ii), and hence #x = x. �e other implication in (iv) is obvious. We
now prove (v). Let x be an ordinal and y ⊆ x. Let a be {[µw(w ∈ z), z] ∣ z ∈ Py − {0̇}}. Clearly Ch ay. By
Zermelo’s theorem, there exists w such that IFuncw ∧ OrdDomw ∧ Imw = y and for any x′ ∈ Domw,
y − {w‘x′′ ∣ x′′ < x′} 1 0̇ and w‘x′ = a‘(y − {w‘x′′ ∣ x′′ < x′}), that is,

w‘x′ = µz(z ∈ y − {w‘x′′ ∣ x′′ < x′}). (6)

In particular, Domw ~ y, so it will su�ce to prove that Domw ≤ x. Assume that x < Domw. �en
w‘x ∈ y, so w‘x < x. Let b be µz(w‘z < z). �en b < Domw, w‘b < Domw, and since IFuncw, w‘b ∈
y − {w‘x′′ ∣ x′′ < w‘b}. By (6), w‘w‘b is the �rst ordinal in y − {w‘x′′ ∣ x′′ < w‘b}, so w‘w‘b ≤ w‘b, whence
w‘w‘b < w‘b because w is injective and w‘b < b. �is contradicts the fact that b is the �rst ordinal such
that w‘b < b, and proves (v).
Assume x ⊆ y. By (i) there exists an injective function z on y whose image is #y. �en z ↾ x is an

injective function on x whose image is a subset of #y. By (v) and the transitivity of ~, x ~ w for some
ordinal w ≤ #y. �en #x ≤ w, so #x ≤ #y. �is proves (vi). Let x be a function and let z be a choice
function on Dom x. �en {[z‘{w ∣ w ∈ Dom x ∧ x‘w = y}, y] ∣ y ∈ Im x} is an injective function on Im x
whose image is a subset of Dom x. So (vii) follows from (vi). We prove (viii) by trans�nite induction on x.
By (iii), #0̇ ≤ 0̇, so #0̇ = 0̇ and hence Card 0̇. Assume that 0̇ < x and x < ω. �en x = Sy for some ordinal y,
by de�nition of ω. By induction hypothesis, Card y, so by (iv), #y = y. By (vi), #y ≤ #x, so y ≤ #x. By (v)
of §3.8 and by (ii), we have #x 1 #y. �us y < #x, and hence x ≤ #x. By (iii), we obtain x = #x, whence
Card x. If ω < x, there is nothing to prove. To prove (ix), assume that ⌝Cardω. �en by (iii), #ω < ω.
Because ω is a limit ordinal, S#ω < ω, so #S#ω = S#ω by (viii) and (iv). �us by (vi), S#ω ≤ #ω, which
contradicts (v) of §3.8. From (vi) of §3.8, we obtain at once (x).

3.11 Results on cardinals 2.We de�ne in ZFC ⊕xy = #((x × {0̇})∪ (y × {1̇})) and ⊗xy = #(x × y), with the
usual abbreviations (a⊕ b) and (a⊗ b). �en:

(i) ∣−ZFCx ∩ y = 0̇→ #(x ∪ y) = #x ⊕ #y;
(ii) ∣−ZFC#(x × y) = #x ⊗ #y;
(iii) ∣−ZFC#(x ∪ y) ≤ #x ⊕ #y;
(iv) ∣−ZFCx ⊆ x′ → y ⊆ y′ → x ⊕ y ≤ x′ ⊕ y′ ∧ x ⊗ y ≤ x′ ⊗ y′;
(v) ∣−ZFCCard x → x ≤ x ⊕ x;
(vi) ∣−ZFCCard x → 2̇ ≤ x → x ⊕ x ≤ x ⊗ x;
(vii) ∣−ZFCCard x → ∀y(y ∈ z → #y ≤ x)→ #Un z ≤ #z ⊗ x;
(viii) ∣−ZFCx ∈ ω → y ∈ ω → x ⊕ y ∈ ω ∧ x ⊗ y ∈ ω;
(ix) ∣−ZFCx ∈ ω → y ∈ ω → x ⊕ Sy = S(x ⊕ y) ∧ x ⊗ Sy = (x ⊗ y)⊕ x;
(x) ∣−ZFCICard x →MaxO2x = x;
(xi) ∣−ZFCICard x → x ⊕ x = x ∧ x ⊗ x = x;
(xii) ∣−ZFCICard x → ICard y → x ⊕ y =Max[x , y] ∧ x ⊗ y =Max[x , y];
(xiii) for any (m + n)-ary function symbol f of a good extension T of ZFC, ∣−TICard x → #y ≤ x →

#{fxn yn ∣ x1 ∈ y ∧⋯ ∧ xn ∈ y} ≤ x.
Let x′ be an injective function on x with range #x × {0̇} and let y′ be an injective function on y with range
#y × {1̇}. If [z,w] and [z′ ,w] belong to x′ ∪ y′ with z 1 z′, then one of them must belong to x′ and the
other to y′. �is implies w ∈ x ∩ y. �us if x ∩ y = 0̇, then x′ ∪ y′ is a function on x ∪ y, which is clearly
injective and with range (#x × {0̇}) ∪ (#y × {1̇}), as required to prove (i). To prove (ii), it su�ces to note
that if x ~ x′ and y ~ y′, then x × y ~ x′ × y′. From (i) we obtain (iii) by noting that x ∪ y = x ∪ (y − x)
and x ∩ (y − x) = 0̇. Assume that x ⊆ x′ and y ⊆ y′. �en (x × {0}) ∪ (y × {1}) ⊆ (x′ × {0}) ∪ (y′ × {1})
and x × y ⊆ x′ × y′, whence (iv). �e set {[w ,w , 0̇] ∣ w ∈ x} is an injective function on x whose range is
included in x ⊕ x, whence (v). Noting that x ⊕ x = x ⊗ 2̇, (vi) follows from (iv).
We now prove (vii). Assume that x is a cardinal and z a set all of whose members have cardinal at

most x, and let w be a choice function on P(Un z × x). Let a be {y′ ∈ P(Un z × x) ∣ Func y′ ∧ Dom y′ =
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#y ∧ Im y′ = y}. Note that for all y ∈ z, a is not empty. �us for y ∈ z, w‘a is an injective function on #y
with range y. Let b be {[y, x′] ∣ y ∈ z ∧ x′ < #y}, and let c be {[(w‘a)‘x′ , y, x′] ∣ [y, x′] ∈ b}. �en c is a
function on bwhose range is Un z. �us #Un z ≤ #b. Since b ⊆ z×x and using (ii), we �nd #Un z ≤ #z⊗x.
Let a be (x × {0̇}) ∪ (y × {1̇}). We shall �rst prove

∣−ZFCx ∈ ω → y ∈ ω → x ⊕ Sy ~ S(x ⊕ y) and (7)
∣−ZFCx ∈ ω → y ∈ ω → x ⊗ Sy ~ (x ⊗ y)⊕ x . (8)

Assume that x ∈ ω and y ∈ ω. �en {[w ,w] ∣ w ∈ a} ∪ {[a, y, 1̇]} is an injective function on Sa with range
(x × {0̇})∪ (Sy × {1̇}), which proves (7). �e set {[w ,w , 0̇] ∣w ∈ x × y}∪ {[[w , y],w , 1̇] ∣w ∈ x} is an injective
function on x ×Sy whose range is ((x × y)× {0̇})∪ (x × {1̇}), whence (8). We now prove (viii) by trans�nite
induction on y. If y = 0̇, then x ⊕ y = x and x ⊗ y = 0̇, so the result holds. Assume that y < ω and y = Sy′
for some ordinal y′. �en by (7), x⊕ y ~ S(x⊕ y′), and by induction hypothesis x⊕ y′, and hence S(x⊕ y′),
belongs to ω, so x ⊕ y < ω. �us the �rst part of (viii) is proved. By (8), we have x ⊗ y ~ (x ⊗ y′)⊕ x, and
using the induction hypothesis and the �rst part, this implies x ⊗ y < ω. Now (ix) follows from (viii), (7)
and (8).
Let x be an in�nite cardinal. By (v) and (vi), x ≤ x ⊗ x. Assume that MaxO2x = x. �en by (v) of §3.5

and the de�nition of O2, we have x × x ⊆ {O2 y ∣ y < x}. Now {[O2 y, y] ∣ y < x} is an injective function on
x whose range is {O2 y ∣ y < x}. Hence we �nd x ⊗ x ≤ x. In summary, we have proved

∣−ZFCICard x →MaxO2x = x → x ⊗ x = x . (9)

We now prove (x) by tran�nite induction on x. We assume that MaxO2x 1 x and derive a contradiction.
By (viii) of §3.5, this implies MaxO2x < x. Set a to be MaxO2x. Let y < x. Using (vi) of §3.5, we �nd
MaxO2 y ≤ a, so MaxO2 y < Sa. From this we deduce that O2 y ∈ Sa × Sa. Since x = #x = #{O2 y ∣ y < x},
we �nd

x ≤ Sa⊗ Sa. (10)

Now suppose that a < ω. �en by (viii), Sa ⊗ Sa < ω, and since ω ≤ x, this contradicts (10). So we must
have ω ≤ a, whence ω ≤ #a. Using a < x, we also have #a < x. �us wemay apply the induction hypothesis
to #a, and this yields MaxO2#a = #a. By (9), we obtain #a = #a ⊗ #a. By (i), #Sa = #a ⊕ 1̇ and by (iv)
and (vi), #a⊕ 1̇ ≤ #a⊗ #a = #a, so #Sa = #a. Hence Sa⊗ Sa = #a⊗ #a = #a ≤ a < x. �is contradicts (10).

