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Introduction

The reader is invited to read Chapter 1 of Joe Shoenfield’s book Mathematical Logic for a remarkable intro-
duction to the subject. Here I will only explain in what respects this text differs from the numerous other
texts on mathematical logic.

The distinguishing particularity of this text is that it is exclusively concerned with what Shoenfield
calls the syntactical study of first-order axiom systems, and herein only with those results that deal with
concrete objects and can be proved in a constructive manner. We use the adjective finitary to describe
such objects and such proofs. Without exceptions, all the definitions and theorems in this text fall into
this category.

Following is a quick review each chapter.

I First-Order Theories

There is not much to say about this chapter whose content is completely standard (except, as explained
above, that all the semantic notions are absent). The presentation often follows Shoenfield’s closely, and

with few exceptions I have used the same terminology so as not to confuse readers that are familiar with
his book.

II The Question of Consistency

This chapter is roughly the equivalent of Shoenfield’s Chapter 4 (again, minus the semantic part), to which
I owe many of the proofs. One apparent difference is the early treatment of extensions by definitions.
This is made possible by a new direct proof of the conservativity of extensions by definitions of function
symbols, which is more efficient than Shoenfield’s. In the section on interpretations some more material
will be found, such as the concepts of isomorphism of interpretations and absoluteness, here presented in
a general setting.

The proofs of the consistency theorem and Herbrand’s theorem in the next section are those from
Shoenfield, but I have made explicit some interesting corollaries that do not appear in Shoenfield’s book,
such as the Herbrand-Skolem theorem which implies that Shoenfield’s version of Herbrand’s theorem
is true of arbitrary first-order theories (not only of those without nonlogical axioms) and the fact that
any first-order theory has a conservative Skolem extension, i.e., an extension in which every instantiation
has a witnessing term. For the latter result a new proof of the conservativity of the Henkin extension
has been devised that generalizes easily to the Skolem extension. Finally, a constructive proof of Craig’s
interpolation lemma is given.

III The Incompleteness Theorem

This chapter gives two detailed proofs of the (first) incompleteness theorem. The first relies on the no-
tion of recursive function and Church’s theorem on undecidability, and the second uses Rosser’s explicit
construction of an undecidable formula. I have taken great care to make it apparent that either approach
is completely constructive. In the first case, this requires a slight deviation from the usual proof, analo-
gous to Rosser’s improvement of Godel’s original argument to remove the hypothesis of w-consistency,
but happening on the metamathematical level.

Finally, in the last section, minimal arithmetic is introduced and it is proved that any first-order theory
in which minimal arithmetic has an interpretation satisfies the hypotheses of both versions of the incom-
pleteness theorem. It is also proved, using the finitary methods of Chapter 11, that minimal arithmetic
itself is consistent.

IV First-Order Number Theory

In the first section a syntactical analogue to recursiveness is introduced, based on the notion of RE-formula
(which is very close to the more standard notion of ¥;-formula). I then prove a generalization of the so-
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4 INTRODUCTION

called %;-completeness of minimal arithmetic, which is an effective tool to derive representability condi-
tions and serves as a substitute for the Hilbert-Bernays method of formalizing primitive recursive def-
initions (primitive recursive functions are not discussed in this text). The reader is warned that several
notions introduced at this point, such as that of recursive extension, may not be equivalent to those defined
in other texts.

In the rest of this chapter, Peano arithmetic, PA, is discussed. Beside basic number-theoretic results,
sequences and definitions by recursions are developped in PA, paralleling the number-theoretic develop-
ments of Chapter 111.

V Arithmetical Theories

The main goal of this chapter is to arrive at a precise and appropriately general statement of the result
known as “G6del’s second incompleteness theorem”. I call it instead the “theorem on consistency proofs”,
following Shoenfield. To my knowledge only two published texts contain a proof of some form of this
result: Hilbert and Bernay’s Grundlagen der Mathematik of 1934 and Volume 1 of Tourlakis’ Lectures in
Logic and Set Theory of 2003. The version given here is more general than either of them.

The chapter starts with a discussion of the derivability conditions formulated by L&b to obtain a cri-
terion on first-order theories subject to the second incompleteness theorem. With this general result in
mind, the notions of arithmetical language, theory, and interpretation are introduced as formalizations
within PA of the corresponding metamathematical notions. I define what it means for such an arithmeti-
cal object to describe a first-order language, theory, or interpretation. The main result is then that an
arithmetical theory that describes a first-order theory T provides a provability predicate for T that satis-
fies the derivability conditions, and the theorem on consistency proofs is an immediate corollary. Another
less well-known result that is discussed is the arithmetical completeness theorem, which is a formalization
within PA of the arguments in the proof of the classical completeness theorem. It constructs an interpre-
tation of any reasonable first-order theory T in Peano arithmetic, supplemented with a suitable axiom
expressing the consistency of T. The chapter ends with an application of the theorem on consistency
proofs to Zermelo-Fraenkel set theory.

VI First-Order Set Theory

This chapter develops the basics of Zermelo-Fraenkel set theory in a standard way. It is heavily inspired
by Shoenfield’s Chapter 9.

VII The Consistency Proofs

In this chapter it is proved that the axiom of choice and the generalized continuum hypothesis are con-
sistent with ZF. This is done as usual in two steps: firstly an extension ZFL of ZF is constructed together
with an interpretation of ZFL in ZF and secondly it is proved that the axiom of choice and the generalized
continuum hypothesis are theorems of ZFL. Most of this chapter is again inspired by Shoenfield’s Chap-
ter 9. In particular, the predicate of constructibility is defined as Godel originally did and not using the
notion of definable subset: although the latter is closer to our intuition, perhaps even dangerously so, it
also requires much more work. A notable difference from Shoenfield’s treatment is the internal cardinality
theorem which is here proved in ZFC and not just in ZFL: it says that one can conservatively add a “model”
of ZFC within itself of arbitrary infinite cardinality.

¢



Chapter One
First-Order Theories

§1  Formal systems

1.1 Sequences. The notion of sequence is omnipresent in the study of formal systems, so we establish some
terminology about sequences. A sequence determines and is determined by the following data: a natural
number # called the length of the sequence, and for each natural number i with 1 < i < n, an object called
the ith member of the sequence. In particular, there is exactly one sequence of length 0, called the empty
sequence. A sequence shall not be a collection. Sequences uy, ..., u,, may be concatenated to yield a new
sequence which we denote by wju, ... uw,,. An occurrence in a sequence u, written (uy, u,), consists of two
sequences u; and u, such that u is u;vu, for some sequence v; the sequence v is then uniquely determined,
and we say that (u;, up) is an occurrence of v in u. A subsequence of u is a sequence of which there is an
occurrence in u. Let (uj,u;) and (uj, u}) be two occurrences in u. We say that (uy, u,) happens within
(u], u}) if uf is a subsequence of u; and u), is a subsequence of u,. If an occurrence of v; happens within an
occurrence of v,, then v is a subsequence of v,. The sequence obtained from u by replacing the occurrence
(uy, up) by v is defined to be the sequence u;vu,.

An appearance of an object will be synonymous with an occurrence of the sequence of length 1 whose
member is that object.

1.2 Languages. A sequence of length 1 whose only member is not a sequence will be called a symbol.
An alphabet is a collection of symbols. The expressions of an alphabet A are defined inductively by the
following clauses: the empty sequence is an expression of A; if u is an expression of A and s is a symbol of
A, then su is an expression of A. From now on we use boldface letters exclusively to denote expressions of
some alphabet.

A language L consists of an alphabet A together with a collection of expressions of A, called the formu-
lae of L. Symbols and expressions of A are also called symbols and expressions of L. We let A, B, C, and
D vary through formulae. (By this we mean: from now on, the letters A, B, C, and D, possibly decorated
with subscripts or superscripts, will be used exclusively to denote formulae of some language, namely the
language being discussed.) A subformula of a formula A of L is a subsequence of A which is also a formula
of L.

1.3 Formal systems. Let L be a language. A rule of inference for L consists of a finite collection of formulae
of L called the premises of the rule, and a single formula of L called the conclusion of the rule. A rule of
inference with no premises is also called an axiom, and we identify such a rule with its conclusion. Thus
any formula of L is a rule of inference for L.

A formal system F consists of a language L(F) together with a collection of rules of inference for L(F),
called the rules of inference of F. Symbols, expressions, and formulae of L(F) are also called symbols,
expressions, and formulae of F. Let A be a formula of L(F) and T a collection of formulae of L(F). A
derivation of A from I in F is a sequence of formulae of L(F) ending with A, each of whose member is
either in T or the conclusion of a rule of inference of F whose premises appear previously in the sequence.
We say that A is derivable or inferrable from I' in F, and we write I' |- A, when there exists a derivation
of A from I' in F. A rule of inference for L(F) is said to be derivable in F if its conclusion is derivable in F
from its premises.

ProposITION. If I' |-£A and if A |-£B for any formula B of T, then A |-fA.

Proof. A derivation of A from A in F is obtained by replacing in a derivation of A from T  in F any appear-
ance of a formula B of I by a derivation of B from A in F.

If T consists of By, ..., B, we also write By, ...,B,, |-rA instead of ' |-zA. We write A = B when
A FpBand B |pA. When T is empty, we simply remove the reference to I' in the above definitions and
we write |gA instead of I' FrA. A theorem of F is a formula A of F such that }zA, i.e., a formula of
which there is a derivation in F. Note that our convention of identifying formulae with rules of inference
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6 FIRST-ORDER THEORIES 11.4

is compatible with this terminology: a formula is derivable in F if and only if it is derivable in F as a rule
of inference.

1.4 Extensions. Let L be a language. A language L' is an extension of L if the alphabet of L' includes the
alphabet of L and if every formula of L is a formula of L’.

Let F be a formal system. A formal system F’ is an extension of F if L(F') is an extension of L(F) and if
every theorem of F is a theorem of F'. It is a conservative extension if moreover any formula of L(F) which
is a theorem of F’ is a theorem of F. A simple extension of a formal system F is an extension of F whose
language is L(F). Two formal systems are equivalent if they are extensions of each other; this is easily seen
to be the case if and only if one is a simple conservative extension of the other. It follows immediatly from
these definitions that if F” is a (conservative; simple) extension of F' and F’ is a (conservative; simple)
extension of F, then F” is a (conservative; simple) extension of F.

If R is a collection of rules of inference for L(F), we denote by F[R] the formal system whose language
is L(F) and whose rules of inference are those of F and those in R. Observe that F[R] is a simple extension
of F. With our identification of formulae with rules of inference, we see that I' |-z A if and only if |prjA.
In this way the notion of formula derivable from I is reduced to the notion of theorem. Observe that if
F’ is an extension of F and if R is a collection of rules of inference for L(F), then F'[R] need not be an
extension of F[R]. This is the case if however F’ is of the form F[R’].

1.5 Induction on theorems. To prove that all the theorems of a formal system F have a given property,
it suffices to prove that whenever that property holds for the premises of a rule of inference of F (an
assumption called the induction hypothesis), it holds for the conclusion of the rule as well; this ensures
that all formulae appearing in some derivation in F have the given property. Such a proof will be called a
proof by induction on theorems in F.

1.6 Convention. The remaining sections of this chapter are mostly devoted to proving assertions of the
form I' }-pA. To gain space, in the proof of such an assertion, we shall use the sign |- as an abbreviation
for I' |-f (unless of course the context clearly indicates otherwise). See §3.2 for examples of applications
of this convention.

§2  First-order languages and theories

2.1 Logical symbols. We choose once and for all an infinite collection of symbols,
! ! ! 4 "
x,y,Z,W,x,y,Z,W,x 3 eee

which we call the variables. The order in which they are listed above is called the alphabetical order. We also
choose four distinct symbols written v, 7, 3, and = that are not variables. The variables and the symbols
Vv, 7, 3, and = are called the logical symbols. The symbol = is called the equality symbol. (We also use the
sign = in the usual way, as in a = b to signify that a and b are the same object. The meaning of the sign =
will however always be clear from the context, just as it is clear that the sign y in symbol does not stand for
a variable.) We let x, y, z, and w vary through variables.

Instead of choosing infinitely many symbols as variables, one can also use two symbols, say x and /,
and define the variables by induction to be the expressions x, x, "’x, etc. This is, however, merely a cosmetic
variation of the above definition.

2.2 Signatures. Suppose given, for each natural number #, a collection of symbols called n-ary function
symbols and a collection of symbols called n-ary predicate symbols. Assume that the following conditions
are satisfied: a function symbol is not a predicate symbol; the arity of a function or predicate symbol is
uniquely determined; the symbol = is a binary predicate symbol, and other logical symbols are neither
function symbols nor predicate symbols. This data is then said to define a signature S. A 0-ary predicate
symbol is called a truth value, and a 0-ary function symbol is called a constant. We let p, q, and r vary
through predicate symbols, f, g, and h through function symbols, and e through constants.

A signature S has an underlying alphabet A(S) consisting of the logical symbols, the function symbols
of S, and the predicate symbols of S. To every symbol of A(S) we associate an index as follows:

(i) variables are symbols of index 0;

(ii) v and 3 have index 2, and 71 has index 1;



123 FIRST-ORDER LANGUAGES AND THEORIES 7

(iii) an n-ary function symbol has index n;

(iv) an n-ary predicate symbol has index #.

2.3 First-order languages. Let S be a signature. We shall associate to it a language L(S) with alphabet A(S).
We first define the terms of S inductively as follows:

(i) avariable is a term;

(ii) ifay,...,a, are terms and f is an n-ary function symbol, then fa, ... a, is a term.
The atomic formulae of S are defined as follows:

(iii) ifay, ..., a, are terms and p is an n-ary predicate symbol, then pa, . ..a, is an atomic formula.
The formulae of L(S) are then defined inductively by the following clauses:

(iv) an atomic formula is a formula;
(v) if A and B are formulae, VAB is a formula;
(vi) if A is a formula, 1A is a formula;

(vii) if A is a formula and x is a variable, 3xA is a formula.