�e second part of (xi) follows from (x) and (9). �e �rst part follows from the second one with (v)
and (vi). Let x and y be in�nite cardinals. Using (iv) and (xi), we �nd Max[x , y] = Max[x ⊕ 0̇, 0̇ ⊕ y] ≤
x ⊕ y ≤ Max[x , y] ⊕Max[x , y] = Max[x , y] and Max[x , y] = Max[x ⊗ 1̇, 1̇ ⊗ x] ≤ x ⊗ y ≤ Max[x , y] ⊗
Max[x , y] =Max[x , y]. �ese prove (xii).
To prove (xiii), de�ne f ′ by f ′xyn = fπm

1 x . . . πm
mxyn . Let x be an in�nite cardinal and y a set of

cardinal at most x. �en {fxn yn ∣ x1 ∈ y ∧⋯ ∧ xm ∈ y} = {f ′wyn ∣w ∈ ×m y . . . y}. But this set is the range
of the function {[f ′wyn ,w] ∣ w ∈ ×m y . . . y} whose domain is ×m y . . . y. By (vii) of §3.10, #{fxn yn ∣ x1 ∈
y ∧ ⋯ ∧ xm ∈ y} ≤ #×m y . . . y. On the other hand, #×m y . . . y ≤ x by (xi) and induction on m, so we
�nd (xiii).

3.12 Alephs.We de�ne

y = gx′x ↔ (Ord x ∧ ICard y ∧ ∀z(z < x → y 1 x′‘z)
∧ ∀z(z < y → ⌝(ICard z ∧ ∀w(w < x → z 1 x′‘w)))) ∨ (⌝Ord x ∧ y = 0̇).

�us for x an ordinal, gx′x is the �rst ordinal which is a cardinal greater than ω and not equal to a mem-
ber of Im(x′ ↾ x). To prove that this is a valid de�nition in ZFC, we must check that ∣−ZFCOrd x →
∃y(ICard y∧ y ∉ Im(x′ ↾ x)). We know that ∣−ZFC∃y(Ord y∧ y ∉ Im(x′ ↾ x)), so by transitivity of ordinals
it will su�ce to prove that any ordinal belongs to a cardinal, i.e., ∣−ZFCOrd x → ∃y(Card y ∧ x < y). �is
follows from the following theorem.

Cantor’s Theorem. ∣−ZFCOrd x → x < #Px.
Proof. We �rst prove ∣−ZFCCard x → x < #Px. Let x be a cardinal. �e set {[{y}, y] ∣ y ∈ x} is an injective
function on x whose image is included in Px, so x ≤ #Px. Assume x = #Px. �en there exist an injective
mapping z on x whose image is Px. Let a be {y ∣ y < x ∧ y ∉ z‘y}. Clearly a ∈ Px, and hence there exists
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y < x such that z‘y = a. �en y ∈ a↔ y ∉ a, which is a contradiction. Assume now that x is any ordinal,
and that #Px ≤ x. By (vi) of §3.8 and (iv) of §3.10, #P#x = #Px = ##Px, and since ##Px ≤ #x by the
hypothesis and (vi) of §3.10, we obtain #P#x ≤ #x, which contradicts the �rst part.
We de�ne the unary function symbol ℵ by trans�nite recursion so that ∣−ZFCOrd x → ℵx =

g{[ℵy, y] ∣ y < x}x. We now prove that ℵ is in fact a one to one correspondence between ordinals
and in�nite cardinals.

(i) ∣−ZFCOrd x → y < x → ℵy < ℵx;
(ii) ∣−ZFCICard x ↔ ∃y(Ord y ∧ x = ℵy);
(iii) ∣−ZFCℵ0̇ = ω;
(iv) ∣−ZFCOrd x → ℵSx ≤ #Pℵx.
Let x be an ordinal and x < y. By de�nition of ℵ, ℵx is not equal to ℵy and does not belong to {ℵz ∣ z <
y}. Since ℵy is the �rst in�nite cardinal which does not belong to {ℵz ∣ z < y}, we obtain ℵy ≤ ℵx,
whence (i). �e implication from right to le� in (ii) is immediate from the de�nition of ℵ. Let x be an
in�nite cardinal. By (i) above and (vii) of §3.3, we have⌝∃z∀y(∃w(Ordw∧y = ℵw)→ y ∈ z). In particular,
⌝∀y(∃w(Ordw ∧ y = ℵw) → y ∈ x), that is, ℵw ∉ x for some ordinal w. �en x ≤ ℵw. Hence either
x = ℵw or x < ℵw. In the latter case, x ∈ {ℵw′ ∣ w′ < w} by de�nition of ℵ. �us in both cases x = ℵy
for some ordinal y. For (iii), recall that ω is a cardinal, so it is the �rst in�nite cardinal by de�nition of an
in�nite cardinal; (iv) is obvious from Cantor’s theorem and the de�nition of ℵ.
3.13 �e functional closure theorem. In this paragraph, we prove that we may form the “closure” of any
set under given function symbols. In ZFC this can be done so that the cardinal of the closure of x is at
most Max[#x ,ℵ0̇]. Moreover, the closure is “minimal” in the sense that any set which includes x and is
closed under those function symbols includes the closure of x.

Functional Closure Theorem. Let T be a good extension of ZFC in which there are an n-ary func-
tion symbol h and function symbols f1, . . . , fk , each fi of index m i + n. �en there is a de�ned n-ary
function symbol h′ of T such that

(i) ∣−Thyn ⊆ h′yn ;
(ii) ∣−TOrd x → #hyn ≤ ℵx → #h′yn ≤ ℵx;
(iii) for each i, ∣−Tx1 ∈ h′yn → ⋯→ xm i ∈ h′yn → fixm i yn ∈ h′yn ;
(iv) ∣−Thyn ⊆ x → {f1xm1 yn ∣ x1 ∈ x ∧⋯ ∧ xm1 ∈ x} ⊆ x → ⋯ → {fkxmk yn ∣ x1 ∈ x ∧⋯ ∧ xmk ∈ x} ⊆

x → h′yn ⊆ x.
Proof. De�ne f by

fxyn = Un{x , {f1xm1 yn ∣ x1 ∈ x ∧⋯ ∧ xm1 ∈ x}, . . . , {fkxmk yn ∣ x1 ∈ x ∧⋯ ∧ xmk ∈ x}},
and de�ne a function symbol g by trans�nite recursion so that ∣−Tg0̇yn = hyn , ∣−TOrd y → y = Sy′ →
gyyn = fgy′yn yn , and ∣−TLim y → gyyn = Un{gy′yn ∣ y′ < y}. Since x ⊆ fxyn , we have y < ω → y′ <
y → gy′yn ⊆ gyyn . Let us prove that the h′ de�ned by h′yn = gωyn has the desired properties. Since
hyn = g0̇yn , hyn ⊆ g1̇yn , and so hyn ⊆ h′yn . Let z be an ordinal such that #hyn ≤ ℵz. By (iii), (xi),
and (xiii) of §3.11, we have

∣−ZFC#w ≤ ℵz → #fwyn ≤ ℵz. (11)

We prove by trans�nite induction that y < ω → #gyyn ≤ ℵz. �is holds if y is 0̇ because #hyn ≤ ℵz.
If y = Sy′ and y′ < ω, then #gy′yn ≤ ℵz by induction hypothesis, so #gyyn ≤ ℵz by (11). If ω ≤ y,
the result is tautologically satis�ed. By (vii) of §3.11, we �nd #h′yn ≤ ℵz ⊗ ω ≤ ℵz ⊗ ℵz = ℵz. �is
proves (ii). Suppose that x1, . . . , xm i are members of h′yn . �en each x j belongs to gz j yn for some z j <
ω. Let y be the greatest ordinal among z1, . . . , zm i . �en x1, . . . , xm i are members of gyyn , and hence
fixm i yn ∈ fh′yyn yn = h′Syyn . Since Sy < ω, we have fixm i yn ∈ h′yn . Finally, assume that hyn ⊆ x
and that {fixm i yn ∣ x1 ∈ x ∧ ⋯ ∧ xm i ∈ x} ⊆ x for each i. We prove by trans�nite induction on y that
y < ω → gyyn ⊆ x, from which (iv) follows. If y = 0̇, this is assumed. So suppose that y = Sy′ for some
y′ < ω. Since y ⊆ x → f yyn ⊆ x by the closure conditions on x, using the induction hypothesis we �nd
gyyn = fgy′yn yn ⊆ x.



108 first-order set theory vi 3.14

3.14 �e continuum hypothesis. �e generalized continuum hypothesis is a translation into ZFC of the
formula ∀x(Ord x → #Pℵx ≤ ℵSx). �e continuum hypothesis is a translation into ZFC of the formula
#Pℵ0̇ ≤ ℵ1̇. Obviously the continuum hypothesis is inferrable from the generalized continuum hypothesis
in ZFC.

•



Chapter Seven
�eConsistency Proofs

§1 Simple interpretations of ZF

1.1 Mostowski collapsing. In this paragraph, T is a good extension of ZF. Assume that there is a unary
predicate symbolq inT such that ∣−T∃xqx. Since L(ZF) has no function symbols, the simple interpretation
I of L(ZF) in L(T) de�ned by q is an interpretation of L(ZF) in T . We sometimes write Aq and Aq for AI
and AI . Note that I is also an interpretation of L(ZF) in any extension of T .
A particular case is when ∣−Tqx ↔ x ∈ e with ∣−T∃x(x ∈ e). We then call the simple interpretation

de�ned by q the simple interpretation e. If only e is given, then we should de�ne q in T by qx ↔ x ∈ e
before we can speak of the interpretation e. But in practice, it is of course not necessary to pass to an
extension by de�nitions: we may just replace qa by a ∈ e everywhere. �e notations Ae and Ae are used
in that sense.
To simplify, when a formula B clearly satis�es ∣−TB↔ AI , we also call B the interpretation of A by I.

For example, the variables free in A need not be arranged in reverse alphabetical order when forming AI ,
and we may use ∀x(UIx → CI) as the interpretation by I of a closed formula ∀xC, even though it really is
∀x(UIx → ⌝⌝CI).
A simple interpretation I of L(ZF) in T is said to be transitive if x ∈ y is complete in x for I, i.e., if

∣−TUI y → x ∈ y → UIx.

Mostowski Collapsing Theorem. Let I be an interpretation of L(ZF) in T such that =I is = and
such that the interpretation by I of the extensionality axiom is a theorem of T . Suppose that there is a
unary function symbol h in T such that

(i) ∣−TOrdhx, i.e., h is an ordinal function symbol;
(ii) ∣−TOrd x → ∃y∀z(hz ≤ x → z ∈ y);
(iii) ∣−Tx ∈I y → hx < hy.
�en I is isomorphic to a transitive simple interpretation of L(ZF) in an extension by de�nitions of T .

Proof. In T , de�ne a unary function symbol g by trans�nite recursion on hx so that ∣−Tgx = {gw ∣UIw ∧
w ∈I x}. �is is a valid de�nition by the hypotheses (i)–(iii). De�ne the unary predicate symbol q by
qx ↔ ∃y(UI y ∧ x = gy). From ∣−T∃xUIx we derive ∣−T∃xqx. We let J be the simple interpretation of
L(ZF) de�ned by q, and we prove that J is transitive and that g is an isomorphism from I to J. Let x and y
be such that qy and x ∈ y. �en for some z with UIz, y = gz, whence x ∈ gz. By de�nition of g, it follows
that x = gw for some w such that UIw and w ∈I z. In particular, qx. �us, J is transitive. To prove that g
is an isomorphism from I to J, we must prove (i), (ii), and (iii) of ch. ii §3.4. But (i) is given, so we need
only prove

∣−TUIx → UI y → x = y↔ gx = gy and (1)
∣−TUIx → UI y → x ∈I y↔ gx ∈ gy. (2)

We prove (1) by trans�nite induction on hx. �e implication from le� to right is just an equality ax-
iom. Suppose that UIx and UI y and that gx = gy. �e interpretation by I of the extensionality axiom
is ∀z(UIz → z ∈I x ↔ z ∈I y)→ x = y, which holds by hypothesis. Hence we need only derive that if UIz,
then z ∈I x ↔ z ∈I y. By symmetry, it su�ces to prove the implication from le� to right. Suppose then
that z ∈I x for some z such that UIz. By de�nition of g, gz ∈ gx. Since gx = gy, and again by de�nition of
g, gz = gw for some w such that UIw and w ∈I y. Since hz < hx, the induction hypothesis yields z = w,
so z ∈I y.

�e implication from le� to right in (2) is obvious by the de�nition of g. Assume that UIx, UI y, and
gx ∈ gy. By de�nition of g, gx = gz for some z such that UIz and z ∈I y. By (1), x = z, so x ∈I y.

109
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1.2 Interpretations of ZF. In this paragraph, we let T be a good extension of ZF and I a transitive simple
interpretation of L(ZF) in T . Our goal is to give su�cient conditions for I to be an interpretation of ZF
in T . In fact, we shall give su�cient conditions for the interpretation by I of each axiom of ZF to be a
theorem of T .

Lemma 1. �e interpretations by I of the extensionality axiom and the regularity axiom are theorems
of T .

Proof. From the extensionality axiom and using the transitivity of I, we �nd ∣−TUIx → UI y → ∀z(UIz →
z ∈ x ↔ z ∈ y) → x = y, which is the interpretation by I of the extensionality axiom. By the regularity
axiom, the conjunction of UIx and ∃y(UI y ∧ y ∈ x) implies ∃y(y ∈ x ∧ ⌝∃z(UIz ∧ z ∈ x ∧ z ∈ y)). Using
the transitivity of I, we obtain ∣−TUIx ∧ ∃y(UI y ∧ y ∈ x) → ∃y(UI y ∧ y ∈ x ∧ ⌝∃z(UIz ∧ z ∈ x ∧ z ∈ y)),
which is the interpretation by I of the regularity axiom.

Lemma 2. Suppose that ∣−TUIx → ∃w(UIw ∧ ∀y(UI y → y ⊆ x → y ∈ w)). �en the interpretation by
I of the power set axiom is a theorem of T .

Proof. �e interpretation of the power set axiom is UIx → ∃w(UIw ∧ ∀y(UI y → ∀z(UIz → z ∈ y → z ∈
x)→ y ∈ w). By the transitivity of I, this is equivalent to the hypothesis.

Lemma 3. Suppose that ∣−TUIω. �en the interpretation by I of the in�nity axiom is a theorem of T .

Proof. By the substitution axioms it will su�ce to derive

UIω ∧ ∃y(UI y ∧ y ∈ ω ∧ ∀z(UIz → ⌝z ∈ y))
∧ ∀y(UI y → y ∈ ω → ∃z(UIz ∧ z ∈ ω ∧ ∀w(UIw → w ∈ z↔ w ∈ y ∨w = y))).

�is follows by transitivity of I from ∣−TUIω and ∣−T∃y(y ∈ ω∧∀z⌝z ∈ y)∧∀y(y ∈ ω → ∃z(z ∈ ω∧∀w(w ∈
z↔ w ∈ y ∨w = y))).

Lemma 4. Suppose that any de�ned (n + 1)-ary function symbol f of T with a de�ning axiom of the
form f yx1 . . . xn = {x ∣ x ∈ y ∧AI} is I-invariant. �en the interpretation by I of each subset axiom of
ZF is a theorem of T .

Proof. By the version theorem it will su�ce to consider a subset axiom of the form ∃z∀x(x ∈ z ↔ x ∈
y ∧A), where y and z do not occur in A and where x1, . . . , xn are the variables other than x free in A. Its
interpretation by I is

UIx → UIx1 → ⋯→ UIxn → ∃z(UIz ∧ ∀x(UIx → x ∈ z↔ x ∈ y ∧AI)). (3)

Let f be de�ned by f yx1 . . . xn = {x ∣ x ∈ y ∧AI}. Assume that UI y ∧UIx1 ∧⋯∧UIxn ; then UIf yx1 . . . xn
by I-invariance of f . From the de�nition of f , we also have

∀x(UIx → x ∈ f yx1 . . . xn ↔ x ∈ y ∧AI), (4)

so (3) holds by the substitution axioms.

Lemma 5. Suppose that, for any I-invariant de�ned (n + 1)-ary function symbol f of T , ∣−TUI y →
UIx1 → ⋯ → UIxn → ∃z(UIz ∧ ∀x(x ∈ y → fxx1 . . . xn ⊆ z)). �en the interpretation by I of each
replacement axiom of ZF is a theorem of T .

Proof. It su�ces to consider a replacement axiom of the form ∀x∃z∀y(A ↔ y ∈ z) → ∃z∀y(∃x(x ∈
w ∧A)→ y ∈ z) where z and w do not occur in A, and x1, . . . , xn are the variables other than x and y free
in A. Its interpretation by I is

UIw → UIx1 → ⋯→ UIxn → ∀x(UIx → ∃z(UIz ∧ ∀y(UI y → AI ↔ y ∈ z)))
→ ∃z(UIz ∧ ∀y(UI y → ∃x(UIx ∧ x ∈ w ∧AI)→ y ∈ z))
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De�ne f by

w = fxx1 . . . xn ↔ (∃z(UIz ∧ ∀y(y ∈ z↔ UI y ∧AI) ∧w = z))
∨ (⌝∃z(UIz ∧ ∀y(y ∈ z↔ UI y ∧AI)) ∧w = x).

�en f is obviously I-invariant. Assume that UIw, UIx1, . . . , UIxn and that

∀x(UIx → ∃z(UIz ∧ ∀y(UI y → AI ↔ y ∈ z))). (5)

By the hypothesis of the lemma, we have ∃z(UIz ∧ ∀x(x ∈ w → fxx1 . . . xn ⊆ z)). �us it will su�ce to
prove that UIz ∧ ∀x(x ∈ w → fxx1 . . . xn ⊆ z) implies UIz ∧ ∀y(UI y → ∃x(UIx ∧ x ∈ w ∧ AI) → y ∈ z).
So assume that UIz ∧ ∀x(x ∈ w → fxx1 . . . xn ⊆ z) and let y be such that UI y and UIx ∧ x ∈ w ∧ AI for
some x. We must prove that y ∈ z. By (5) and the transitivity of I, we have ∃z(UIz ∧ ∀y(AI ↔ y ∈ z)),
whence ∀y(AI ↔ y ∈ fxx1 . . . xn) by de�nition of f . Now since AI , we have y ∈ fxx1 . . . xn , and since
x ∈ w, fxx1 . . . xn ⊆ z. So y ∈ z.
1.3 Absoluteness of de�ned symbols.We now assume that I is a transitive simple interpretation of ZF in
T , where T is a good extension of ZF. As in most results that we shall prove in this section, the hypothesis
that I be a transitive simple interpretation of ZF is o�en too strong: sometimes we do not use the transivity
of I or we only need the interpretations of a few axioms of ZF. But we shall have no need of a more precise
analysis than that which is given. Recall that by the interpretation extension theorem, I can be extended
to an interpretation of any extension by de�nitions of ZF in a suitable extension by de�nitions of T (since
it is possible to de�ne a constant in T , and we agree to use the constant 0̇), which we continue to denote
by I as we do not usually distinguish between ZF and its extensions by de�nitions.
Note that = and ∈ are absolute for I since I is simple. Moreover x = y is complete in x for I, and since