A language L is a first-order language if it is of the form L(S) for some signature S. We observe that
L determines S, for a nonlogical symbol s of L is an n-ary function symbol of S (resp. an n-ary predicate
symbol of ) if and only if the expression =ysx ... x (resp. sx ... x) with n occurrences of x is a formula of
L. Thus we may speak of the n-ary function symbols of L, the n-ary predicate symbols of L, the index of a
symbol of L, the terms of L, and the atomic formulae of L. We can prove in the same way that given two
signatures S and S’, L(S') is an extension of L(S) if and only if the n-ary function symbols of S are n-ary
function symbols of " and the n-ary predicate symbols of S are n-ary predicate symbols of S'.

It should be noted that the terms (resp. the formulae) of a first-order language are the theorems of the
formal system whose formulae are all expressions and whose rules of inference are defined by (i)-(ii) (resp.
by (iv)-(vii)). An important property of those two formal systems is that they have an obvious decision
method, i.e., an algorithm that will decide whether a formula is a theorem or not. This is not the case in
general for an arbitrary formal system, not even for the very particular formal systems that we intend to
study.

2.4 Designators. Let L be a first-order language. A designator of L is either a term of L or a formula of L.
As we pointed out in §2.3, the designators are the theorems of some formal system. This formal system has
two very pleasant properties: any designator has an “essentially unique” derivation in this formal system,
and a designator occurs in a designator u if and only if it appears in any derivation of u. This is the content
of the two theorems of this paragraph. These are simple properties of the so-called Polish notation, and
we omit the proofs. By definition, any designator has the form su; ... u, where s is a symbol of index n
and uy, ..., u, are designators.

FORMATION THEOREM. Let v be a designator of L. If v can be written as su; ... u, and as s'uj...ul,,

where s is a symbol of index #, s’ is a symbol of index m, and uy, ..., u,, uj, ..., u), are designators,
thenn =m,siss’, uisuj, ..., u, is ul,.

OCCURRENCE THEOREM. Let su; ... u, and v be distinct designators where s is a symbol of index n
and uy, ..., u, are designators. Any occurrence of v in u happens within an occurrence of the form
(suy...w;_;, W41 ...u,) for some i.

The formation theorem implies that a term is either a variable or can be written in only one way as
fa,...a, wherefisn-aryanday, ..., a, are terms. Similarly, a formula is either atomic or can be written in
only one way as VAB, 1A, or 3xA. The occurrence theorem, applied to formulae, says that an occurrence
of a formula in VAB (resp. 7A; 3xA) that is not the whole formula must happen within either (v, B) or
(VA,) (resp. within (7, ); within (3, A) or (3x,)). These consequences of the formation and occurrence
theorems will most often be used tacitly.

2.5 Abbreviations. We introduce some abbreviations for first-order languages:
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(i) x1, x2, x3, etc. abbreviate x”, x”/, x”, etc., and similarly for y, z, and w;
(ii) x" abbreviates x; ... x,, and similarly for y, z, and w (of course, x° will be the empty sequence);
(iii) (A v B) abbreviates VAB;
(iv) (A A B) abbreviates (1A v 11B);
(v) (A — B) abbreviates (1A v B);
(vi) (A < B) abbreviates (A - B) A (B — A));

(vii) Vx abbreviates 73x™.

This is to be understood as follows: whenever one of the symbols above appears, it must be expanded
using its definition in order to recover the actual formula. For example, =x y is a formula of any first-order
language, but (=xy A =xy) is not: it only abbreviates an actual formula, namely v=xy7=xy.

Atany given time we allow ourselves to introduce new abbreviations, either for any first-order language
or for a specific one. This is in fact absolutely necessary, for otherwise we would be overwhelmed by the
length and complexity of expressions.

(viii) If p is binary, then (apb) abbreviates pab;
(ix) (a = b) abbreviates 7(a = b).

We also drop the parentheses in the above abbreviations whenever there can be no confusion about the
intended meaning. To be able to drop even more parentheses, we use the following convention: when
given a choice, a formula shall be of the form A — B or A <> B rather than of the form A v B or A A B,
and it shall be of any of those four forms rather than of the form 3xA or VxA. Other ambiguous cases
are settled using association from the right. Thus: A vB — C A D is to be read as ((A v B) — (C A D)),
A - B+ Cas(A - (B« (C)),3xA - Bas (IxA — B) and not Ix(A — B), etc.

Another use of parentheses is the following. Suppose for instance that to each formula A we have
associated two formulae which we decided to denote by A* and A., then we may write (7A)*, (Ay)s,
(AY),, etc.

2.6 Some terminology. Let L be a first-order language. It is often useful to have names for some formulae
of L. The formula A; v---v A, is called the disjunction of Ay, ..., A,; Aj A--- A A, the conjunction of Ay, ...,
A,; A the negation of A; A; — - - A, — B the implication of B by Ay, ..., A,; A < B the equivalence
of A and B; 3xA the instantiation of A by x; VXA the generalization of A by x.

An occurrence (u;, uy) of a variable x in a designator u is not meaningful if w, is of the form v3; bound
if it happens within an occurrence of an instantiation; free if it is not bound. The variable x itself is said
to be bound (resp. free) in u if some occurrence of x is bound (resp. free) in u. We say that a designator
is closed if no variable is free in it; open if 3 does not occur in it. A formula which is either atomic or an
instantiation is called elementary. The closure of A is the formula Vx; ... Vx,A where x;, ..., X, are the
variables free in A in reverse alphabetical order.

2.7 Substitution. Let X;, ..., X, be variables and ay, ..., a, terms of a first-order language L such that
whenever a; and a; are distinct, x; and x; are distinct. We let b[xy,...,X,l[ay,...,a,] abbreviate the term
obtained from b by replacing each occurrence of the variable x; by the term a;, for all i simultaneously.
Similarly, we let A[xy,...,X,la;,...,a,] abbreviate the formula obtained from A by replacing each free
occurrence of the variable x; by the term a;, for all i simultaneously.” We say that a is substitutible for x
in A if for any variable y that occurs in a, no occurrence of x in A happening within an occurrence of
JyB is free in A. We restrict the use of the abbreviation A[xy, ..., X,la1,...,a,] to those A, X1, ..., X,, a3,
..., &, such that a; is substitutible for x; in A, for all i. This ensures that any occurrence of a variable in a;
does not become bound in Alxy,...,x,|as,...,a,]. With this restriction, if yj, ..., y, are not free in A,
then A[Xy, ..., Xu|y1,-- > Vnl[Y1>-- > Vnlas, - - ., a,] is the same as A[x;, ..., X,la;,...,a,]. Observe that a
closed term is substitutible for any variable in any formula.

Let A be a formula. A variant of A is a formula obtained from A by repeated replacements of occur-
rences of subformulae of the form 3xB by JyB|[x]y] for some y not free in B. An instance of A is a formula
of the form A[xy,...,Xyla;,...,a,]. A version of A is an instance of a variant of A. Note that an instance of

We should here verify, using induction on the lengths of b and A, that b[xj,...,Xxla;,...,a,] is a term and that
A[x1,...,Xula1,...,a,] is a formula. Usually, verifications of this kind will be entirely left out.
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an instance of A is an instance of A and that any formula obtained from A by taking successively variants
and instances is a version of A.

2.8 Thestandard meaning. We make a few remarks on the intended meaning of the symbols and formulae
of a first-order language. These remarks are not required for the formal exposition of first-order theories
but are important nonetheless. The terms of a first-order language are meant to represent the individuals
whose behaviour we intend to formalize—it must be assumed that there is at least one such individual—,
and the formulae represent propositions about those individuals. The predicate and function symbols are
of course meant to represent predicates and functions, so that pa; ...a, means “a, ..., a, together have
the predicate p”, and fa, ... a, represents the individual that is the image of the individuals ay, ..., a, by
the function f. The predicate symbol = is a symbol for identity of individuals. The meanings of closed
formulae VAB, T1A, and 3xA are respectively “A is true or B is true”, “A is false”, and “for some x, A is true”.
If a formula is not closed, then its meaning is that of its closure. This is the standard meaning of a first-order
language, and it is used, in the informal exposition, to translate back and forth between English and the
first-order language. However, other meanings are possible: a first-order language is wholly independant
from the meaning we have in mind for it.

We then see that the standard meaning of the abbreviations A A B, A - B, A < B, and VxA is as
expected. Our choice of the “primitive symbols” v, 7, and 3 rather than, say, A, 7, and V is completely
arbitrary. However, it is worthwhile to note that it would have been possible to use only one symbol instead
of v and 7: for example a symbol whose meaning, when applied to A and B, is “both A and B are false”.

2.9 First-order theories. Let L be a first-order language. The following rules of inference are called the
logical rules for L:

(i) infer 1A v A (propositional axioms);
(ii) infer A from A v A (contraction rules);
(iii) infer B v A from A (expansion rules);
(iv) infer (A v B) v Cfrom A v B v C (associativity rules);
(v) infer Bv C from A v B and 1A v C (cut rules);
(vi) infer A[x|a] — 3xA (substitution axioms);
(vii) if x is not free in B, infer 3xA — B from A — B (3-introduction rules);
(viii) infer x = x (identity axioms);
(ix) inferx; =y; = -+ > X, =y, = £X1...X, = fy1 ...y, (functional equality axioms);

(x) inferx; =y; = =+ > X, =Yy = PX1...Xy = PY1...Yn (predicative equality axioms).

Other rules of inference for L are called nonlogical rules. The rules (i)-(v) are called the propositional rules,
the rules (vi)-(vii) the quantification rules, and the rules (viii)-(x) the equality rules. In what follows we
shall often refer to one of (i)-(x) as a rule in the singular, even though each of them is an infinite collection
of rules of inferences.

A formal system T is called a first-order theory if its language L(T) is a first-order language, if its rules
of inference include the logical rules for L(T), and if its nonlogical rules are axioms. This last restriction
deserves an explanation. It is easily seen that most of the results of this chapter are true even if we allow
any nonlogical rules. But this is not the case of many fundamental results of Chapter 11. For instance, we
shall prove in ch. 11 §1.1 that if A is a theorem of T[7A], where T is a first-order theory and A is a closed
formula of T, then A is a theorem of T. This simple result can be false if T' is allowed to have arbitrary
nonlogical rules. Indeed, we shall discuss in Chapter 111 a first-order theory N in which there is a closed
formula A such that neither A nor 7A is a theorem of N. If F is the formal system obtained from N by
adding the rule of inference “infer A from 71A” then the sequence 71A, A is a derivation of A in F[TA], but
A is not a theorem of F.

We must also comment briefly on the equality rules. Unsurprisingly, all the general results on first-
order theories which do not deal explicitely with the equality symbol = are in fact true if we do not require
the presence of the equality symbol nor of the equality rules. The systematic inclusion of the equality
rules has the consequence that, if we want to obtain a first-order theory from a given first-order theory
by extending its signature, i.e., by adding nonlogical symbols, then we have to add all the equality rules
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featuring the new symbols as well. This may seem like a trivial variation, but in fact it introduces consider-
able difficulties, as we shall see in ch. 11 §4. There are a number of reasons for us not to consider the more
general situation of first-order theories “without equality”. The first is that all the proofs of these more
general results are contained in the proofs given here. The second is that it is tedious to deal with various
sets of hypotheses all the time. Finally, first-order theories without equality rarely occur in practice.

Let T and T be first-order theories such that L(T’) is an extension of L(T). For T” to be an extension
of T, it is obviously necessary that every nonlogical axiom of T be a theorem of T". This is also sufficient,
for if T is the collection of nonlogical axioms of T, a derivation of A in T is a derivation of A from I in T”,
so our claim follows from the proposition of §1.3.

§3 Tautologies

3.1 Truth valuations. Let L be a first-order language. We say that a truth valuation V on L has been given
if to each elementary formula of L is associated one of the two symbols T and F. We denote by V(A) the
symbol that V assigns to an elementary formula A. We want to extend the domain of truth valuations to
all formulae. To do this we define the mapping f, by

AT =T, A(TF) =T, f,(F,T)=T,and f,(F,F) =F,

and the mapping f- by
f~+(T)=Fand f~(F)=T.

Given a truth valuation V on L and a formula A of L, we define V(A) by induction on the length of A as
follows:

(i) if A is elementary, then V(A) is already defined;
(ii) if Ais B v C, then V(A)is £, (V(B), V(C));
(iii) if A is 7B, then V(A) is f4(V(B)).

Let T be a finite collection of formulae of L. A formula A is a tautological consequence of T if any truth
valuation which assigns T to the formulae of I' assigns T to A. If the latter holds when T is empty, we say
that A is a tautology. Two formulae are tautologically equivalent if they are tautological consequences of
one another. It is an easy exercise to show that A is a tautological consequence of By, ..., B, if and only if
B, - --- = B, — A s a tautology.

Itis not at once clear that the notions of tautology and tautological consequence are finitary, since there
is an infinite number of elementary formulae and hence an infinite number of possible truth valuations
to consider. This is not actually so, for in a given formula A there are only finitely many occurrences of
elementary subformulae, and hence all the possibilities of assignment may be checked in a finite number
of steps in order to decide whether A is a tautology or not. This also shows that the notion of tautology
does not depend on L, but only on the expression A itself. These remarks also apply to the notion of
tautological consequence that can be seen as a particular case of the notion of tautology.

Obviously, given the definition of a truth valuation, the meaning of a tautology is true. In fact, a
tautology is a formula that can be seen to be true using only the meanings of 71 and v. However, the
notion of tautology does not take into account the meanings of 3 and =. In this section we shall prove that
the logical axioms and rules of a first-order theory are sufficiently strong to derive any tautology.

3.2 The tautology theorem. In this paragraph, we fix a first-order language L and we let F be the formal
system with language L whose rules of inference are the propositional rules for L. It follows from the
definition of a first-order theory and some remarks in $1.4 that for any first-order theory T with language
L,if T |zA, then T |-rA. We write |- and = instead of |- and =f.

COMMUTATIVITY RULE. AV B B v A.
Proof. Apply the cut rule to A v B and 1A v A which is a propositional axiom. O
DETACHMENT RULE. A — B, A B.