I is transitive, x ∈ y is complete in x for I. We now use the results of ch. ii §3.5 to prove that some de�ned
symbols of ZF are absolute for I. In particular, we shall see that the general principles on set formation
proved in Chapter vi yield absolute symbols when the “input” is absolute. To prove that a function symbol
f is absolute, it will su�ce, by Lemma 8 of ch. ii §3.5, to derive a formula of the form fx1 . . . xn = awhere a
is absolute for I, or a formula of the form y = fx1 . . . xn ↔ A where A is absolute for I. Similarly, to prove
that a predicate symbol p is absolute, it will su�ce, by the same Lemma, to derive an equivalence of the
form px1 . . . xn ↔ A where A is absolute for I. We shall thus make a list of such formulae, and in all cases
the fact that the formula is a theorem of ZF will be clear given the de�ning axiom of the symbol. In most
cases the formula will also give at once the desired absoluteness by the general principles of ch. ii §3.5, the
completeness in x of x ∈ y, and the preceding results in the list. First note that since x ∈ y is complete in x
for I, x ∈ y ∧ B and ⌝(x ∈ y → B) are complete in x for I. So by Lemma 5 of ch. ii §3.5, ∃x(x ∈ y ∧ B) and
∀x(x ∈ y → B) are absolute for I if B is absolute for I. From now on we use these facts and the lemmas
of ch. ii §3.5 without mention.

Lemma 1. If f is de�ned by fy1 . . . yn = {x∣A} as in the �rst theoremon set de�nitions and ifA is absolute
for I and complete in x for I, then f is absolute for I. If g is de�ned by gy1 . . . yn = {fx1 . . . xmy′1 . . . y′k ∣A}
as in the third theorem on set de�nitions, if A is absolute for I and complete in x1, . . . , xm for I, and if
f is absolute for I, then g is absolute for I.

Proof. x ∈ y↔ A is absolute for I, so it will su�ce to prove that ⌝(x ∈ y↔ A) is complete in x for I. �e
latter is tautologically equivalent to (x ∈ y ∧⌝A)∨ (x ∉ y ∧A) which is complete in x by completeness in x
of x ∈ y and ofA. IfA is absolute and complete in x1, . . . , xm , thenA∧y = fx1 . . . xmy′1 . . . y′k is absolute and
complete in x1, . . . , xm , y by absoluteness of f . Hence we �nd as above that ⌝(y ∈ w↔ ∃x1 . . . ∃xm(A∧ y =
fx1 . . . xmy′1 . . . y′k)) is absolute and complete in y.

(i) 0̇ = {y ∣ y 1 y};
(ii) x ⊆ y↔ ∀z(z ∈ x → z ∈ y);
(iii) {}2xy = {w ∣w = x ∨w = y};
(iv) {}1x = {}2xx;
(v) []2xy = {}2{}1x{}2xy;
(vi) []1x = x;
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(vii) for n ≥ 3, []nx1 . . . xn = []2x1[]n−1x2 . . . xn ;
(viii) Unw = {y ∣ ∃x(x ∈ w ∧ y ∈ x)}.
For (viii) observe that ∃x(x ∈ w ∧ y ∈ x) is complete in y by transitivity of I.

(ix) for n ≥ 3, {}nx1 . . . xn = Un{}2{}1x1{}n−1x2 . . . xn ;
(x) ∪xy = Un{}2xy;
(xi) ∩xy = {w ∣w ∈ x ∧w ∈ y};
(xii) −xy = {w ∣w ∈ x ∧w ∉ y};
(xiii) Sx = ∪x{}1x;
(xiv) 1̇ = S0̇, 2̇ = S1̇, 3̇ = S2̇, 4̇ = S3̇, 5̇ = S4̇, 6̇ = S5̇, 7̇ = S6̇, 8̇ = S7̇, 9̇ = S8̇;
(xv) ×2xy = {w ∣ ∃x′∃y′(w = []2x′y′ ∧ x′ ∈ x ∧ y′ ∈ y)};
For (xv) we must prove that ∃x′∃y′(w = []2x′y′ ∧ x′ ∈ x ∧ y′ ∈ y) is complete in w for I. �is follows from
the transitivity of I and the absoluteness of []2.

(xvi) for n ≥ 3, y = ×nx1 . . . xn ↔ y = ×2x1×n−1x2 . . . xn ;
(xvii) for n ≥ 1 and for 1 ≤ i ≤ n, y = πn

i x ↔ (∃x1 . . . ∃xn(x = []nx1 . . . xn ∧ y = x i)) ∨ (⌝∃x1 . . . ∃xn(x =
[]nx1 . . . xn) ∧ y = 0̇).

For (xvii) we must prove that x = []nx1 . . . xn is complete in x1, . . . , xn for I. �is is obvious if n = 1, and if
n = 2 it follows from the transitivity of I since ∣−ZFx1 ∈ {x1}∧x2 ∈ {x1 , x2} and ∣−ZF{x1} ∈ []2x1x2∧{x1 , x2} ∈
[]2x1x2. �e general case is proved by induction.

(xviii) Dom x = {π22w ∣w ∈ x};
(xix) Im x = {π21w ∣w ∈ x};
(xx) ↾xy = {[x′ , x′′] ∣ x′′ ∈ y ∧ [x′ , x′′] ∈ x};
(xxi) Func x ↔ x ⊆ Im x ×Dom x ∧ ∀y∀y′∀z([y, z] ∈ x → [y′ , z] ∈ x → y = y′);
(xxii) IFunc x ↔ Func x ∧ ∀y∀z∀z′([y, z] ∈ x → [y, z′] ∈ x → z = z′);
(xxiii) z = ‘xy↔ ((Func x ∧ y ∈ Dom x) ∧ [z, y] ∈ x) ∨ (⌝(Func x ∧ ⌝y ∈ Dom x) ∧ z = 0̇);
(xxiv) ○xy = {[x′ , y′] ∣ ∃z′([x′ , z′] ∈ x ∧ [z′ , y′] ∈ y)}.
�e absoluteness in (xxiv) follows from the completeness in x′, y′, z′ of [x′ , z′] ∈ x ∧ [z′ , y′] ∈ y.
(xxv) Tr x ↔ ∀y∀z(y ∈ x → z ∈ y → z ∈ x);
(xxvi) Ord x ↔ Tr x ∧ ∀y(y ∈ x → Tr y);

Lemma 2. If f is de�ned by fx1 . . . xn = µyA where A is absolute for I, then f is absolute for I.

Proof. �e actual de�ning axiom of f is y = fx1 . . . xn ↔ Ord y∧A∧∀z(z ∈ y → ⌝A[y∣z]) for some suitable
z, and its right-hand side is absolute.

Lemma 3. Let g be a de�ned (n+2)-ary function symbol and let f be de�ned using g as in the principle
of trans�nite recursion. If g is absolute for I, so is f .

Proof. Recall that f is such that ∣−T(Ord x ∧ fxyn = g{[fx′yn , x′] ∣ x′ < x}xyn) ∨ (⌝Ord x ∧ fxyn = 0̇).
�us if h is de�ned by y = hxyn ↔ (Ord x ∧ Func y ∧ x = Dom y ∧ ∀z(z ∈ x → y‘z = g{[y‘z′ , z′] ∣ z′ <
z}zyn)) ∨ (⌝Ord x ∧ y = 0̇), then ∣−T fxyn = (hSxyn)‘x. But ∀z(z ∈ x → y‘z = g{[y‘z′ , z′] ∣ z′ < z}zyn) is
absolute. So h is absolute for I, and hence f is absolute for I.

(xxviii) Max x = π21 x ∪ π22x;
(xxix) MP x = [µy∃z(z ∈ µw⌝(w ×w ⊆ x) ∧ [y, z] ∉ x), µy([µy′∃z(z ∈ µw⌝(w ×w ⊆ x) ∧ [y′ , z] ∉ x), y] ∉

x)];
(xxx) O2 is de�ned by trans�nite recursion using gzx =MP{z‘y ∣ y < x};
(xxxi) Lim x ↔ Ord x ∧ ⌝x = 0 ∧ ⌝∃y(Ord y ∧ x = Sy);
(xxxii) ω = µy Lim y.

Remark. Recall that, by the remark in ch. vi §3.3, the absoluteness of all the symbols listed above ex-
cept (xxxii) holds not only for transitive simple interpretations of ZF, but more generally for transitive
simple interpretations of ZFω .
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§2 �e predicate of constructibility

2.1 Introduction.We shall de�ne in ZF a unary predicate symbol L, called the predicate of constructibility,
and we shall consider the simple interpretation of L(ZF) de�ned by L. Intuitively, we would like to de�ne
the constructible sets by trans�nite induction as follows. We �rst de�ne f by trans�nite recursion so that
fx = Un{Def y ∣ y < x} for x an ordinal, where Def y is the the set of subsets of y which are characterized
by a formula with parameters and quanti�ers restricted to sets in y, i.e., the set of all sets of the form
{z ∣ z ∈ y∧Ay} with y not occurring inA. �en a set is constructible if it lies in fx for some ordinal x. �is
de�nition ensures that the interpretations by L of the subset axioms hold. Moreover, the interpretations
of the other axioms can be proved to hold as well by simple arguments. Unfortunately, a more precise
look at this “de�nition” brings us to the conclusion that it is �awed. It is indeed possible to de�ne a unary
function symbol Def in ZF such that ∣−ZFDef x ⊆ Px and for any formula A of ZF with parameters and
quanti�ers restricted to a variable x, ∣−ZF y ⊆ x ∧∀z(z ∈ y↔ A)→ y ∈ Def x. But it makes no sense to ask
that for every y ∈ Def x there exists a formula A as above such that z ∈ y↔ A. �e formal de�nition of L
will thus necessarily di�er from this naïve de�nition, but it will retain all of the above properties. We shall
even be able to prove that the interpretations by L of the axiom of choice and the generalized continuum
hypothesis hold. We shall then use the interpretation theorem to obtain a result on consistency. Note that
the proof of this result will be entirely �nitary. Here, instead of de�ning the symbol Def, constructible sets
will be de�ned more directly as the image of a function symbol on ordinals. �e hard part will be to build
that function symbol so that it satis�es our requirements. �e property of Def that we mentioned above
can be found in the theorem on de�nability in §2.3.

�emethod given here is essentially the original one of Gödel [4], and we use the same notations with
a few minor di�erences. (Gödel’s original proof was written for the �rst-order theory NBG, but all his
arguments translate into ZF in a straightforward manner.)

2.2 De�nition of L.We de�ne the binary function symbols F1, . . . , F9, called theGödel symbols, as follows
(all the de�nitions are legit according to the third theorem on de�nitions or the proposition 1 of ch. ii
§2.2):

(i) z = F1xy↔ ∀w(w ∈ z↔ ∃x′∃y′(w = [x′ , y′] ∧w ∈ x ∧ y′ ∈ x′));
(ii) z = F2xy↔ ∀w(w ∈ z↔ ∃x′(w = [x′ , x′] ∧w ∈ x));
(iii) z = F3xy↔ ∀w(w ∈ z↔ ∃x′∃y′(w = [x′ , y′] ∧w ∈ x ∧ x′ ∈ y));
(iv) z = F4xy↔ ∀w(w ∈ z↔ ∃x′∃y′(w = [x′ , y′] ∧w ∈ x ∧ y′ ∈ y));
(v) z = F5xy↔ ∀w(w ∈ z↔ ∃x′∃y′(w = [x′ , y′] ∧w ∈ x ∧ [y′ , x′] ∈ y));
(vi) z = F6xy↔ ∀w(w ∈ z↔ ∃x′∃y′∃z′(w = [x′ , y′ , z′] ∧w ∈ x ∧ [y′ , x′ , z′] ∈ y));
(vii) z = F7xy↔ ∀w(w ∈ z↔ ∃x′∃y′∃z′(w = [x′ , y′ , z′] ∧w ∈ x ∧ [z′ , x′ , y′] ∈ y));
(viii) z = F8xy↔ z = x − y;
(ix) z = F9xy↔ z = x ∩Dom y.

Note that the Fi are absolute for transitive simple interpretations of ZFω , and that ∣−ZFFixy ⊆ x. We then
de�ne the unary function symbols J0, J1, J2 as follows:

(x) J0x = π31O3x;
(xi) J1x = π32O3x;
(xii) J2x = π33O3x.
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�en the Ji are absolute for transitive simple interpetations of ZFω . By (viii) and (ix) of ch. vi §3.5, we
have ∣−ZFOrd x → 0̇ < J0x → J1x < x ∧ J2x < x. Hence we may de�ne a function symbol C by trans�nite
recursion so that

∣−ZF y = Cx ↔ (Ord x ∧ J0x = 0̇ ∧ ∀w(w ∈ y↔ ∃z(z < x ∧w = Cz)))
∨ (Ord x ∧ J0x = 1̇ ∧ y = F1CJ1xCJ2x)
∨ (Ord x ∧ J0x = 2̇ ∧ y = F2CJ1xCJ2x)
∨ (Ord x ∧ J0x = 3̇ ∧ y = F3CJ1xCJ2x)
∨ (Ord x ∧ J0x = 4̇ ∧ y = F4CJ1xCJ2x)
∨ (Ord x ∧ J0x = 5̇ ∧ y = F5CJ1xCJ2x)
∨ (Ord x ∧ J0x = 6̇ ∧ y = F6CJ1xCJ2x)
∨ (Ord x ∧ J0x = 7̇ ∧ y = F7CJ1xCJ2x)
∨ (Ord x ∧ J0x = 8̇ ∧ y = F8CJ1xCJ2x)
∨ (Ord x ∧ J0x = 9̇ ∧ y = F9CJ1xCJ2x)
∨ (Ord x ∧ 9̇ < J0x ∧ y = {CJ1x , CJ2x})
∨ (⌝Ord x ∧ y = 0̇).

Finally, we de�ne L by Lx ↔ ∃y(Ord y∧ x = Cy). If x is constructible, the �rst ordinal y such that x = Cy
is called the order of x. Formally, we de�ne Od by y = Od x ↔ (Ord y ∧ x = Cy ∧ ∀z(z < y → x 1
Cz)) ∨ (⌝Lx ∧ y = 0̇). Observe that ∣−ZFLx → Ly → x 1 y → Od x 1 Od y. Finally, we de�ne C∗ by
C∗x = {Cy ∣ y < x}.
2.3 Constructibility and de�nability. In this paragraph we review the fundamental properties of L. �e
main result is the theorem on de�nability which says that “de�nable” sets are constructible.

Lemma 1. ∣−ZFLx → y ∈ x → Ly ∧Od y ∈ Od x.
Proof. Suppose that x is constructible and that y ∈ x. We derive the result using the priniciple of trans�nite
induction on Od x. If J0Od x = 0, then x = {Cz ∣ z < Od x}. So y = Cz for some z < Od x, and hence
Ly and Od y ≤ z < Od x. If J0Od x = 1̇, then x = F1CJ1Od xCJ2Od x; so x ⊆ CJ1Od x. �us y belongs
to CJ1Od x and J1Od x < Od x. By induction hypothesis, Ly and Od y < J1Od x < Od x. We proceed
similary for 2̇, . . . , 9̇. Finally, if 9̇ < J0Od x, then y = CJ1Od x or y = CJ2Od x, but in either case Ly and
Od y < Od x.

Lemma 2. ∣−ZF∀y(y ∈ x → Ly)→ ∃y(Ly ∧ x ⊆ y).
Proof. Assume that ∀y(y ∈ x → Ly) and using (v) of ch. vi §3.3 let z be an ordinal such that y ∈ x →
Od y < z. �en x ⊆ {Cx′ ∣ x′ < z}. �ere exists an ordinal w satisfying z ≤ w such that O2w = [0̇, z],
whence {Cx′ ∣ x′ < z} ⊆ {Cx′ ∣ x′ < w}. Since J0w = 0, Cw = {Cx′ ∣ x′ < w}. Consequently, x ⊆ Cw.

From the two Lemmas we now derive some properties of stability of L.

(i) For 1 ≤ i ≤ 9, ∣−ZFLx → Ly → LFixy;
(ii) ∣−ZFLx → Ly → L{x , y};
(iii) ∣−ZFLx1 → ⋯→ Lxn → L[x1 , . . . , xn].
Suppose that x = Cz and y = Cw for some ordinals z and w. �ere exists an ordinal x′ such that J0x′ = 1̇,
J1x′ = z, and J2x′ = w. SoF1xy = Cx′. Similarly forF2, . . . ,F9. �is proves (i). Under the same hypotheses,
we may choose an ordinal x′ such that J0x′ = S9̇, J1x′ = z, and J2x′ = w. �en {x , y} = Cx′. By induction
using (ii), we �nd (iii).

(iv) ∣−ZFLx1 → ⋯→ Lxn → L(x1 ×⋯ × xn);
(v) ∣−ZFLx → Ly → L(x ×1 y);
(vi) ∣−ZFLx → Ly → L(x ×2 y).
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For (iv), it su�ces to derive Lx → Ly → L(x×y). Let x and y be constructible sets. By (iii), z is constructible
for all z ∈ x×y. So by Lemma 2, there is a constructible setw such that x×y ⊆ w. But then x×y = F4F3wxy,
so L(x × y). Similarly, there is a constructible set w such that x ×1 y ⊆ w (resp. x ×2 y ⊆ w). �en
x ×1 y = F6w(x × y) (resp. x ×2 y = F7w(x × y)), whence (v) (resp. (vi)).

(vii) ∣−ZFLx → LCnv x.
Let [y, z] be a member of x. �en by Lemma 1, {y, z} and hence y and z are constructible. By (iii), [z, y] is
contructible. By Lemma 2, there exists a constructible set w such that Cnv x ⊆ w, and then Cnv x = F5wx
is constructible.

(viii) ∣−ZFLx → Ly → L(x ∪ y);
(ix) ∣−ZFLx → Ly → L(x ∩ y);
(x) ∣−ZFLx1 → ⋯→ Lxn → L{x1 , . . . , xn}.
Let x and y be constructible. By Lemmas 1 and 2, there is a constructible set z such that x ∪ y ⊆ z. �en
x ∪ y = F8wF8F8wxy and x ∩ y = F8xF8xy, so both are constructible. Since {x1 , . . . , xn} = {x1 , x1} ∪
{x2 , . . . , xn}, (x) follows from (ii) and (viii) by induction.

(xi) ∣−ZFLx → LDom x;
(xii) ∣−ZFLx → L Im x.