Proof. We have |-A v B by the expansion rule and the commutativity rule. Applying the cut rule to A v B
and A — B, we get -B v B, whence |-B by the contraction rule. O
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The deduction theorem that we shall prove in §4.3 is a reciprocal to the detachment rule.

LEmMMA 1. Let Ay, ..., A, be formulae, each A; being either elementary or the negation of an elementary
formula. The formula A; v --- v A, is a tautology if and only if some A; is the negation of some A ;.

Proof. The sufficiency is obvious. Suppose now that there are no i and j such that A; is the negation of
A ;. Define a truth valuation V by letting V(A) be T if and only if 7A is some A;, for elementary A. Then
V(A;) is F for all i, and from this we easily conclude that V(A; v---v A,) is F. L]

LEMMA 2. Let iy, ..., i,, be natural numbers among1,..., n. Then A;, v--- VA, FA; V- VA,

Proof. Let Abe A; v .- v A,. We proceed by induction on m. Suppose that m = 1. By the expansion rule,
F(Aj+1V--VA,)VA;,whence FA; V- v A, by the commutativity rule. Using the expansion rule i; —1
more times, we obtain FA.

Suppose that m is 2. If i; is i,, then the contraction rule yields A, whence |-A by the first case.
Suppose that i; < i;. We prove the result in this case by induction on #, which is necessarily greater than
or equal to 2. If n is exactly 2, then there is nothing to prove. Suppose that n > 3. We distinguish the
following cases:

(i) 122
(ii) iy =1and i, > 3;

(111) i] =1land i2 =2.

In case (i) we have |FA,Vv---vA,, by the induction hypothesis, whence |-A by the expansion rule. In case (ii),
we have FA;VA;V---vA, by the induction hypothesis. By the commutativity rule, the expansion rule, and
the associativity rule, we get F(A, VA3 V.-V A,) VA, whence |-A by the commutativity rule. In case (iii),
the hypothesis is -FA; v A,. By the expansion rule and the associativity rule, F((As v -V A,) vV A;) vV A,
Using the commutativity rule, the associativity rule, and again the commutativity rule, we obtain |-A as
desired. If i, < i}, we have |FA;, v A;, by the commutativity rule, whence |-A by the case i; < i,.

Suppose finally that m > 3. By the associativity rule, F(A;, VA;,)VA;,v---VA,, . Hence F(A; VA;,)VA
by the induction hypothesis. By the commutativity rule and the associativity rule, F(Av A;) v A;,. Hence
F(A v A;)) v A by the induction hypothesis. Again by the commutativity rule and the associativity rule,
F(AVA)VA, . Hence F(AvA)v AV Aby the induction hypothesis. Applying the contraction rule twice,
we obtain FA as desired. O

LEMMA 3. AVB |F77A v B.

Proof. The formula 711A v 1A is a propositional axiom. Hence |-1A v 7171A by the commutativity rule.
From A v B and A v 7171A we infer |-B v 771A by the cut rule. Hence 77A v B by the commutativity
rule. O

LEMMA 4. TAVC,"BVvC 7(AvB) v C.

Proof. The formula (A v B) v A v B is a propositional axiom. Hence A v B v 7(A v B) by Lemma 2.
From AvBv (A vB)and 1A v Cweinfer |-(Bv (A v B)) v Cby the cut rule. Hence FCvBv 1(AVvB)
by the commutativity rule, whence FB v Cv 71(A v B) by Lemma 2. From Bv Cv (A v B)and "Bv C
we infer |-(C v 7(A v B)) v C by the cut rule. Hence -C v C v 71(A v B) by the commutativity rule. From
this and Lemma 2, we obtain |-1(A v B) v C as desired. O

TauTtoLoGY THEOREM. Every tautology is a theorem. If A is a tautological consequence of By, ..., B,,
then By,...,B, FA.

Proof. It suffices to prove the first statement, for A is a tautological consequence of By, ..., B, if and only
ifB; - -+ - B, - A s atautology, and By - --- - B, - A,By,...,B, FA by n applications of the
detachment rule. Now clearly if A is a tautology, so is A v A, and if FA v A, then |-A by the contraction
rule. Thus, it suffices to prove that if A v A is a tautology, then it is a theorem. We prove more generally
thatif n > 2and A; v --- v A, is a tautology, then it is a theorem. We proceed by induction on the sum of
the lengths of the A;.

Suppose that each A; is either elementary or the negation of an elementary formula. By Lemma 1, some
A; is the negation of some A ;. Then A; v A; is a propositional axiom, and by Lemma 2, |FA; v --- v A,.
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Suppose that some A; is neither elementary nor the negation of an elementary formula. By Lemma 2,
wehave FA;v---vA, ifand onlyif FA;v---VA, VA;V---VA;_;. Since those two formulae are tautologically
equivalent, we may suppose that 7 is 1. Then A, is either

(i) adisjunction;
(ii) the negation of a negation; or
(iii) the negation of a disjunction.
We prove the result in each case. Suppose that A; is Bv C. Then it is easy to prove that BVvCVv A, v---VA,
is a tautology. By induction hypothesis, it is a theorem. Hence F(Bv C) v A, v --- v A, by the associativity
rule, that is, FA; v - v A,. Suppose that A; is 77B. Then B v A, v --- v A, is clearly a tautology; by
induction hypothesis it is a theorem. By Lemma 3, FA; v --- v A,. Finally, suppose that A, is (B v C).

Thenboth " BVA,Vv---vVA, and 1CVA, V.-V A, are clearly tautologies, hence theorems by the induction
hypothesis. By Lemma 4, we obtain |-A; v --- v A, as desired. O

CoRoLLARY. If A and B are tautologically equivalent, then A < B.

Proof. For any truth valuation V, V(A) is the same symbol as V(B). It is then easily verified using the
definition of the abbreviation A <> B that A <> B is a tautology. O

From the tautology theorem, we see that
(i) if FA < B, then |-A if and only if |-B.

This result, as well as the detachment rule, should be kept in mind whenever we assert a statement of the
form A — B or A < B. Sometimes we refer to such a statement but we actually use “if |FA then |-B”
or “I-A if and only if |-B”, respectively. The tautology theorem allows us to prove the following results,
among others:

(ii) if A or }-B, then A v B;

(iii) A ABifand onlyif A and |-B;

iv) FHHA->B)-> (B —~>C) > A > C;

V) FA<B) - B<C~>A<C

(vi) FA < 1MA;

(vii) F(A - B) < (7B - 71A);
(viii) F(TA — A) - A;

(ix) F(A—>B)— (A -~ 1B)—> 1A;

(x) FA - (B— 1A) —» 7B.

By the detachment rule, (i), (ii), and (iii), all of the above theorems have consequences on derivability.

For example, from (iv) we obtain that (B - C) - A — C s derivable from A — B, and hence that A - C
is derivable from A — B and B — C. Many more results can be deduced from the tautology theorem, such

as properties of associativity and distributivity of v and A, and it is hardly possible to make an exhaustive
list of even the most used ones. All of these results will be referred to generically as the tautology theorem.

3.3 Tautological induction. The tautology theorem allows for a useful characterization of the theorems
of a first-order theory. More generally, let L and F be as in §3.2, and let T be of the form F[R]. We define
a formal system T* as follows. The language of T* is L. The rules of inference of T* are the rules in
R together with all the rules with premises By, ..., B, and conclusion A whenever A is a tautological
consequence of By, ..., B,.

ProrosiTION 1. T and T* are equivalent.

Proof. Using the tautology theorem and induction on theorems in T*, it is clear that a theorem of T*
is a theorem of T. The converse is equally clear using induction on theorems in T and noting that the
conclusions of the propositional rules are tautological consequences of their premises. O
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To prove that all the theorems of T have a given property, we may thus use induction on theorems in T*.
Such a proof will be called a proof by tautological induction on theorems in T. The following proposition
is often used in such proofs.

PROPOSITION 2. Let L and L’ be first-order languages. Suppose that to each formula A of L’ is associ-
ated a formula A* of L in such a way that if A is B v C, then A* is B* v C* and if A is 7B, then A" is
B*. If A is a tautological consequence of By, ..., B, then A* is a tautological consequence of B, ...,
B;.

Proof. We may suppose n = 0. Let V be any truth valuation on L. Define a truth valuation V' on L’ by
setting V'(A) to be V(A*) for A elementary. Let A be any formula of L. We prove by induction on the
length of A that V'(A) is V(A*). If A is elementary, this is given. If A is B v C, then A* is B* v C* and
by induction hypothesis V'(B) is V(B*) and V’(C) is V(C*); thus V'(A) is V(A*). If A is B, then A* is
“B* and by induction hypothesis V'(B) is V(B*); thus V'(A) is V(A*). Now, if A is a tautology, V'(A) is
T; hence V(A*)is T. O

§4 Theorems and rules in first-order theories
In this section, a first-order theory T is fixed. We write |- and = instead of |- and =r.
4.1 Quantification. We now prove some rules involving the symbol 3.

V-INTRODUCTION RULE. If x is not free in A, then A — B FA — VxB.

Proof. By the tautology theorem, |-7B — 7A. Since x is not free in 71A, the 3-introduction rule yields
F3x7B — 71A. Then by the tautology theorem, A — VxB. O

GENERALIZATION RULE. A |FVxA.

Proof. By the tautology theorem, VXA — A. By the V-introduction rule, VXA — VxA, whence
I VxA by the tautology theorem. O

SUBSTITUTION RULE. If A’ is an instance of A, then A FA'.

Proof. We first deal with the special case where A’ is A[x[a]. By the generalization rule, we have |-VxA,
and by the substitution axioms F1A[x[a] - 3x1A. From these by the tautology theorem A[x|a]. We
now prove the general case. Suppose that A’ is A[xy,...,X,[a;,...,a,]. Lety, ..., y, be distinct variables
not occurring in either A or A’. By n applications of the special case, we find successively FA[x|yi1], ...,
FA[X1,. .., Xn|y1, - - > Yn]- Applying again n times the special case, we find

I—A[Xl,. --,Xn|Y1>- . -)Yn][yl|a1]’ cees |_A[Xl’- .. ,Xn|Y1,-- -)Yn][yl)- . ')yn|al>- . -:an];

ie, FA[x), ..., X a1, ..., a,]. O
SUBSTITUTION THEOREM. FA[xy,...,X,[a;,...,8,] — 3x5...3x,A and }FVx;...Vx,A - Alx,
coXylag, .. an].

Proof. Foreachi, 3x;41...3x,A — 3x;3X;41 ... 3X, A is a substitution axiom. A tautological consequence
of all theseis A - 3x; ... 3x, A, from which we obtain the first result by the substitution rule. The formula
7B — 3x71B is a substitution axiom, from which we infer -VxB — B by the tautology theorem. Hence
for each i, we have Vx;Vx;i;...VXx,A - VX;y;...VX,A. A tautological consequence of all these is
Vx;...Vx,A — A, from which we get the second result by the substitution rule. O

DiSTRIBUTION RULE. A - B 3xA — 3xBand A — B VxA — VxB.

Proof. The formula B — 3xB is a substitution axiom. Hence A — 3xB by the tautology theorem, and
F3xA — 3xB by the 3-introduction rule. Similarly, we have -VxA — A by the substitution theorem,
from which |-VxA — B by the tautology theorem, and }-VxA — VxB by the V-introduction rule. O

The following corollary will also be referred to as the distribution rule.

COROLLARY. A <> B F3xA <> 3xB and A < B |FVxA < VxB.
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Proof. By the tautology theorem, -A — B and B — A, whence |-3xA — 3xB and |-3xB — 3xA by the
distribution rule. From these by the tautology theorem, -3xA < 3xB. The proof of |-VxA < VxB is
identical. O

CLOSURE THEOREM. A = VXx;...Vx,A.

Proof. We have A |-Vx;...Vx,A by n applications of the generalization rule. By the second part of the
substitution theorem, we have |-Vx; ... Vx,A — A, whence Vx; ... Vx,A |-A by the detachment rule. [

We use the results of this paragraph to derive some useful theorems.

(i) Ifxisnotfreein A, F3xA < A;

(ii) ifxis not freein A, FVXA < A;
(iii) F3IxIyA < JyIxA;

(iv) FVXVyA < VyVxA;

(v) F3IxVyA — Vy3IxA;

(vi) 3x(A v B) <> IxA v IxB;
(vii) FVx(A AB) < VxA A VxB;
(viii) F3x(A A B) - 3xA A 3xB;

(ix) FVxA v VxB — Vx(A v B).

The formula A — 3xA is a substitution axiom and if x is not free in A, we obtain |-3xA — A by the 3-
introduction rule from the tautology A — A; so (i) by the tautology theorem. By the substitution theorem
FA — 3Jy3xA, whence |-3x3yA — Jy3xA by the 3-introduction rule. Similarly, -3y3xA — 3Ix3IyA,
whence (iii) by the tautology theorem. By the substitution axioms and the distribution rule, |-VyA —
Vy3xA, whence (v) by the 3-introduction rule. By the substitution axioms, FA — 3xA and B — 3xB,
whence 3x(AvB) - 3xAv 3xB by the tautology theorem and the 3-introduction rule. The same method
proves (viii). The formula A — A v B is a tautology; hence -3xA — 3x(A v B) by the distribution rule, so
F3xA v 3xB — 3x(A v B) by the tautology theorem. Together with the previous result, this proves (vi).
Items (ii), (iv), (vii), and (ix) are proved in the same way as (i), (iii), (vi), and (viii), respectively, using the
V-introduction rule instead of the 3-introduction rule, and the other parts of the substitution theorem
and the distribution rule.

4.2 Adjunction of nonlogical symbols. Let T be a first-order theory. We may form a first-order theory
from T by adding new function and predicate symbols to the signature of L(T) while leaving the nonlogical
rules of T unchanged (but of course new formulae and logical rules featuring the new symbols are to
be added). We may also form a new first-order theory by adding new nonlogical axioms. We then say
that such a theory is obtained from T by the adjunction of those symbols and of those nonlogical axioms.
The next proposition says that the mere adjunction of nonlogical symbols will not allow us to derive any
formula of the original language that was not already derivable without using the new symbols.