Let x be constructible. By Lemma 1, y ∈ Dom x implies Ly. So by Lemma 2, there exists a constructible
set z such that Dom x ⊆ z. �en Dom x = F9zx. Finally, Im x = DomCnv x.

Lemma 3. For any n ≥ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n, ∣−ZFLx → Ly → ∃z(Lz ∧ ∀x1 . . .∀xn(x1 ∈ x → ⋯ → xn ∈
x → [x i , x j] ∈ y↔ [x1 , . . . , xn] ∈ z)).

Proof. Assume that x and y are constructible. We shall exhibit a constructible set z satsfying the theorem;
this set will be seen in each case to be constructible on the basis of (i)–(xii), and we shall not mention it.
We �rst note that if i = j, then ×nx . . . xDomF2 yyx . . . x, where DomF2 yy stands at the i-th place, is as
desired. In particular, the result is proved for n = 1. If i = 1 and j = 2, then the set (×n−2x . . . x)×2 y (read
y if n = 2) is as desired. We suppose from now on that n ≥ 2, and we prove the result by induction on n.
We shall distinguish the following cases:

(i) i = 1 and j > 2;
(ii) i > 1 and i < j;
(iii) j < i.
By induction hypothesis, there is a constructible set w such that for all x1, x3, . . . , xn in x, [x1 , x j] ∈ y ↔
[x1 , x3 , . . . , xn] ∈ w. For (i), we may then take z to be x ×1 w. By induction hypothesis, there exists a
constructible set w such that for all x2, . . . , xn in x, [x i , x j] ∈ y ↔ [x2 , . . . , xn] ∈ w. Hence we may
take x × w for z in case (ii). For (iii), since Cnv y is constructible, there exists by the preceding cases a
constructible set z such that for all x1, . . . , xn in x, [x j , x i ] ∈ Cnv y ↔ [x1 , . . . , xn] ∈ z. Clearly z is as
required.

Theorem on Definability. Let x1, . . . , xn , x, and y be distinct variables. For any formula A of L(ZF)
with free variables among x1, . . . , xn , ∣−ZFLx → ∃y(Ly ∧ ∀x1 . . .∀xn(x1 ∈ x → ⋯ → xn ∈ x →
[x1 , . . . , xn] ∈ y↔ AL)).

Proof. We proceed by induction on the length ofA, and we assume (without loss of generality) that x1, . . . ,
xn , x, and y are x1, . . . , xn , x, and y, respectively. If A is atomic, then A is of the form x i = x j or x i ∈ x j
for some i and j, and AL is A. Suppose that A is x i = x j (resp. x i ∈ x j), and let a be F2(x i × x i)x i (resp.
F1(x i × x i)x i). �en for x i and x j in x, [x i , x j] ∈ a↔ AL, and by Lemma 3, there is a constructible set y
such that for x i and x j in x, [x i , x j] ∈ a↔ [x1 , . . . , xn] ∈ y. �us, y satis�es the theorem.
Suppose that A is B ∨ C; then AL is BL ∨ CL. By induction hypothesis, there are constructible sets y1

and y2 such that for all x1, . . . , xn in x, [x1 , . . . , xn] ∈ y1 ↔ BL and [x1 , . . . , xn] ∈ y2 ↔ CL; then y1 ∪ y2
is constructible and such that for all x1, . . . , xn in x, [x1 , . . . , xn] ∈ y1 ∪ y2 ↔ AL. Suppose that A is ⌝B,
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so that AL is ⌝BL. By induction hypothesis, there is a constructible set z such that for all x1, . . . , xn in x,
[x1 , . . . , xn] ∈ z↔ BL. We then see that the constructible set (×nx . . . x) − z is as required.
Finally, suppose that A is ∃zB, so that AL is ∃z(Lz ∧ BL). De�ne an n-ary function symbol f by

y = fx1 . . . xn ↔ (Ly ∧ BL[z∣y] ∧ ∀w(Lw → Odw < Od y → ⌝BL[z∣w])) ∨ (⌝∃z(Lz ∧ BL) ∧ y = C0̇),

i.e., fx1 . . . xn denotes the constructible set z of smallest order such that BL if such a set exists, and C0̇
otherwise. �en clearly fx1 . . . xn is constructible, so by Lemma 2 there is a constructible set w′ such that
x ∪ {fx1 . . . xn ∣ x1 ∈ x ∧⋯∧ xn ∈ x} ⊆ w′. By induction hypothesis, there is a constructible set w such that
for all z, x1, . . . , xn in w′, [z, x1 , . . . , xn] ∈ w ↔ BL. Let a be Dom(w ∩ ×n+1w′ . . .w′), and let us verify that
a satis�es the theorem, namely that for all x1, . . . , xn in x, [x1 , . . . , xn] ∈ a↔ AL. Fix x1, . . . , xn in x. Now
[x1 , . . . , xn] ∈ a if and only if ∃z(z ∈ w′ ∧ [z, x1 , . . . , xn] ∈ w ∩ ×n+1w′ . . .w′). Since x ⊆ w′, this is the case
if and only if ∃z(z ∈ w′ ∧ BL), and since {fx1 . . . xn ∣ x1 ∈ x ∧ ⋯ ∧ xn ∈ x} ⊆ w′, this holds if and only if
∃z(Lz ∧ BL), as was to be shown.

2.4 L is an interpretation of ZF.We now turn to the proof that L is an interpretation of ZF.

Lemma 1. �e simple interpretation de�ned by L is an interpretation of ZFω .

Proof. We have ∣−ZFLCx, so ∣−ZF∃xLx. �is means that L is an interpretation of L(ZF) in (an extension by
de�nitions of) ZF. Note that by Lemma 1 of §2.3, L is transitive. �us byLemma 1 of §1.2, the interpretations
of the extensionality axiom and the regularity axiom hold.
Suppose that y is constructible. �en by Lemma 2 of §2.3, there exists a constructible set z such that

Lx ∧ x ⊆ y → x ∈ z. By Lemma 2 of §1.2, the interpretation of the power set axiom holds.
We now derive the interpretations of the subset axioms. Suppose that the variables free in A are x,

x1, . . . , xn . Let x, x1, . . . , xn be constructible. �en x ∪ {x1 , . . . , xn} is constructible. By the theorem on
de�nability, there exists a constructible set w such that for all z ∈ x, [z, x1 , . . . , xn] ∈ w ↔ AL. �en
z ∈ Im(w ∩ (x × {x1} ×⋯× {xn}))↔ z ∈ x ∧AL, so by extensionality the set Im(w ∩ (x × {x1} ×⋯× {xn}))
equals {z ∣ z ∈ x ∧AL}, which is thus constructible. Hence by Lemma 4 of §1.2, the interpretation of each
subset axiom holds.
To derive the interpetations of the replacement axioms, suppose that f is a de�ned L-invariant (n + 1)-

ary function symbol, and let y, x1, . . . , xn be constructible sets. �en every member of Un{fxx1 . . . xn ∣ x ∈
y} is constructible, so by Lemma 2 of §2.3 there exists a constructible set z such that Un{fxx1 . . . xn ∣ x ∈
y} ⊆ z. �us for all x ∈ y, fxx1 . . . xn ⊆ z. By Lemma 5 of §1.2, the interpretation of each replacement
axiom holds.

Lemma 2. ∣−ZFOrd x → Lx.
Proof. By the results of §1.3 and Lemma 1, Ord is absolute for L. Recall that we have derived ∃x(Ord x∧x ∉
y) in ZFω . So by Lemma 1 its interpretation by L holds, namely Ly → ∃x(Lx ∧OrdL x ∧ ⌝(x ∈L y)). Since
Ord is absolute for L and ∈L is ∈, we have

∣−ZFLy → ∃x(Lx ∧Ord x ∧ x ∉ y). (1)

We now prove ∣−ZFOrd x → Lx by trans�nite induction. Let x be an ordinal. By induction hypothesis,
every member of x is constructible. So there is a constructible set y such that x ⊆ y. By (1), there is a
constructible ordinal z such that z ∉ y. Now if z < x, then z ∈ y. So x ≤ z, and hence x is constructible by
transitivity of L.

Theorem. �e simple interpretation de�ned by L is an interpretation of ZF.

Proof. By Lemma 2, ∣−ZFLω. So by Lemma 3 of §1.2, the interpretation of the in�nity axiom holds.

Lemma 3. C is absolute for transitive simple interpretations of ZFω .

Proof. C is de�ned by trans�nite recursion so that ∣−ZFOrd x → Cx = g{[Cy, y] ∣ y < x}x where g is the
binary function symbol de�ned by

y = gx′x ↔ (Ord x ∧ J0x = 0̇ ∧ ∀w(w ∈ y↔ ∃z(z ∈ x ∧w = x′‘z)))
∨ (Ord x ∧ J0x = 1̇ ∧ y = F1x′‘J1xx′‘J2x) ∨⋯ ∨ (Ord x ∧ 9̇ < J0x ∧ y = {x′‘J1x , x′‘J2x})

∨ (⌝Ord x ∧ y = 0̇).
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Since all the symbols in the right-hand side are absolute for transitive simple interpretations of ZFω , g, and
hence C, is absolute for such interpretations.

2.5 �e axiomof constructibilty.�e axiom of constructibility is a translation of∀xLx into ZF. We denote
by ZFL the �rst-order theory obtained from ZF by the adjunction of the axiom of constructibility. Note
that ∣−ZFLOrd x → ∃z∀y(Od y ≤ x → y ∈ z) and ∣−ZFLOd x = µy(x = Cy). �us by Lemma 2 of §1.3 and
Lemma 3 of §2.4, Od is absolute for transitive simple interpretations of ZFL.

Theorem 1. If ZFL is inconsistent, so is ZF.