PrOPOSITION. Let T be a first-order theory and let T’ be obtained from T by the adjunction of new
nonlogical symbols. Then T’ is a conservative extension of T.

Proof. We shall prove a slightly more general result: if A is a theorem of T”, if x is a variable not occurring
in any member of some derivation of A in T, and if A* is obtained from A by replacing every occurrence
of a term of the form fa, ...a,, where f is not a symbol of T, by x and every occurrence of an atomic
formula of the form pa, . ..a,, where p is not a symbol of T, by x = x, then A* is a theorem of T (note
that the order in which those replacements are carried out has no influence on the resulting formula A*).
First observe that this implies the proposition, since A* is A whenever A is a formula of T. Now to prove
the more general statement, we modify the given derivation of A as follows: replace any appearance of
a functional equality axiom x; =y - -+ = X, =y, = fX1...Xx, = fy; ...y, by a derivation in T of
X; =y — -+ > X, = ¥ = X = X; replace any appearance of a predicative equality axiom x; = y; > -+ —
Xn =YVn > PX1...Xy = PY1...Yn Dy aderivationin Tofx; =y; > - > X, =y, > X=X > X = X;
replace any occurrence of a term of the form fa, .. .a,, where f is not a symbol of T, by x; finally, replace
any occurrence of an atomic formula of the form pa;, .. .a,, where p is not a symbol of T, by x = x. A
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quick inspection reveals that, with the exception of the equality axioms, an application of a logical rule
of inference becomes an application of the same type of rule, and nonlogical rules are unaffected. The
only nontrivial case is that of the substitution axioms. But if u* denotes the designator of T obtained
from a designator u of T’ in the same way as A* was obtained from A, a straightforward induction on
the length of u shows that, if x does not occur in u and is distinct from y, (u[yla])* is u*[y|a*]. It follows
that a substitution axiom A[y|a] - JyA becomes the substitution axiom A*[y|a*] — JyA*. Thus, we have
indeed obtained a derivation of A* in T. O

When the only nonlogical symbols added are constants, we have the following stronger result.

THEOREM ON CONSTANTS. Let T be a first-order theory. Let T be obtained from T by the adjunc-
tion of n new constants ey, ..., e,, and let xy, ..., X, be distinct variables. Then }-rA if and only if
'—T/A[Xl, .o ,Xn|e], e ,en].

Proof. Suppose that |-rA. Then |1/ A, whence FA[x;, ..., X,le, ..., e,] by the substitution rule. Con-
versely, suppose that | A[x;, ..., X,ler, ..., e,]. This means that there is a derivation of A[x;, ..., X,|ej,

..,e,] in T'. Letyy, ..., y, be distinct variables not appearing in that derivation. We replace every
occurrence of e; in members of that derivation by y;, for all i, and what we obtain is a derivation of
AlXy,...,Xp|y1,- .-, ¥n] in T. Indeed, an application of a logical rule of inference becomes an application
of the same type of rule, and nonlogical rules are unaffected. Thus |rAl[xy,...,Xu|y1,...,¥x], whence
I 7A by the substitution rule. O

4.3 The deduction theorem.

LEMMA. Let T be a first-order theory and let A be a closed formula of T. Then |-7A — B if and only
if A |-7B.

Proof. The necessity follows at once from the detachment rule. To prove the converse, we use tautological
induction on theorems in T[A]. If B is an axiom of T[A] other than A, then B is an axiom of T and hence
1A — B by the tautology theorem. If B is A, then A — B is a tautology, and hence |-rA — B. Suppose
that B is a tautological consequence of Cy, ..., C,. By induction hypothesis, -rA — C; for all i. Then
FrA — B because it is a tautological consequence of all the A — C;. Suppose that B is inferred from
C — D by the 3-introduction rule with the variable x. By induction hypothesis, 1A — C - D. Then by
the tautology theorem, -7C - A — D. Since x is not free in D and A is closed, x is not free in A; hence
itis not free in A — D. By the 3-introduction rule, -73xC - A — D. From the latter and the tautology
theorem, ;A — 3xC — D, that is, A — B. O

Combining the Lemma and the theorem on constants, we obtain the following result:

DepUCTION THEOREM. Let T be a first-order theory and let A be a formula of T whose free variables
are among Xy, ..., X,,. Let T’ be obtained from T by the adjunction of # new constants ey, ..., e,,. Then
A — Bisatheorem of T if and only if A[xy,...,X,ler,....e,] FrB[x, ..., X4ler, ..., e,].

ReEpUCTION THEOREM. Let T be a first-order theory, I a collection of formulae of T, and A a formula
of T. Then T |-7A if and only if there are formulae By, ..., B, among the closures of the formulae of
I such that ;B; — - > B,, — A.

Proof. Suppose that I' -7 A. This means that there exists a derivation of A in T[T']. Let By, ..., B, be the
closures of the formulae of I' that appear in the derivation. Then by the closure theorem A is a theorem
of T[By,...,B,]. So By = -+ = B, — A by n applications of the deduction theorem. The converse
follows from the closure theorem and n applications of the detachment rule. O

4.4 The equivalence theorem.

EQUIVALENCE THEOREM. Let A’ be a formula obtained from A by replacing some occurrences of By,
...,B,byB!,...,B,. Then B, <> B/,...,B, <> B, FA < A’.

Proof. If B; is all of A for some i and if A is replaced by B, then A is B} and A < A’ by hypothesis.
We now exclude this case, and we prove the result by induction on the length of A. If A is atomic, then
A has no subformula distinct from A; hence A’ is A and FA < A’ by the tautology theorem. Suppose
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that A is C v D. By the occurrence theorem, any subformula of A different from A occurs either in C
or in D. Denote by C’ and D’ the formulae such that A" is C' v D’. By induction hypothesis, -C < C’
and D < D', whence A < A’ by the tautology theorem. Suppose that A is 71C. By the occurrence
theorem, any subformula of A different from A occurs in C. Let C’ be the formula such that A’ is 7C'.
Then FC < C’ by induction hypothesis, whence A < A’ by the tautology theorem. Suppose finally
that A is 3xC. By the occurrence theorem and the induction hypothesis, A" is 3xC’ where |-C <> C'. By
the distribution rule, FA < A’. O

VARIANT THEOREM. If A’ is a variant of A, then A < A’.

Proof. Suppose first that A is 3xB and that A’ is 3yB[x|y] where y is not free in B. By the substitution
axioms |-B[x|y] — 3xB and |-B — JyB[x]y]. By the 3-introduction rule, -3yB[x|y] — 3xB and |-3xB —
JyB[x]y]. From these we get -3xB < JyB[x|y] by the tautology theorem. In the general case, A’ is
obtained from A through Ay, ..., A,_; in the following way: setting Ay to be A and A, to be A’, A; is
obtained from A;_; by replacement of an occurrence of a subformula of the form 3xB by JyB[x]y] withy
not free in B. At each step, we have FA;_; <> A; by the special case and the equivalence theorem. Hence
FA < A’ by the tautology theorem. O

From the variant theorem, the tautology theorem, and the substitution rule, we obtain:
VERSION THEOREM. If A’ is a version of A, then A -A’.

4.5 The equality theorem.
SYMMETRY THEOREM. Fa=b < b =a.

Proof. The formulax = y - x = x - x = x - y = x is an equality axiom. By the identity axiom x = x
and the tautology theorem, we obtain |-x = y - y = x. By the substitution rule, we have Fa=b —>b=a
and |-b = a — a = b. From these we get |-a = b <> b = a by the tautology theorem. O

EqQuAaLITY THEOREM FOR TERMS. Let a’ be a term obtained from a by replacing some occurrences of
by,...,b, byb;,...,b),. Thenb; =bj,...,b, =b/, Fa=a’".

Proof. If b; is all of a for some i and if a is replaced by b’, then a’ is b} and }-a = a’ by hypothesis. We
now exclude this case, and we prove the result by induction on the length of a. If a is a variable, then there
is no occurrence in a of a term distinct from a; hence a’ is a and |-a = a’ by the identity axioms and the
substitution rule. Suppose that a is fc; ... ¢x. By the occurrence theorem, any occurrence of a term in a

different from a is in one of the ¢;. Denote by ¢, ..., ¢ the terms such that a’ is fc{ ... ¢;. By induction
hypothesis, |-¢; = ¢] for all i. By the equality axioms and the substitution rule, -¢; = ¢; - -+ = ¢ = ¢} >
a =a’, hence |-a = a’ by k applications of the detachment rule. O

EQUALITY THEOREM FOR FORMULAE. Let A’ be a formula obtained from A by replacing some mean-
ingful occurrences of by, ..., b, by b, ..., b/,. Thenb; =b],...,b, =b/, FA < A'.

Proof. We prove the result by induction on the length of A. Suppose that A is pc; . . . ¢k. By the occurrence
theorem, any occurrence of a term in A is in one of the ¢;. Denote by ¢/, ..., c?c the terms such that
A’ is pci ... c;. By the equality theorem for terms, f-¢c; = ¢} for all i; also |-c; = ¢; by the symmetry
theorem. By the equality axioms and the substitution rule, }-¢; = ¢ - - - ¢ = ¢ - A - A’ and
Fei=¢ = —>c,=cc > A" - A hence FA - A’ and |FA" — A by k applications of the detachment
rule. From these we get FA < A’ by the tautology theorem. Suppose that A is C v D. By the occurrence
theorem, any occurrence of a term in A is either in C or in D. Denote by C’ and D’ the formulae such
that A" is C' v D’. By induction hypothesis, FC < C" and | D < D’, whence A < A’ by the tautology
theorem. Suppose that A is 7C. By the occurrence theorem, any occurrence of a term in A is in C. Let
C’ be the formula such that A’ is 1C'. Then C < C' by induction hypothesis, whence FA < A’ by
the tautology theorem. Suppose finally that A is 3xC. By the hypothesis, the occurrence (3, C) of x is not
replaced. Hence by the occurrence theorem and the induction hypothesis, A" is 3xC’ where |-C <> C'. By
the distribution rule, FA < A’. O

The equality theorems can be combined with the deduction theorem to get the following useful corol-
lary, which will also be referred to as the equality theorem. Its proof is straightforward.
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COROLLARY.
(i) Faj=a] > —>a,=al, >b[xy,...,x,[a1,...,a,] =b[xy,...,x,]a],...,a,];
(i) Fa;=aj— - —>a,=a), > A[x,...,X,la,...,8,] « Alxy,...,X,]a],...,a)].

RepPLACEMENT THEOREM. If x does not occur in a, then FA[x]a] < Ix(x = aA A) and FA[x[a] <
Vx(x =a— A).

Proof. By the hypothesis, the formula (a = a A A[x|a]) - 3x(x = a A A) is a substitution axiom. By
the identity axioms and the substitution rule, we have |-a = a. A tautological consequence of these two
formulae is

Alx[a] > Ix(x=a A A). (1)

By the Corollary, we have |-x = a > A < A[x[a], whence x = aA A — A[x|a] by the tautology theorem.
By the 3-introduction rule,
FIx(x=anAA) > Alx[a]. (2)

From (1) and (2), we get the desired result by the tautology theorem.

By the hypothesis and the substitution theorem, Vx(x = a - A) — a = a - A[x[a]. A tautological
consequence of this and a = ais Vx(x = a - A) - A[x|a]. By the equality theorem and the tautology
theorem, -A[x|a] > x = a > A, whence A[x]a] - Vx(x = a - A) by the V-introduction rule. As above,
we obtain the second result by the tautology theorem. O

4.6 Prenex form. A formula A is in prenex form if it is of the form u; ... u,B where: B is open; each u;
is either 3x; or Vx;; Xy, ..., X,, are distinct. It is clear that uy, ..., u,, and B are then uniquely determined;
u; ...u, is called the prefix of A and B its matrix. If moreover each u; is 3x; (resp. Vx;), we say that A is
existential (resp. universal). We shall show that for any formula A, there is a formula A’ in prenex form
such that FA < A,

Let A be a formula. The prenex operations that can be applied to A are the following:

(i) replace A by a variant;

(ii) if x is not free in C, replace an occurrence of 3xB v C by 3x(B v C);
(iii) ifx is not free in C, replace an occurrence of YxB v C by Vx(B v C);
(iv) if x is not free in B, replace an occurrence of B v 3xC by 3x(B v C);

(v) ifx is not free in B, replace an occurrence of B v VxC by Vx(B v C);
(vi) replace an occurrence of 13xB by Vx1B;

(vil) replace an occurrence of 1VxB by 3x1B.
A formula in prenex form obtained from A by prenex operations is called a prenex form of A.
THEOREM ON PRENEX OPERATIONS. If A’ is obtained from A by prenex operations, then A < A'.

Proof. By the tautology theorem, it suffices to consider the case where A’ is obtained from A by just one
of the seven prenex operations. If A’ is a variant of A, then the conclusion is the variant theorem. To
prove that FA <> A’ when A’ is obtained from A by one of (ii)-(vii), we may suppose, by the equivalence
theorem, that all of A is replaced. By the tautology theorem, it will suffice to prove

F3Ix(Bv C) - 3IxB Vv C, (3)
3xB — Ix(B v C), (4)
FC - 3x(B Vv C), (5)
FVx(BVvC) - VxBvC, (6)
FVxB - VYx(B v C), (7)
FC - Vx(B Vv C), (8)
FB Vv 3xC < Ix(B v C), (9)
FBvV VxC < Vx(B v C), (10)
F73xB < 13x717B, and (11)

F7713x71B < Jdx7B, (12)
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under the hypothesis that x is not free in C in (3)-(8) and not free in B in (9)-(10). Now B — 3xB is
a substitution axiom. A tautological consequence of it is B v C — 3xB v C. Hence we find (3) by the
3-introduction rule. From the tautology B — B v C, we get (4) and (7) by the distriution rule. From
the substitution axiom B v C - 3x(B v C), we get (5) by the tautology theorem. By the substitution
theorem, |-Vx(B v C) — B v C. A tautological consequence of this is Yx(B v C) A 7C — B, from which
FVx(B v C) A 1C — VxB by the V-introduction rule, whence (6) by the tautotlogy theorem. From the
tautology C — B v C we get (8) by the V-introduction rule. Interchanging B and C in (3)-(8) yields (9)
and (10) by the equivalence theorem and the tautology theorem. We obtain (11) by the equivalence theorem
and the tautology theorem. Finally, (12) is a tautology. O

ProposiTION. Every formula has a prenex form.

Proof. Let A be a formula. We prove our claim by induction on the length of A. If A is atomic, then it is
a prenex form of itself. If A is B v C, then by induction hypothesis B and C have prenex forms B’ and C’,
and we may suppose by (i) that the bound variables in B’ are distinct from the variables in C’ and that the
bound variables in C’ are distinct from the variables in B’. We then obtain a prenex form of A by applying
successively (ii)-(v) to B’ v C'. If A is 1B, then we obtain a prenex form of A from a prenex form of B and
successive applications of (vi)-(vii). If A is 3xB, then by the induction hypothesis and (i), B has a prenex
form B’ in which x is not bound. Then 3xB’ is a prenex form of A. O

The following operations are easily seen to be combinations of prenex operations.

(viii) if x is not free in C, replace an occurrence of 3xB A C by 3x(B A C);
(ix) if x is not free in C, replace an occurrence of YxB A C by Vx(B A C);
(x) if x is not free in B, replace an occurrence of B A 3xC by 3x(B A C);
(xi) ifx is not free in B, replace an occurrence of B A VxC by Vx(B A C);
(xii) if x is not free in C, replace an occurrence of 3xB — C by Vx(B — C);
(xiii) if x is not free in C, replace an occurrence of VxB — C by 3x(B - C);
(xiv) if x is not free in B, replace an occurrence of B - 3xC by 3x(B — C);

(xv) if x is not free in B, replace an occurrence of B — VxC by Vx(B — C).

4.7 On English translation. We have already defined in $2.8 the standard meaning of a first-order lan-
guage, which provides an efficient way of translating formulae of a first-order language into English. For
example, Vx(x # x) may be translated as “for all individuals x, x does not equal x”, where the kind of indi-
viduals may be further specified in a given theory. Of course, in order to translate formulae of an arbitrary
first-order theory, it is also necessary to explain the meaning of the nonlogical symbols.

In Chapter v1 we shall introduce a first-order theory called ZF, and we shall often translate derivations
in English. This does not mean that we abandon the formalism we have described with great care in
this chapter. Our objects of study will remain formal expressions, and our theorems (whose statements
will always be accurate) will say something about formal systems and not, as is usual in mathematics,
about abstract individuals. These informal derivations in English should be considered as guidelines from
which one can recover derivations using the results of the previous sections. We intend each step of these
guidelines to be easily translated back into the formal system by simple applications of these results. The
problem is that no reference can be given where the derivations of the theorems of ZF can be found, so one
must trust that these informal derivations actually work. The best way to be convinced of it is of course to
try and translate some of them into formal derivations.

There is a device that is often used in informal derivations which is worth explaining. When proving
FrA — B, it is customary to start the derivation by saying “suppose that A holds” One way to translate
such an argument formally is by using the deduction theorem.

¢



Chapter Two
The Question of Consistency

§1 Consistency and completeness

1.1 Consistency. We say that a formal system F is inconsistent if every formula of F is a theorem of F; it
is consistent otherwise. We shall only be interested in applying these definitions when L(F) is a first-order
language and when the propositional rules are derivable in F. We can then formulate a simple criterion
for consistency with the tautology theorem. Since there is no truth valuation V for which both V(A) and
V(7A) are T, it follows that every formula is a tautological consequence of A and 71A. Consequently, F is
inconsistent if (and only if) there is a formula A of F such that |-A and |-g7A.

PropPoOSITION 1. Let T be a first-order theory, A a formula of T, and A’ its closure. Then |7A if and
only if T[1A'] is inconsistent.

Proof. If |-rA, then |7~ A and hence |75/ A’ by the closure theorem. Obviously |-7(4,; A", so by
the above remark T[71A"] is inconsistent. Conversely, suppose that T[7A"] is inconsistent. Then |74 A’,
so by the deduction theorem, |-77A” — A’. Thus we obtain -7A’ by the tautology theorem, whence |-7A
by the closure theorem. O

PROPOSITION 2. Let F be a formal system whose language is a first-order language and whose rules of
inference are the propositional rules for L(F), and let T be a collection of formulae of L(F). Then F[T']
is inconsistent if and only if some disjunction of negations of formulae in T is a tautology.

Proof. Recall that, by the tautology theorem, a formula of L(F) is a theorem of F[I'] if and only if it is a
tautological consequence of formulae in I'. It follows that if F[I'] is inconsistent, then x = x and x # x are
tautological consequences of formulae Ay, ..., A, in I'. Then no truth valuation assigns T to all of Ay, ...,
A, ie, 7A; v -+ v 1A, is a tautology. Conversely, if some disjunction of negations of formulae in I is a
tautology, then any formula of L(F) is a tautological consequence of formulae in T, so F[I'] is inconsistent
by the tautology theorem. O

1.2 The consistency of first-order logic. Given the meaning we have in mind for first-order theories, we
want them to be consistent. But the problem of determining the consistency of a first-order theory is not
an easy one in general. In some simple cases it can be done by elementary (and finitary) arguments. This
is fortunately the case for the first-order theories exempt of nonlogical axioms.

ProPOSITION. A first-order theory with no nonlogical axioms is consistent.

Proof. Let T be a first-order theory with no nonlogical axioms, and let L be the first-order language con-
sisting of L(T) and a new constant e. To every formula A of T, we let A* be obtained from A by deleting
all occurrences of 3x and replacing all remaining terms by e. Clearly A" is a formula of L. We prove that if
FrA, then A” is a tautological consequence of e = e. We proceed by tautological induction on theorems
in T. If A is B[x|a] — 3xB, then A" is B* — B* which is a tautology. If A is x = x, then A* is e = e and
is a tautological consequence of itself. If A is an equality axiom, then A* is eithere = e —» - > e = ¢,
which is a tautological consequence ofe = e,ore =e — - > e =e — pe...e > pe...e, whichisa
tautology. If A is a tautological consequence of By, ..., B,,, then A* is a tautological consequence of B}, ...,
B, by proposition 2 of ch. 1 §3.3, and so is a tautological consequence of e = e by induction hypothesis. If
A is obtained from B — C by the 3-introduction rule with the variable x, then A* is B* — C*, which is
a tautological consequence of e = e by induction hypothesis. Let now V be a truth valuation on L which
assigns T to e = e. Then V(e # e) is F, and so x # x is not a theorem of T. O

1.3 Completeness. A notion that is closely related to consistency is that of completeness. A first-order
theory T is complete if for any closed formula A of T, F-7A or |-r7A. Completeness, like consistency,
is obviously a desirable property of a first-order theory. We will not pursue this notion any further in
this chapter, but we shall obtain important results on the completeness of particular first-order theories in
Chapter 1.

19
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§2 Extensions by definitions

2.1 Definitions of predicate symbols. Let T be a first-order theory, D a formula of T, and xj, ..., X,
distinct variables including the variables free in D. Let T” be the first-order theory obtained from T by
the adjunction of a new n-ary predicate symbol p and the new nonlogical axiom px; . ..x, <> D. For any
formula A of T’, we choose a variant D’ of D in which no variable of A is bound and we let A* be the
formula of T obtained from A by replacing each occurrence of pa; ...a, in A by

D'[x},...,X4|a;,...,a,].

We now assume that for each formula A a formula A* has been chosen once and for all. Since only oc-
currences of atomic formulae are replaced to form A*, it follows that if A is B v C, then A* is a variant of
B* v C*, if A is 7B, then A” is a variant of 1B*, and if A is 3xB, then A* is 3xB’ where B’ is a variant of
B*.

THEOREM ON PREDICATIVE DEFINITIONS. With the notations of this paragraph, A < A* and T’
is a conservative extension of T.

Proof. To prove the first assertion, it suffices, by the equivalence theorem, to show that }-/pa;...a, <
D'[x,...,Xylay, ..., a,]. This follows from the axiom px; . ..x, < D by the version theorem.

To prove that T’ is a conservative extension of T, it suffices to prove A" for any theorem A of T’; for
if A is a formula of T, then A* is A. We use tautological induction on theorems in T”. If A is a substitution
axiom B[x|a] — 3xB, then A* is easily seen to be a variant of the substitution axiom B*[x|a] — IxB*, and
hence |-7A" by the variant theorem. If A is an identity axiom, then p does not occur in A; hence A" is A
and A", Similarly, if A is an equality axiom in which p does not occur, then A* is A and }-1A*. Suppose
that A is an equality axiom of the formy; =y] - - >y, =y, > Py1-.-Yu = PY; - - - Y- Then A* is

Vi=Vi—=> o =Vn=Y, > DX, Xy ¥a]l > DX, Xy Y]

for some variants D’ and D" of D, so it is a theorem of T by the equality theorem and the variant theorem.
If A is a nonlogical axiom of T, then p does not occur in A; hence A* is A and |-7A". Finally, if A is
PXi...X, < D, then A" is D’ < D, which is a theorem of T by the variant theorem.

Suppose that A is a tautological consequence of By, ..., Bx. Then by Proposition 2 of ch. 1 §3.3, A is a
tautological consequence of variants of B, ..., B}, and hence |-rA* by the variant theorem, the tautology
theorem, and the induction hypothesis. Suppose that A is inferred from B — C by the 3-introduction
rule with the variable x. Then A* is 3xB’ — C’ where B’ and C’ are variants of B* and C*. The induction
hypothesis is |-rB* — C*. Since x is not free in C*, A is a theorem of T by the 3-introduction rule and
the variant theorem. O

2.2 Definitions of function symbols. Let T be a first-order theory, D a formula of T, and x;, ..., X,,
y, ¥’ distinct variables such that xj, ..., X,,, y include the variables free in D. Let T’ be the first-order
theory obtained from T by the adjunction of a new n-ary function symbol f and the new nonlogical
axiom y = fx;...x, < D. For any atomic formula A of T’, we define a formula A* of T by induction
on the number of occurrences of f in A. If there are no such occurrences, then A* is A. If f occurs in A,
consider the last occurrence of a term fa; ...a, in A, so that f does not occur in ay, ..., a,, and let B be
obtained from A by replacing that occurrence by a variable z not occurring in A. Then B is an atomic
formula in which f occurs one less time than in A; we choose a variant D’ of D in which no variable of A
is bound and we let A* be the formula

Jz(D'[x1,....Xu Y|ars . .., an, 2] ABY).

We now assume that a formula A* is fixed for any atomic formula A of T. If A is any formula of T”, let A*
be the formula obtained from A by replacing each occurrence of an atomic formula B in A by B*. For the
same reason as in §2.1, if A is B v C, then A" is a variant of B* v C*, if A is 7B, then A* is a variant of 7B,
and if A is 3xB, then A* is 3xB’ where B’ is a variant of B*.

LEmMA 1. Let A be a formula of T’. Assume that A° is built as A*, except that, at each step, instead of
replacing the last occurrence of a term fa; . . . a,,;, we allow the replacement of any such occurrence as
long as f does not occurin ay, ... , a,. Then F7A* < A°.
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Proof. By the equivalence theorem, it suffices to prove the result for A atomic. Replacing A" and A° by
variants if necessary, we may assume that any given occurrence of f in A is replaced by the same variable
in forming A* and A°, and that this variable does not occur in all of A. It follows that if A" has the form
3z;(Dy A -+-32,, (D, A B)-++) for some formula B of T, then A° has the form 3z;(Dj A ---3z.,, (D!, AB)--)
where for each i there is exactly one j such that z; is 2} and D; is a variant of D. Thus A® can be obtained
from A* using the following operations: prenex operations; replacing an occurrence of Ix3x’ by 3Ix'3x;
replacing an occurrence of C A C' by C' A C. By ch. 1 §4.1 (iii), the tautology theorem, the equivalence
theorem, and the theorem on prenex operations, we have -7rA" < A°. O

LemMMA 2. If Fr3xA and }7A — A[x|x'] > x = x’ for some x’ not free in A and B, then |-r3x(A A
B) « Vx(A — B) and }13x(A A B) < 3x(A A 1B).

Proof. For the first assertion, we derive both implications. By the substitution theorem and the tautology
theorem, |-7Vx(A - B) AA - AAB, whence |-7Vx(A — B) A 3xA — 3x(A A B) by the distribution rule
and prenex operations. By the first hypothesis and the tautology theorem, we obtain }-7rVx(A - B) —
Ix(A AB). Conversely, -rAAB — A[x|x'] — B[x|x'] by the equality theorem, the second hypothesis, and
the tautology theorem. So by the V-introduction rule and the 3-introduction rule, we obtain |-r3x(A A
B) — Vx'(A[x[x'] - B[x|x']), whence }73x(A A B) - Vx(A — B) by the variant theorem. The second
assertion follows from the first one by the tautology theorem and the equivalence theorem. O

LEmMA 3. With the notations of this paragraph, suppose that

F73yD and (1)

FrD - Dlyly'l »y=Y" (2)

Ifay,...,a, are terms of T, A a formula of T/, and D’ a variant of D in which no variable of A, a, ...,
a, isbound, then |-rA[z|fa;...a,]* < Fz(D'[xy,..., X, V]ag, ..., a,,2] A A).