Proof. We already know that L is an interpretation of ZF in an extension by de�nitions of ZF. By the
interpretation theorem, it remains to show that the interpretation by L of the axiom of constructibility is
a theorem. �is interpretation is ∀x(Lx → LLx). �us it will su�ce to prove that L is absolute for L. But L
was de�ned by Lx ↔ ∃y(Ord y ∧ x = Cy). Because ∣−ZFOrd x → Lx, Ord y ∧ x = Cy is complete in y for
L. Hence L is absolute for L by Lemma 3 of §2.4.

Theorem 2. �e axiom of choice is a theorem of ZFL.

Proof. In ZFL, we de�ne a unary function symbol Inf by y = Inf x ↔ ∃z(Ord z ∧ y = Cz ∧ (x = 0̇ ∨ Cz ∈
x) ∧ ∀w(Ordw → w < z → ⌝(x = 0̇ ∨ Cw ∈ x))). �us Inf x is the image by C of the �rst ordinal z such
that x = 0̇ ∨ Cz ∈ x. To prove that this is a valid de�nition, we must derive ∃z(Ord z ∧ x = 0̇ ∨ Cz ∈ x). If
x is 0̇, we can choose z to be 0̇. Otherwise, since ∀xLx, any member of x is constructible, so we can �nd
such a z. If x does not equal 0̇, then Inf x ∈ x. �us the set {[Inf y, y] ∣ y ∈ Px − {0̇}} is a choice function
on x. So ∀x∃yCh yx is derivable in ZFL.
In a less formal setting, the proof of the above theorem can be summarized as follows: in ZFL, the

universe of all sets is well-ordered via Od, and this provides a canonical way of de�ning a choice function
on a set. Note that in a �rst-order theory for sets in which the notion of class is de�ned, such as NBG,
together with the axiom of constructibility, the above proof shows in fact that there is an explicit (i.e.,
de�nable) choice function on the class of all sets.
Since the axiom of choice is a theorem of ZFL, # is a de�ned symbol of ZFL.

§3 �e cardinality theorem

3.1 �e re�ection principle.�e goal of this section is to prove a formal version for the �rst-order theory
ZFC of the famous result of model theory known as the (downward) Löwenheim–Skolem theorem. By a
“formal version”, we mean of course that both the formulation and the proof of this theorem will be com-
pletely �nitary. We �rst prove a weaker result known as the re�ection principle (in ZF). In this paragraph,
we let T be a good extension of ZF in which there is a constant e0, and we let Γ consist of �nitely many
instantiations of T .

Reflection Principle. �ere is a de�ned constant e of T such that ∣−Te0 ⊆ e, ∣−TTr e, and for every
instantiation ∃yB of Γ with free variables x1, . . . , xn , ∣−Tx1 ∈ e→ ⋯→ xn ∈ e→ ∃yB→ ∃y(y ∈ e ∧ B).

Proof. Let A be a formula of Γ of the form ∃yB with free variables x1, . . . , xn in reverse alphabetical order.
Choose z not free in B and de�ne in T a function symbol fA by

z = fAx1 . . . xn ↔ (∃y(B ∧ Rk y = z) ∧ ∀w(Rkw < z→ ⌝B[y∣w])) ∨ (⌝A ∧ z = 0̇).

�us fAx1 . . . xn denotes the smallest rank of a set y such that B, if such a set exists. We also de�ne in T a
unary function symbol gA by gAx = Un{fAx1 . . . xn ∣ x1 ∈ Stg x ∧⋯ ∧ xn ∈ Stg x}, for some x not free in A.
�is de�nition implies that if x1, . . . , xn belong to Stg x and if there exists y such that B, then we can �nd
such a y in Stg gAx.
Say Γ consists of A1, . . . , An . We de�ne g by gx = Un{gA1x , . . . , gAn x , Sx , Rk e0}. Finally, we de�ne a

unary function symbol h by trans�nite recursion so that ∣−TOrd x → hx = Un{ghy ∣ y < x}. Note that
∣−TOrd x → Ordhx and, by de�nition of g, ∣−TOrd x → y < x → hy < hx.
We claim that the constant e de�ned by e = Un{Stghz ∣ z < ω} has the required properties. Clearly

∣−Te0 ⊆ e and ∣−TTr e. Let ∃yB be an instantiation of Γ with free variables x1, . . . , xn . We derive the second
assertion in English, and we assume that y, x1, . . . , xn are y, x1, . . . , xn . Suppose that x1, . . . , xn belong to
e. �en they belong to Stghz for some z < ω. Assume that A holds. �en by de�nition of g, there exists
y ∈ Stg ghz such that B. By de�nition of h, ghz ≤ hSz, and since Sz < ω, we �nd y ∈ e.
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Note that if ∆ consists of �nitely many formulae of T and if any subformula of a formula in ∆ is in ∆,
then applying the re�ection principle to the instantiations of ∆ yields a constant e with the property that
the formulae of ∆ are absolute for the transitive simple interpretation e (by Lemma 7 of ch. ii §3.5). It is
because of this fact that the re�ection principle is thus named.

3.2 �e cardinality theorem. In this paragraph, we let Γ be a collection of formulae of L(ZF), and T an
extension of ZFC whose language is L(ZF). We denote by T0 the �rst-order theory obtained from T by the
adjunction of a new constant e0, and as new axioms ∃x(x ∈ e0) and a translation of Tr e0. Form T1 from
T0 by adding a new constant e1.
We let TΓ be obtained from T1 by the adjunction of the following nonlogical axioms:

(i) a translation of e0 ⊆ e1;
(ii) a translation of Ord x → #e0 ≤ ℵx → #e1 ≤ ℵx;
(iii) for every instantiation ∃yB of Γ with free variables x1, . . . , xn in reverse alphabetical order, x1 ∈ e1 →

⋯→ xn ∈ e1 → ∃yB→ ∃y(y ∈ e1 ∧ B).

Axioms (i) and (ii) mean that e1 includes e0 and that the cardinality of e1 is no greater than the cardinality
of e0. �e formula #e1 ≤ Max[ℵ0̇, #e0] is derivable from these two axioms. �e axioms of (iii) mean that
whenever a formula of Γ holds which has parameters in e1 and asserts the existence of some set, there
must be such a set member of e1. Note that all of the above extensions are good extensions, since the only
nonde�ned added symbols are constants.

Lemma 1. TΓ is a conservative extension of T0.

Proof. Let C be a formula of T0 such that ∣−TΓC. By the reduction theorem, there are formulae D1, . . . ,
Dk among the closures of the axioms (i)–(iii) added to form TΓ such that ∣−T1D1 ∧ ⋯ ∧ Dk → C. Let x
be a variable not occurring in C, D1, . . . , Dk , and for each i let D′

i be obtained from Di by replacing each
occurrence of e1 by x. �en by the theorem on constants, ∣−T0D

′
1 ∧⋯∧D′

k → C, whence ∣−T0∃x(D′
1 ∧⋯∧

D′
k)→ C by the ∃-introduction rule. �us it will su�ce to prove

∣−T0∃x(D′
1 ∧⋯ ∧D′

k). (1)

Let e be obtained by the re�ection principle applied to ∆, T0, and e0, where ∆ consists of the �nitely many
instantiations of Γ whose associated axioms are amongD1, . . . ,Dk . �en ∣−T0e0 ⊆ e and for each ∃yB in ∆
with free variables x1, . . . , xn ,

∣−T0x1 ∈ e→ ⋯→ xn ∈ e→ ∃yB→ ∃y(y ∈ e ∧ B). (2)

Choose variables z and w not occurring in any formula of ∆ and distinct from x. For A a formula of ∆ of
the form ∃yB with free variables x1, . . . , xn , we de�ne an (n + 1)-ary function symbol SkA by

y = SkAx1 . . . xnw↔ (A ∧Chwe ∧ y = w‘{z ∣ z ∈ e ∧ B[y∣z]}) ∨ (⌝(A ∧Chwe) ∧ y = 0̇).

By the functional closure theorem, we can de�ne in T0 a unary function symbol h such that

∣−T0e0 ⊆ hw, (3)
∣−T0Ord x → #e0 ≤ ℵx → #hw ≤ ℵx , and (4)

∣−T0x1 ∈ hw → ⋯→ xn ∈ hw → SkAx1 . . . xnw ∈ hw (5)

for every A in ∆ with free variables x1, . . . , xn . By the de�nition of SkA and the fact that ∣−T0 0̇ ∈ e, we
clearly have ∣−T0x1 ∈ e → ⋯ → xn ∈ e → SkAx1 . . . xnw ∈ e for such A, so by (iv) of the functional closure
theorem, ∣−T0hw ⊆ e. �us by (2), ∣−T0x1 ∈ hw → ⋯ → xn ∈ hw → A → {z ∣ z ∈ e ∧ B[y∣z]} 1 0̇, so by the
de�nition of SkA,

∣−T0Chwe→ x1 ∈ hw → ⋯→ xn ∈ hw → A→ B[y∣SkAx1 . . . xnw]. (6)

By (5), (6), and the substitution axioms,

∣−T0Chwe→ x1 ∈ hw → ⋯→ xn ∈ hw → A→ ∃y(y ∈ hw ∧ B). (7)

Using (3), (4), and (7) with the closure theorem and the substitution axioms, we obtain ∣−T0Chwe →
∃x(D′

1 ∧⋯ ∧D′
k). Since ∣−T0∃wChwe by the axiom of choice and the substitution rule, we �nd (1) using

the ∃-introduction rule and the detachment rule.
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Remark. By the functional extension theorem, we would have obtained a conservative extension of T0 by
simply adding for each A in Γ of the form ∃yB with free variables x1, . . . , xn the n-ary function symbol
SkA and the axiom A → B[y∣SkAx1 . . . xn]. An application of the functional closure theorem on �nitely
many SkA would then yield at once Lemma 1 without using the re�ection principle. Unfortunately, such
a simpli�cation does not work, because the adjunction of the symbols SkA as above does not yield a good
extension of T . In fact, we can precisely see that some replacement axioms featuring the new symbols
which must be used in the proof of the functional closure theorem fail to be derivable. �us the more
complicated proofs above were really necessary, as was the direct use of the axiom of choice in the proof
of Lemma 1. Note however that amuch simpler proof of Lemma 1 is possible if the axiom of constructibilty
holds in T , for then we can de�ne SkAx1 . . . xn to be the set of smallest order such that B whenever such
a set exists, and apply the functional closure theorem.