Proof. Throughout the proof, we let D; abbreviate D'[xy, ..., X,,¥|aj, . . .,a,,z]. We prove the result by
induction on the length of A. Suppose first that A is atomic, and proceed by induction on the number of
free occurrences of z in A. If there are none, then z is not free in A*. From the tautology D; A A* —
A*, we obtain |-73z(D; A A*) — A" by the 3-introduction rule. Conversely, from }-;3zD;, we ob-
tain F7A" — 3z(D; A A) by the tautology theorem and prenex operations. Hence the desired equiva-
lence holds by the tautology theorem. Suppose that z has a free occurrence in A, and let B be obtained
from A by replacing all free occurrences of z save one by a variable w distinct from z and not occur-
ring in A, aj, ..., a,, or D’. Then by Lemma 1 }-7A[z|fa;...a,]* < 3Jz(D; A B[wlfa;...a,]*), and
by induction hypothesis |B[w|fa;...a,]* < Iw(D;[z|w] A B*). Hence by the equivalence theorem,
FrAlzlfa ...a,]" < 3z(D; A 3w(D,[z|w] A B*)), and by prenex operations

FrAlzlfa; ...a,]" < Jz3w(D; A Dy[z|w] A B). (3)

By a version of (2), the equality theorem, and the tautology theorem, F;D; — Dj[z|lw] - A" < B*,
whence |7D;[z|w] AD; AA* < D; AD;[z|w] AB* by the tautology theorem. So by (3) and the equivalence
theorem, we find A[z|fa; ...a,]" < 3zIw(D;[z|w] A D; A A*). Since w is not free in D; A A* and z is
not free in Dy [z|w], we get

FrAlz/fa;...a,]" < IwD[z|w] A 3z(D; A AT) (1)

by prenex operations. From the tautology D; A A* — Dy, we get |-r3z(D; A A*) — 3wD,[z|w] by the
distribution rule and the variant theorem. From the latter and (4), we obtain |- A[z|fa; ...a,]* < Jz(D;A
A”) by the tautology theorem, which is the desired result.

Suppose now that A is Bv C. Then A[z|fa; ...a,]* is a variant of B[z|fa; ...a,]* v C[z|fa,...a,]*. By
the induction hypotheses, the variant theorem, and the tautology theorem, |-rA[z|fa; ...a,]* < Jz(D; A
B*)v3z(D;AC*). We obtain the desired result by ch. 1 4.1 (vi), the tautology theorem, and the equivalence
theorem.

Suppose that A is 7B. Then Alz|fa; ...a,]* is a variant 7B[z|fa; ...a,]*. By the induction hypothesis,
the variant theorem, and the tautology theorem, rA[z|fa; ...a,]* < 713z(D; AB*). So the desired result
follows from Lemma 2 and the tautology theorem.
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Finally, suppose that A is 3xB. Since fa; ...a, is substitutible for z in A, x does not occur in ay, ...,
a,. In particular, either x is z or x is not free in D;. Suppose first that x is z, so that A[z|fa; ...a,]
is A. By prenex operations, |-73zD; A 3zB* < 3Jz(D; A 3zB*). From this and }-;3zD;, we obtain
F13zB* < 3z(D; A 3zB”) by the tautology theorem, which is a variant of the expected result. Suppose
that x and z are distinct. Then A[z|fa;...a,]* is a variant of 3xB|[z|fa; ...a,]*. By induction hypothesis,
the variant theorem, and the equivalence theorem, |-rA[z|fa; ...a,]* < 3x3z(D; A B¥). By prenex oper-
ations (exchanging beforehand 3x and 3z by virtue of ch. 1 §4.1 (iii) and the tautology theorem), we obtain
FrAlz|fa; ...a,]* < 3z(D; A 3xB*) which is as desired up to a variant. O]

THEOREM ON FuNcTIONAL DEFINITIONS. With the notations of this paragraph, |-1~A < A*. If more-
over Fr3yD and 7D — D[yly'] -y =Y/, then T’ is a conservative extension of T.

Proof. To prove 1A < A, it suffices, by the equivalence theorem, to consider the case where A is
atomic. We proceed by induction on the number of occurrences of f in A. If f does not occur in A,
then A* is A and hence A < A® by the tautology theorem. Suppose that f occurs in A, and let a;,
..., a5, B, and D’ be as in the construction of A*. From the nonlogical axiom y = fx;...x, < D, we
obtain |z = fa;...a, < D'[x),...,X,,¥[as,...,a,,2] by the version theorem. By the equivalence
theorem, we get |-1+3z(z = fa;...a, A B*) <> A". Since f occurs in B one less time than in A, we have
7B < B* by the induction hypothesis; hence |-~3z(z = fa;...a, A B) <> A" by the equivalence
theorem. By the replacement theorem, we have |3z(z = fa;...a, A B) < Blz|fa;...a,], whence
FBlz|fa;...a,] < A* by the tautology theorem, i.e., F A < A*.

To prove that T’ is a conservative extension of T, it suffices to prove |-A* for any theorem A of T';
for A* is A for any formula A of T. We use tautological induction on theorems in T’. Suppose that A is a
substitution axiom B[x|a] — 3xB. We prove |-rA* by induction on the number of occurrences of f in a.
If there are none, then A* is a variant of the substitution axiom B*[x|a] < 3xB*, and hence is a theorem
of T. If f occurs in a, consider some occurrence of a term fa; . ..a, in a such that f does not occur in ay,
...»ay,, and let b be obtained from a by replacing that occurrence by a variable z not occurring in A, so that
B[x|a] is B[x|b][z|fa; ...a,]. By the hypotheses on D, we may apply Lemma 3 which yields

FrB[x[a]* < 3z(D'[xy, ..., X4, ¥]a1s . . .» a4, 2] A B[x[b]™) (5)

for some suitable variant D’ of D. Since f occurs in b one less time than in a, we have |-B[x|b]* — 3xB*
by the induction hypothesis, whence FD’[xy, ..., X,,¥|a1, . - .,a,, 2] A B[x|b]* - IxB* by the tautology
theorem. Using the 3-introduction rule and (5), we obtain |B[x[a]* — 3xB*, whence }-7A* by the
variant theorem.

If A is an identity axiom, then f does not occur in A; hence A" is A and |-rA*. Similarly, if A is an
equality axiom in which f does not occur, then A* is A and }-7A*. Suppose that Aisy; =y, = - >y, =

y, = fyi...y, =fy;...y,. Then A* is
IZ' (DA IZDLA (Y1 =y, > = Yu=Y, >2=2))),

where Dy is D'[xy, ..., X, Y]y]> ..., Y,,2'] and D, is D”[xy, ..., X,, Y|y1, - - > ¥n- 2], for some z and z’ dis-
tinct and not occurring in A and some variants D’ and D" of D. Note that z is not free in D;. From the
hypothesis (2) and the version theorem,

FeD (X1, .. X, Y]Y]s -5 Yo Z] = Dy > 2 =17/, (6)
and by the equality theorem,
Fryi=yi = > ¥a =¥, > D2 DX, X, VY- i 2] )
A tautological consequence of (6) and (7) is
D, AD; > D ADA(y1 =y = > Y=Y, >2=12). (8)

From the hypothesis (1) and the version theorem, we have 13z'D; and }-73zD,, from which we infer
3z’ 32(D; AD,) by the tautology theorem and prenex operations. Thus we obtain |-;A* from (8) by the
distribution rule, the detachment rule, and prenex operations. If A is a nonlogical axiom of T, then f does
not occur in A; hence A* is A and F7A*. If Aisy = fx;...x, < D, then A* is 3z(D’[y|z] Ay = z) < D,
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which is a theorem of T by the replacement theorem, the tautology theorem and the equivalence theorem,
and the variant theorem.

Suppose that A is a tautological consequence of By, ..., B;. Then by Proposition 2 of ch. 1 §3.3, A* is a
tautological consequence of variants of B, ..., B}, and hence |- A" by the variant theorem, the tautology
theorem, and the induction hypothesis. Suppose that A is inferred from B - C by the 3-introduction
rule with the variable x. Then A* is 3xB’ — C’ where B’ and C’ are variants of B* and C*. The induction
hypothesis is |-rB* — C*. Since x is not free in C*, A is a theorem of T by the 3-introduction rule and
the variant theorem. O

The formula of (1) is called the existence condition for y in D, and that of (2), for y’ not free in D, a
uniqueness condition for y in D. The following criteria are often useful.

ProposITION 1. If D as in this paragraph is of the form y = a where y does not occur in a, then existence
and uniqueness conditions for y in D are theorems of T.

Proof. We have |-ra = a as an instance of an identity axiom. Hence |-y3y(y = a) by the substitution
axioms and the detachment rule. This proves that the existence condition for y in D is a theorem of T
From the equality axioms, the symmetry theorem, and the equivalence theorem, we have -y =a -y’ =
a—>a=a—y=y. A tautological consequence of thisanda=aisy=a—>y =a >y =y, whichisa
desired uniqueness condition for y in D. O

PROPOSITION 2. Suppose that D as in this paragraph is (A; ABy) v --- v (A, AB,) wherey is not free in
Ay, .., A, If FrA V- v A, and 7A; — JyB; for each i, then |-3yD. If -A; — T1A; whenever
i+ jandif FrA; > B; - B;[yly’] > y =y’ for each i, then 7D - D[yly'] >y =Yy’

Proof. A tautological consequence of A; v --- v A, and all the A; — JyB; is 3yB; v --- v 3yB,,, whence
1 3yD by (vi) of ch. 1 §4.1. The formula D — D[y]y’] — y =y’ is a tautological consequence of all the
formulae |-7A; - 7A;and A; - B; —» Bi[yly'] - y=y". O

The adjunction of a new symbol with a legit defining axiom to a first-order theory is sometimes called
a definition. Definitions in the form of Proposition 1 are then called explicit definitions. By the equality
theorem, -y = fx;...X, <> y = aif and only if F-1.fx;...X, = a, so in order not to encumber the
notations, the defining axiom for an explicit definition is usually written fx; ...x, = a instead of y =
fx; ...x, <> y = a. Definitions in the form of Proposition 2 are called definitions by cases.

2.3 Extensions by definitions. Let T be a first-order theory. A first-order theory T is called an extension
by definitions of T if there are first-order theories Ty, ..., T, such that Ty is T, T}, is T’, and for each i, one
of the following holds.

(i) T; is obtained from T;_; by the adjunction of an n-ary predicate symbol p and a new axiom
pPXi -..X, <> D wherex, ..., x, are distinct and include the variables free in D.

(ii) T; is obtained from T;_; by the adjunction of an n-ary function symbol f and a new axiom y =
fx;...x, < D wherex, ..., X,, y are distinct and include the variables free in D, |-r,_, 3yD, and
Fr._,D - D[yly’] -y =Yy for some variable y’ distinct from x;, ..., X,,, y.

If A is a formula of T’, we can build a formula A* of T, called a translation of A into T, by successive
applications of the constructions of the previous paragraphs, and we have the following result:

THEOREM. Let T’ be an extension by definitions of a first-order theory T, A a formula of T', and A*
and A° translations of A into T. Then

(i) T’ is a conservative extension of T;
(ii) FrA*ifand only if -1+ A; and
(ili) FrA* < A°.
Proof. The fact that T’ is a conservative extension of T follows from the transitivity of conservative exten-
sions. By the theorems on definitions and the tautology theorem, we have

FrA < A" and Ao A, (9)



24 THE QUESTION OF CONSISTENCY I 2.4

Suppose |-rA". Then |-1+A*, whence |-7+A by (9) and the tautology theorem. Conversely, suppose |1/ A.
Then |-1+A* by (9) and the tautology theorem, whence |-rA* by (i). This proves (ii). Finally, we have
A" < A° by (9) and the tautology theorem, whence (iii) from (i). O]

2.4 Definitions in practice. Extensions by definitions provide a completely formal way of defining func-
tions and predicates in first-order theories. When actually working in a first-order theory T, however,
it becomes quickly laborious to keep track of all the extensions by definitions we have introduced so far.
Fortunately, this is not necessary if we agree that whenever a symbol has been introduced with a defining
axiom, thereby forming an extension by definitions of T, any subsequent occurrence of that symbol must
be understood as being taken in a suitable extension by definitions with the same defining axiom. Ex-
plicitely, assume we extend T to T’ by defining a symbol s with a certain defining axiom. If B is a formula
of T', we should write |-7/B to mean that B is a theorem of T’. Now since the defining axiom for s has
been fixed, there is no confusion in writing |- B instead. This can be taken to mean that B is a theorem in
any extension by definitions of T in which s is defined. Since any formula of any extension by definitions
of T can be translated in any other extension by definitions of T, any theorem derived in an extension by
definitions of T may be viewed as a theorem of any extension by definitions of T.

If T’ is an extension by definitions of T, a symbol of T” is called a defined symbol of T, and a formula
of T" a defined formula of T. These definitions are only useful when the defining axioms for the symbols
have been fixed, otherwise any symbol or formula would satisfy them. Thus if we introduce a function
symbol f with a new axiom, we often say that f is a defined symbol to mean that the associated axiom is a
valid defining axiom, i.e., that existence and uniqueness conditions can be derived.

In practice, we often define infinitely many new symbols in a first-order theory T. Since in any given
context at most finitely many of them can appear, any theorem of the first-order theory obtained from T
by the definitions of all these symbols is a theorem of some extension by definitions of T.

§3 Interpretations
3.1 Interpretations. Let L and M be first-order languages. An interpretation I of L in M consists of:

(i) aunary predicate symbol of M, abbreviated by Uy;
(ii) for each n-ary function symbol f of L, an n-ary function symbol of M, abbreviated by fr;
(iii) for each n-ary predicate symbol p of L, an n-ary predicate symbol of M, abbreviated by p;.

The predicate symbol Uy is called the universe of the interpretation I.

Let I be an interpretation of L in M. If a is a term of L, we abbreviate by a; the term of M obtained
from a by replacing each function symbol f by f;. The term a; is called the interpretation of a by I. For
any formula A of L, we define a formula A; of M by induction on the length of A. If A is pa; . ..a,, then
Arispr(a))r...(a,)r. If Ais Bv C, then Ajis By v C;. If A is 7B, then Ay is 7By. If A is 3xB, then A;
is 3Ix(Usx A By). If x, ..., X,, are the variables free in A in reverse alphabetical order, we let A’ abbreviate
Urx; — - = Ux, = Ap, and we call A! the interpretation of A by I.

Let L be a first-order language and U a first-order theory. An interpretation of L in L(U) is an interpre-
tation of L in U if -y 3xUpx and FyUpx - -+ - Upx, - Uffyx; . .. x, for each n-ary function symbol f
of L.