Lemma 2. Suppose that any subformula of a formula in Γ is in Γ. �en the formulae of Γ are absolute
for the simple interpretation e1 in TΓ . Explicitely, if A is in Γ and x1, . . . , xn are the variables free in A,
then ∣−TΓx1 ∈ e1 → ⋯→ xn ∈ e1 → A↔ Ae1 .

Proof. �is follows from the axioms of (iii) and Lemma 7 of ch. ii §3.5.

Cardinality Theorem. Suppose that all the formulae of Γ are closed. �en in some good conserva-
tive extension T ′ of T0, there is a constant e such that

(i) ∣−T′e0 ⊆ e;
(ii) ∣−T′Tr e;
(iii) ∣−T′Ord x → #e0 ≤ ℵx → #e ≤ ℵx;
(iv) ∣−T′A↔ Ae for every formula A of Γ.

Proof. We let ∆ consist of all the subformulae of the formulae of Γ and all the subformulae of the exten-
sionality axiom. We shall build T ′ as an extension by de�nitions of T∆ . So by Lemma 1, T ′ will be a
conservative extension of T0. It remains to de�ne e suitably. Since by Lemma 2 the extensionality axiom
is absolute for e1 in T∆ , it follows that the interpretation by e1 of the extensionality axiom is a theorem
of T∆ . Recall that the ordinal function symbol Rk satis�es ∣−ZFOrd x → ∃y∀z(Rk z ≤ x → z ∈ y) and
∣−ZFx ∈ y → Rk x < Rk y. We can then apply the Mostowski collapsing theorem: the function symbol g
de�ned by gx = {gw ∣w ∈ e1 ∧w ∈ x} is an isomorphism from the interpretation e1 to the transitive simple
interpretation e where e is de�ned by e = {gy ∣ y ∈ e1}. Because ∣−T′x ∈ e1 → y ∈ e1 → x = y ↔ gx = gy,
we see that {[gy, y] ∣ y ∈ e1} is an injective function whose image is e, so #e = #e1. It remains to prove (i)
and (iv). Because the formulae of Γ are closed, ∣−T′Ae1 ↔ Ae for all A in Γ by the isomorphism extension
theorem, and since by Lemma 2 ∣−T′A↔ Ae1 , we obtain ∣−T′A↔ Ae. �is proves (iv). To prove (i), it will
su�ce to prove that ∣−T′x ∈ e0 → gx = x. We proceed by trans�nite induction on Rk x. Suppose x ∈ e0. If
y ∈ x, then Rk y < Rk x and by transitivity of e0, y ∈ e0. So we may apply the induction hypothesis to y,
which yields gy = y. Now by de�nition of g, gx = {gy ∣ y ∈ e1 ∧ y ∈ x} = {y ∣ y ∈ e1 ∧ y ∈ x}. Since y ∈ x
implies y ∈ e0 and hence y ∈ e1, gx = {y ∣ y ∈ x} = x.

A particular case of the cardinality theorem is when Γ contains the closures of the axioms of T . �en
e is a transitive simple interpretation of T in T ′. For let A be a nonlogical axiom of T and B its closure.
�en by (iv) and the closure theorem, ∣−T′Be, so by prenex operations and the closure theorem, ∣−T′Ae.

3.3 �e countable interpretation.We obtain an important corollary to the cardinality theorem. We let Γ,
T , and T0 be as in §3.2.

Corollary. Suppose that the formulae of Γ are closed. Let U be obtained from T by the adjunction
of a constant e and the following axioms:

(i) ∃x(x ∈ e);
(ii) a translation of Tr e;
(iii) a translation of #e ≤ ℵ0̇;
(iv) A↔ Ae for every formula A of Γ.

�en U is a conservative extension of T .
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Proof. Let T ′ be as in the cardinality theorem. Form T ′′ from T ′ by the adjunction of the axiom e0 = 1̇.
�en clearly (i)–(iv) are theorems of T ′′. �is means that T ′′ is an extension of U . Let A be a formula of
T such that ∣−UA. �en ∣−T′′A. By the deduction theorem, ∣−T′e0 = 1̇ → A. Since T ′ is a conservative
extension of T0, ∣−T0e0 = 1̇ → A. Hence by the deduction theorem, ∣−T∃x(x ∈ x) → Tr x → x = 1̇ → A for
some x not free in A and distinct from x. By the substitution rule, ∣−T∃x(x ∈ 1̇) → Tr 1̇ → 1̇ = 1̇ → A, so
∣−TA.

If Γ contains the closures of the axioms of T , we �nd as in §3.2 that e is a transitive simple interpretation
of T in its conservative extension U , and ∣−Ue ≤ ℵ0̇.

§4 �e generalized continuum hypothesis

We now have the necessary tools to prove that the generalized continuum hypothesis is derivable in ZF
from the axiom of constructibility.

Lemma 1. ∣−ZFLOrd x → #C∗ℵx = ℵx.
Proof. Let x be an ordinal. �e set {[Cy, y] ∣ y < ℵx} is a function on ℵx whose image is C∗ℵx. Hence
#C∗ℵx ≤ #ℵx, so #C∗ℵx ≤ ℵx. �us it remains to derive the existence of an injective function from
ℵx to C∗ℵx. Let f be de�ned by z = f y ↔ (Ord y ∧ O2z = [0̇, y]) ∨ (⌝Ord y ∧ z = 0̇), and let a be
{[C∗f y, y] ∣ y < ℵx}. �is is a valid de�nition from the results of ch. vi §3.5. Note that C∗f y = Cf y by the
de�nition of C. If y < ℵx, then y <MaxO2ℵx by (x) of ch. vi §3.11, so MaxO2f y = y <MaxO2ℵx. Hence
f y < ℵx by (vii) of ch. vi §3.5. �is proves that Im a ⊆ C∗ℵx. Let y and y′ be ordinals such that y′ < y and
y < ℵx. �en f y 1 f y′. So either f y < f y′ or f y′ < f y. In the �rst case, a‘y = C∗f y = Cf y ∈ C∗f y′ = a‘y′.
In the second case, we �nd similarly a‘y′ ∈ a‘y. But in both cases, a‘y 1 a‘y′ by ch. vi §3.1 (iii), so a is
injective.

Lemma 2. ∣−ZFLOrd x → PC∗ℵx ⊆ C∗ℵSx.
Proof. Let Γ consists of the closures of the axioms of ZFL. Let T0, T ′, e0, e be as in the cardinality theorem
when T is ZFL. �en e is a transitive simple interpretation of ZFL in T ′. Since Od is absolute for any
transitive simple interpretation of ZFL (cf. §2.5), Od is absolute for e. In particular, Od is e-invariant, so
∣−T′ y ∈ e → Od y ∈ e. By transitivity of e, ∣−T′ y ∈ e → Od y ⊆ e, so ∣−T′ y ∈ e → #Od y ≤ #e. Using (i)
and (iii) of the cardinality theorem, we �nd

∣−T′Ord x → #e0 ≤ ℵx → y ∈ e0 → #Od y ≤ ℵx . (1)

Let x be an ordinal such that #e0 ≤ ℵx and let y ∈ e0. Suppose that y ∉ C∗ℵSx. �en ℵSx ≤ Od y,
so ℵx < #Od y, but this contradicts (1). Hence y ∈ C∗ℵSx. In summary, we have ∣−T′Ord x → #e0 ≤
ℵx → e0 ⊆ C∗ℵSx. Since T ′ is a conservative extension of T0, this is a theorem of T0 as well. �us by the
deduction theorem,

∣−ZFL∃x(x ∈ y)→ Tr y → Ord x → #y ≤ ℵx → y ⊆ C∗ℵSx . (2)

Now let x be an ordinal and let y belong to PC∗ℵx, i.e., y ⊆ C∗ℵx. Let a be C∗ℵx ∪ {y}. By Lemma 1
of §2.3, C∗ℵx is transitive. Since y ⊆ C∗ℵx, a is transitive. By Lemma 1, #a ≤ #C∗ℵx⊕ #{y} = ℵx⊕ 1̇ = ℵx.
�us a is a nonempty transitive set of cardinal at most ℵx, so by (2), a ⊆ C∗ℵSx. In particular, y ∈ C∗ℵSx,
which proves the lemma.

Theorem. �e generalized continuum hypothesis is a theorem of ZFL.

Proof. By (x) of ch. vi §3.10 and Lemma 1, ∣−ZFLOrd x → #PC∗ℵx = #Pℵx. �en by Lemma 2,
∣−ZFLOrd x → #Pℵx ≤ #C∗ℵSx, and again by Lemma 1, ∣−ZFLOrd x → #Pℵx ≤ ℵSx. Taking the clo-
sure, we �nd the generalized continuum hypothesis.
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