Let T and U be first-order theories. An interpretation of L(T) in U is an interpretation of T in U if
the interpretations by I of the identity axioms, equality axioms, and nonlogical axioms of T are theorems
of U. Note that if =; is =, then the interpretations by I of identity and equality axioms are tautological
consequences of identity and equality axioms of U, so in that case the first two conditions are automatically
satisfied.

3.2 The interpretation theorem. In this paragraph we prove a finitary version of that result which in
model theory is often called the soundness of first-order logic.

LEMMA 1. Let L be a first-order language, U a first-order theory, and I an interpretation of L in U. If x;,
...» Xy include the variables occurring in a term a of L, in any order, then |-y Ux; - --- - Ux,, - Ujay.

To be completely general (and such generality is relevant), one should allow an interpretation to have parameters. Specifically,
an interpretation with k parameters (k > 0) would consist of a (k + 1)-ary Uy and (k + n)-ary f;’s and p;’s, as well as a k-ary
predicate symbol Q; acting as the “parameter space”. These parameters introduce no essential difficulty in the contents of this
section, but they complicate the exposition considerably, which is why we have restricted it to the 0-parameter case.
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Proof. We prove the lemma by induction on the length of a. If a is a variable, then the result is a tautology.
Suppose thatais fb; ...b,. Then }-yUr(by); — --- - U(b,); — Uja; by definition of an interpretation of
L in U and the substitution rule. By induction hypothesis, Urx; — --- - Urx,, = Ur(b;); for each i. The
conclusion is a tautological consequence of the above formulae. O

LeEMMA 2. Let T and U be first-order theories, let I be an interpretation of T in U, and let A be a
formula of L(T). If xy, ..., x,, include the variables free in A and if };Ux; - --- - Ux, - Ay, then
FyAlL

Proof. The formula Uyy; - -+ - Uy — A, where Yi> ---» Yk include the variables among x;, ..., X,
which are not free in A, is a tautological consequence of Ujx; — -+ - Ux, - A} Sinceyy, ..., y are
not free in A’, we get 43y, Ury; — -+ — Uy — Al by the 3-introduction rule, and since |y 3xUrx
we obtain |y Uy, — -+ — Uryx — Al by the substitution rule and the detachment rule. We repeat this
derivation k — 1 more times and we obtain I—UAI as desired. O

INTERPRETATION THEOREM. Let T and U be first-order theories. If I is an interpretation of T in U,
then the interpretation by I of any theorem of T is a theorem of U.

Proof. Let A be a theorem of T. We prove |-y A! by tautological induction on theorems in T. Suppose
that A is B[x|a] — 3xB, and let xy, ..., X, be the variables free in A. By Lemma 1, we have |-y Ux; —» - —>
Usx, — Ura;. By the substitution theorem, |y Urar A By[x|a;] — 3x(Ujx A B;). From these we obtain
FyUmx, — -+ = Urx, — A; by the tautology theorem, whence |y A’ by Lemma 2. If A is an identity or
equality axiom, then |-y A’ by definition of an interpretation of T in U.

Suppose that A is a tautological consequence of By, ..., B,. By Proposition 2 of ch. 1 §3.3, A; is a
tautological consequence of (By)y, ..., (B,);. If xy, ..., X, denote the variables free in A, By, ..., B,, then
Urx; - - - Upx, — A;isatautological consequence of B, ..., Bl ; hence -, Ux; — -+ - Ux, - A;by
the induction hypothesis and the tautology theorem. By Lemma 2, we obtain |-y A’. Finally, suppose that
A is inferred from B — C by the 3-introduction rule with the variable x. Denote by xy, ..., X, the variables
free in A. Since x is not free in C, x is not among Xy, ..., X,,. By the induction hypothesis and the tautology
theorem, we have |y U;xAB; —» Urx) - -+ - Ujx,, - Cj, whence 3x(UxABy) - Uxg — - - Ux,, —
C; by the 3-introduction rule. By the latter and the tautology theorem, we obtain |-y A”. O

The following corollary will also be referred to as the interpretation theorem.

CoOROLLARY. Let T'and U be first-order theories. Suppose that there is an interpretation of an extension
of T in a conservative extension of U. If T is inconsistent, then U is inconsistent.

Proof. Let T’ be an extension of T and U’ a conservative extension of U with an interpretation I of T” in
U’. Suppose that T is inconsistent. Then T’ is inconsistent. Let A be Vx(x = x). By the interpretation
theorem, A’ and (7A)! are theorems of U’. But since A is closed, (7A)! is A’ By a remark in §1.1, it
follows that U’ is inconsistent. Hence U is inconsistent. O

3.3 Interpretations and definitions. Let T and U be first-order theories and let I be an interpretation
of L(T) in U. Suppose that there exists a constant e in an extension by definitions U” of U. For any
extension by definitions T’ of T, we shall define an extension U’ of U. We first do this in the case where
T' is obtained from T by the adjunction of one new symbol and one new nonlogical axiom (if T" is T, let
U’ be U). If T' is obtained from T by the adjunction of an n-ary predicate symbol p and the nonlogical
axiom px; ...x, < D, we let U’ be obtained from U by the adjunction of a new n-ary predicate symbol
p’ and the nonlogical axiom p’x;...x, < Dy. If T’ is obtained from T by the adjunction of an n-ary
function symbol f and the nonlogical axiom y = fx;...x, < D, we let U’ be obtained from U by the
adjunction of a new n-ary function symbol f’ and as a new nonlogical axiom a translation of

y=f%...x, < (Uxy A AU, AUy AD) v A(Uxg A AU, Ay =€

into U. Finally, if T’ is any extension by definitions of T, we let U’ be obtained from U by repeated
applications of the above constructions.

We define an interpretation I’ of L(T’) in L(U’) by letting Uy be Uy and sy be s or s’ according to s
being a symbol of L(T) or not. An interpretation I’ defined in this way is called an extension of I to L(T").
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INTERPRETATION EXTENSION THEOREM. With the notations of this paragraph, I’ is an interpretation
of L(T") in U’. Moreover, if I is an interpretation of T in U, then U’ is an extension by definitions of
U and I is an interpretation of T’ in U’.

Proof. 1t suffices to consider the special case where T’ is obtained from T by the definition of a single
symbol. Since |y 3xUx, we have |-y 3xUpx. Suppose that the defined symbol is the function symbol £.
From the defining axiom of f’ and the equality theorem, we have |y (Urx; A - AU, AUf'x) ... X, A
D;) v I(Urx; A -+ AUX,) Af'x) ... X, = e. A tautological consequence of an instance of this formula is
Upx; — -+ = Upx, - Upf'x; ... x,, which proves that I’ is an interpretation of L(T") in U".

We now assume that [ is an interpretation of T in U. To prove that U’ is an extension by definitions of
U, we must verify, in case the new symbol is a function symbol f with defining axiomy = fx; ...x, < D,
that existence and uniqueness conditions for y in (Uyx; A+ AU, AU yAD) vV A(Ux A AU, )AY = €
are theorems of U" (for it is easy to see that existence and uniqueness conditions for a given translation
are translations of existence and uniqueness conditions; hence the former will be theorems of U). By the
Propositions 1 and 2 of §2.2, it will suffice to prove

FuUxy A - AUX, — 3y(Ury A Dy) and (1)
FoUxiA-- AU, - UyADr - Uly' A DI[y|y'] —y= y' (2)

for some suitable y’. The interpretation of the existence condition for y in D is Ujx; — - - Ux; —
Jy(Ury A Dy), where xi, ..., x; are the variables free in JyD in reverse alphabetical order. Since I is an
interpretation of T in U, this formula is a theorem of U by the interpretation theorem. Since xj, ..., X}
are among Xy, ..., X,, we obtain (1) by the tautology theorem. Similarly, the interpretation of a uniqueness
condition foryin D is Uyx{ - --- - Ux; = Dy AD;[yly’] = y =y', where x|, ..., X} are the variables free
in D A D[y]y'] in reverse alphabetical order, of which (2) is a tautological consequence.

It remains to prove that the interpretation by I’ of the new nonlogical axiom of T” is a theorem of U’.
Suppose that this axiom is px; . .. x,, <> D. Itsinterpretationby I' is Uyx{ - --- - Ux), > p'x;...x, < Dy,
wherex;, ..., X arexy, ..., X, in reverse alphabetical order. This is tautological consequence of the defining
axiom of p’. Suppose that the new nonlogical axiom of T’ is y = fx; ...x, < D. Its interpretation by I’
isUx; » - - Ux),,; > y=1%1...x, < Dy, which is again a tautological consequence of the defining
axiom of f'. O

Remark. Following the considerations in §2.4, if I is an interpretation of T in U and if there is a constant
in some extension by definitions of U, then in practice we fix such a constant and we continue to write I
for any extension I’ of I to an extension by definitions T’ of T. This is possible if moreover we agree that
for any defined symbol s of T' (to which, we recall, a defining axiom is assigned), we use the same symbol
s’ in forming U’ for any extension by definitions T’ of T in which s is defined.

3.4 Isomorphisms of interpretations. Let L be a first-order language, U a first-order theory, and I and ]
interpretations of L in U. A unary function symbol g of U is called an isomorphism from I to ] if

(1) FyUjy < Ix(Upx A y = gx);
(ii) for each n-ary function symbol f of L, FyUrxy — -+ - Upx, — gfpo ... x, = £58%1 ... 8xy;

(iii) for each n-ary predicate symbol p of L, -y Urx; = -+ = Upx, = prx1... X, <> pjgx1 ... 8xu-

IsomoRrPHISM EXTENSION THEOREM. Let L be a first-order language, U a first-order theory, and I and
] interpretations of L in U. Suppose that some unary function symbol g of U is an isomorphism from
I'to J. For any term a of L, if xy, ..., X,, include the variables occurring in a, then FyUx; - -+ —
Ux, — ga; = aj[xy,...,X,|gX, ..., gX,]. For any formula A of L, if xy, ..., X, include the variables
free in A, then FyUx; — -+ = Urx, > Ar < Aj[xy, ..., X,|8X1, - - . » X5 .

Proof. We prove the first assertion by induction on the length of a. If a is a variable, the result is a tauto-
logical consequence of an instance of an identity axiom. Suppose that a is fb; ... by. By Lemma 1 of §3.2,
FuUx; - -+ —» Urx, — Uj(b;); for each i. As a tautological consequence of these formulae and of
Us(by); = - = Up(bi); = gar = f5g(by); . . . g(bx)s, which is an instance of (ii), we obtain

FuUxg = - = Urx, — gar = f5g(b); ... g(bp)r. (3)
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By induction hypothesis, yUx; — -+ = Urx, — g(b;)r = (b;)j[x1,...,Xn|gX1, ..., 8Xy]. From these
and (3), we obtain the desired result by the equality theorem and the tautology theorem.
We now turn to the proof of the second assertion, and we proceed by induction on the length of
A. Suppose that A is pa;...a,. By (iii) and the substitution rule, FyUj(a;); - -+ = Uplag); —
pr@)r...(@r)r < pyga)s...g(ax);. Using as above Lemma 1 of §3.2 and the tautology theorem, we
obtain
FoUmx = - = Urx, = pr(a)r. .. (ax)r < prgay)r. . . glag)r. (4)

Then the desired result follows from the first result and (4) using the equality theorem and the tautology
theorem. Suppose that A is B v C or 71B. In both cases, the result follows from the induction hypothesis
and the tautology theorem. Finally, suppose that A is 3xB. By the induction hypothesis,

l_UUIXI > > UIXn - UIX - BI - B][Xb- ”)Xnax|gxl)‘ . ~)gxn’gX])
whence
FoUrxg = - > Urx, —» 3x(Urx A Bp) < 3x(Ux A By[xy, ..., X, X|gX1, . - - , 8X, 8X])

by the tautology theorem, the deduction theorem, and the distribution rule. Now 3x(Ux A Bj) is A, so
by the equivalence theorem it remains to show that

|_UE|X(UIX/\ B][xl)- .. :Xn>X|gX1) e )gxn)gx]) And A][Xl) e )Xn|gxl’ e )gxn]- (5)

Let z be distinct from xq, ..., X,, and x, and let B’ be Bj[x;,...,X,|gX,...,gX,]. By the replacement
theorem and the equivalence theorem,

FuIx(Upx A B'[x|gx]) < Ix(Urx A 3z(z = gx A B'[x[z])). (6)
By prenex operations and ch. 1 §4.1 (iii),
Fu3x(Umx A 3z(z = gx A B'[x[z])) < 3z(Ix(Urx Az = gx) A B'[x[z]). (7)
By a version of (i) and the equivalence theorem,
Fu3z(3x(Urx Az = gx) A B'[x|z]) < 3z(Ujz A B'[x]z]). (8)

By (6), (7), (8), and the tautology theorem, |-y 3x(Ux A B’[x|gx]) <> 3z(U;z A B'[x|z]), which is a variant
of (5). O

Let I and J be interpretations of L in U. We say that I is isomorphic to J in U when there is an isomor-
phism from I to ] in an extension by definitions of U. It can be proved without difficulty that this is an
equivalence relation among the interpretations of L in U, but we shall not use this fact.

3.5 Inner interpretations and absoluteness. Let L be a first-order language, U a first-order theory, and I
an interpretation of L in U. An n-ary function symbol f of U is said to be I-invariant it -y Urx; - -+ —
Urx, — Usfx; ... x,. By definition of an interpretation of L in U, f; is I-invariant for any function symbol
fofL.

In this paragraph we shall discuss a special kind of interpretations often encountered in practice,
namely interpretations of a first-order language L in a first-order language M which is an extension of
L. We call such interpretations inner interpretations if moreover = is =. In this setting new questions
arise, for it is possible to compare in M designators of L with their interpretations. An even more special
case is that of an inner interpretation I of L in M such that s; is s for any nonlogical symbol s of L. Such
an interpretation I, which is completely defined by its universe, is called simple. If q is a unary predicate
symbol of M, the simple interpretation of L in M whose universe is q is called the simple interpretation
defined by q, or simply, by abuse, the simple interpretation q.

Let L be a first-order language, U a first-order theory such that L(U) is an extension of L, and I an
interpretation of L in U such that =7 is =. A term a of L is absolute for I if 5y Ux; —» --- - Ujx, > a=ay,
where x, ..., X, are the variables occurring in a (the order is irrelevant for the definition by the tautology
theorem). A formula A of L with free variables xy, ..., X, is said to be absolute for I if -, Urx; - --- —
Urx, - A < A Thus a is absolute for I if and only if y = a is for some y not occurring in a. We also
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say that an n-ary function symbol f (resp. an n-ary predicate symbol p) of L is absolute for I if the term
fx;...x, (resp. the formula px; ... x,) is absolute for I. Thus = is absolute for I. A formula A of L is said
to be complete inyy, ..., Ym for I if FyUrx; - -+ - Urx, = A — Ury; A--- AUy, wherexy, ..., X, are
the variables other than yy, ..., y,, free in A. For example, x = y is complete in x for I and complete in y
for I, but it is complete in x, y for I if and only if |-y Uyx.

LEMMA 1. If f is absolute for I, then f is I-invariant.

Proof. We have FyUpx; - -+ - Urx, — fx;...x, = fix;...x, by absoluteness of f and -y Ux; —
-+ = Urx, - Ufix; ... x, by definition of an interpretation of L in U. Thus the result follows from the
tautology theorem and a version of a predicative equality axiom. O

LEmMA 2. If all the nonlogical symbols occurring in a are absolute for I, then a is absolute for I.

Proof. By induction on the length of a. The result is a tautological consequence of an identity axiom if a
is a variable. Ifais fb; ... b, where f is absolute for I, then by induction hypothesis by, ..., b, are absolute
for I. Hence a is absolute for I by the equality theorem and the tautology theorem. O

LEmMA 3. If A and B are absolute for I, then Av B, AAB, 7B, A — B, and A < B are absolute for I.

Proof. 1t suffices to consider A v B and 7B. The condition of absoluteness of A v B is a tautological
consequence of that of A and that of B. Similarly for 7A. O

LEMMA 4. If A is open and all the nonlogical symbols occurring in A are absolute for I, then A is
absolute for I.

Proof. We proceed by induction on the length of A. If A is pa, ...a, where p is absolute for I, then by
Lemma 2 a,, ..., a, are absolute for I, so A is absolute for I by the equality theorem and the tautology
theorem. If A is B v C or 1B, the result follows from the induction hypothesis and Lemma 3. O

LEMMA 5. If A is absolute for I and complete in x for I, then 3xA is absolute for I. If A is absolute for
I'and if 1A is complete in x for I, then VxA is absolute for I.

Proof. Letxy, ..., X, be the variables free in 3xA. Welet U’ be obtained from U by the adjunction of n new
constants ey, ..., €, and new axioms Uyey, ..., Ure,. Welet A" abbreviate A[x;, ..., X,|e;, ..., e,]. Then for
the first assertion it will suffice, by the deduction theorem, to prove |-y 3xA’ <> Ix(Ux A (A')[). By the
hypotheses, the substitution rule, and the detachment rule, we have /A’ < (A’); and /A’ - Upx,
of whom A’ < Ujx A (A'); is a tautological consequence. Thus |y-3xA’ < Ix(Urx A (A');) by the
distribution rule. The second assertion follows from the first one by Lemma 3. O

In applications, proofs of absoluteness of formulae are thus reduced to proofs of completeness of for-
mulae. Not much more can be said on completeness in the present general setting, for it depends heavily
on the nonlogical axioms of U and the definition of I.

LEMMA 6. Let A and B be formulae of L. If A and B are complete in yy, ..., Y, for I, then A v B is
complete inyy, ..., y,, for I. If A is complete iny,, ..., y,, for I and if B is complete in yj, ..., y} for I,
then A AB is complete inyi, ..., Y, Y1 ..., Y for I. If x is distinct from yy, ..., y,, and if A is complete
inX,yy, ..., ¥m for I, then 3xA and VXA are complete inyy, ..., y,, for I.

Proof. The first two assertions are applications of the tautology theorem. For the last assertion, let xy, ...,
X, be the variables other than x, yy, ..., y,, free in A. Then FyUxy A+ AU, AA = Uryg A AUy
by the hypothesis and the tautology theorem, whence FyUrx; - - — Urx, = 3xA - Uy A - AUy
by the 3-introduction rule, prenex operations, and the tautology theorem. The proof for VxA uses the
substitution theorem instead of the 3-introduction rule. O

In the case of a simple interpretation, we have the following very useful criterion.

LEMMA 7. Assume that I is simple, and let I be a collection of formulae of L such that any subformula of
aformulainT isin I'. Then for the formulae of T to be absolute for I, it suffices that for any instantiation
JyB of I with free variables among x, ..., X,,, FyUx; = -+ = Ux, - 3yB - Jy(U;y A B).
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Proof. We proceed by induction on the length of A in I'. If A is atomic, then A; is A because I is simple,
and the claim is a tautology. If A is B v C or 1B, then the absoluteness of A follows tautologically from the
induction hypothesis. Suppose that A is 3yB. Then B is in I and by induction hypothesis and the tautology
theorem FyUrx; » -+ - Urx, — U;y = B < By. Using the distribution rule and the tautology theorem
with the deduction theorem, we find |y Urx; — - - Urx, - Jy(Uy A B) <> Fy(Ury A Bp). Now Aj is
exactly 3y(Ury A By), so by the tautology theorem it will suffice to prove FyUix; —» -+ - Uix, > A <
3y(Ury A B). The implication from right to left is obtained by the tautology theorem and the distribution
rule using the deduction theorem. The other implication was assumed. O

We now suppose that U is an extension of T and that I is an interpretation of T'in U such that = is =.

LEMMA 8. If |-ra = b and a is absolute for I, then b is absolute for I. If |-+A < B and A is absolute for
I, then B is absolute for I.

Proof. Since I is an interpretation of T, we have -, Ux; — -+ - Urx, - a;f = by (resp. FyUix; - -+ =
Urx, - A; < B;) wherex, ..., x, are the variable occurring in a and b (resp. free in A and B). The result
follows by the equality theorem and the tautology theorem (resp. the tautology theorem). O

S4 Herbrand-Skolem theory

4.1 Skolem and Henkin theories. A first-order theory T is called a Skolem theory if for every instantiation
3xA of T there exist a term a of T and a variant A’ of A such that

(i) the variables occurring in a occur freely in 3xA and
(i) F73xA - A’[x|a].

We say that T is a Henkin theory if the previous statement holds when 3xA is a closed instantiation (in
this case, condition (i) simply states that a is closed). Thus a Skolem theory is a Henkin theory, but the
converse need not be true. One of the goals of this section will be to prove that any first-order theory has
a conservative Skolem extension. In this paragraph we shall only prove that any first-order theory has a
conservative Henkin extension. As will be seen, the proof of this fact will rely on the theorem on constants.
To prove the more general result, we shall need a generalization of the theorem on constants for function
symbols of higher arity: this is the theorem on functional extensions of §4.4.

Let L be a first-order language. We define the special constants of level n, for n > 1, by induction on n.
Let Tp(L) denote the collection of closed instantiations of L. Suppose that, for some # > 0, the collection
I',(L) has been described. For every formula 3xA in I',(L), we choose a new constant called the special
constant for 3xA; the special constants of level n + 1 are the special constants for the formulae of T, (L).
We then let I, (L) consists of the closed instantiations not in I';(L) of the language obtained from L by
adding the special constants of level at most n + 1. The first-order language obtained from L by adding
all the special constants is denoted by L. The level of a formula of L. is 0 if it is a formula of L and is
the greatest level of a special constant occurring in it otherwise. We use i, j, and k as syntactical variables
varying through special constants. If i is the special constant for 3xA, the special axiom for i is the formula
IxA — Alx[i].

Let T be a first-order theory. We now describe a Henkin extension T; of T. Its language is L. and its
nonlogical axioms are those of T and the special axioms for the special constants of L.. It is obvious that
T, is a Henkin theory. A formula of L(T¢) of the form Vx(A < B) — i = j, where i is the special constant
for 3xA and j is the special constant for 3xB, is called a special equality axiom. We form T. from T. by
adding as further nonlogical axioms all the special equality axioms.

LEMMA. Let T be a first-order theory and 3xA a closed formula of T which is a theorem of T. Then
the first-order theory obtained from T by the adjunction of a new constant e and of the axiom A[x]e]
is a conservative extension of T.

Proof. Let T’ be the extension of T to be proved conservative, and let B be a formula of T which is a
theorem of T”. If y is a variable not occurring in A or B, then |A[x|y] — B by the deduction theorem.
By the 3-introduction rule, |-7r3yA[x]y] - B. But |3yA[x|y] by the hypothesis, the variant theorem,
and the tautology theorem. Hence |- 1B by the detachement rule. O

THEOREM. T, and T_ are conservative extensions of T.
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Proof. Since T! is an extension of T¢, it suffices to prove that T! is a conservative extension of T. We first
observe that any formula of the form

Vx(A < A) >a=aor (1)
(Vx(A«<B)>a=b)>Vx(B~ A)—>b=a (2)

is derivable without nonlogical axioms: (1) is a tautological consequence of an instance of an identity
axiom, while (2) is obtained from the tautology (B <+ A) - (A < B) using the distribution rule, the
symmetry theorem, and the tautology theorem.

Let A be a formula of T which is a theorem of T_; then A is a theorem of some first-order theory
obtained from T by the adjunction of finitely many special constants iy, ..., i,, their special axioms, and
the special equality axioms whose right-hand sides are of the form i, = i;. Order these special constants
so that the level of i, is at least the level of i; whenever s < r. Then if 3x; By is the formula for which iy is
the special axiom, i; does not occur in By for all | > k. We choose once and for all a variable x,; which
does not occur in 3x;By, ..., 3x,B,, for every pair of indices r, s. For 0 < k < n, we designate by Tj the
first-order theory whose language is obtained from L(T') by the adjunction of the constants iy, ..., iy and
whose nonlogical axioms are: the nonlogical axioms of T the special axioms of L(T); and the formulae
of L(Ty) of the form Vx,s(B,[X,[x,s] <> Bs[Xs|x;5s]) = i, = i for s < r. Then Tj is T and by the variant
theorem, (1), (2), and the tautology theorem, every special equality axiom of L(Ty) is a theorem of Tj.
In particular, A is a theorem of T}, so it will suffice to prove that for each k < n, Ty, is a conservative
extension of Ty. Fix k < n, and let i, x, B, and y, be ix41, Xk+1, Bx+1, and Xg41,,. We form a first-order
theory U from Tj by the adjunction of the constant i and of the single axiom

(3xB — B[x[i]) A (Vyi(B[x[y1] <> Bi[xu[yr]) = i =1i1) A+ A (Vyr(Blxlyx] <> Bi[xklyx]) —i=1ix)

which is just the conjunction of the nonlogical axioms which must be added to T} in order to obtain Tj.;.
Let C[zli] be the above formula. By the tautology theorem, U is equivalent to T,;. Hence, by the lemma,
it will suffice to prove |-, 3zC. We first prove

Fr, Yy (B[xly,] < B,[x/]y,]) > 3zC (3)

for 1< r < k. By the deduction theorem, it will suffice to prove that 3zC is a theorem of the theory T’ ob-
tained from T by the adjunction of the axiom Vy, (B[x]y,] <> B,[x/|y,]). Wehave |-1-B[x|y,] < B,[x,]y/]
by the closure theorem, whence }-1-3xB < 3x,B, by the distribution rule and the variant theorem and
7 B[xi,] < B,[x,]i,] by the substitution rule. From these and the special axiom for i,, we obtain

I 3xB - B[x]i,] (4)

by the tautology theorem. Let 1 < s < k. From |1 B[x]y,] < B,[x,]y,] we also obtain |1 Vy,(B[x|y,] <
B [x]ys]) < VX,(B,[x,]xs] < Bg[Xs]x/s]) by the tautology theorem, the distribution rule, and the vari-
ant theorem, whence

l_T'st(B[Xb’s] < By [X5|Ys]) - i, =i (5)

by the axioms of L(T}) and the tautology theorem. From (4) and (s) by the tautology theorem, | C[zli,],
whence |-7-3zC by the substitution axioms. This proves (3). Next we prove

Fr, (Yyi(Bx[y1] <> Bi[xily1]) v -+ v Vye (BIx|yx] <> Bi[xk|yx])) — 3zC. (6)

Let w be a variable not occurring in the above formula. By the variant theorem and prenex operations,
k1, 3z(3xB — B[x|z]). Hence by the tautology theorem and the Y-introduction rule,

Fr, A(Vyi(B[x[y1] < Bilxify1]) v - v Yy (BIx|yx] < Bi[xk|yk])) — 3z(3xB — B[x|z])
AVW((Vyi(B[x]y1] <> Bi[xi|y1]) = i=1i1) A A (Vyr(BIx|yx] < Br[xklye]) = i =1ix)),

from which we obtain (6) by prenex operations, the substitution theorem, the distribution rule, and the
tautology theorem. From (3) and (6) we obtain |-y, 3zC by the tautology theorem. O
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This theorem is a syntactical principle of choice: if we imagine a formula A with one free variable x as
representing the collection of all individuals x such that A, then the special constants select a particular
individual in each such collection. We shall see in §4.4 a considerable generalization of this conservativity
result to instantiations 3xA with any number of free variables.

4.2 The consistency theorem. In this paragraph we shall prove a useful criterion for the consistency of
first-order theories of a special kind, namely those all of whose nonlogical axioms are universal. If T is
such a first-order theory and if T” has the same language as T and has as nonlogical axioms the matrices
of the nonlogical axioms of T, then T and T’ are equivalent by the closure theorem. Thus we shall not
restrict the generality if we assume that the nonlogical axioms of T are open, and this will be technically
convenient. A first-order theory whose nonlogical axioms are open will be called open.

Let T be a first-order theory. A formula of L(T,) is said to belong to the special constant i for 3xA if it
is the special equality axiom for i or a closed substitution axiom of L(T;) of the form A[x[a] — IxA. We
denote by A(T) the collection of formulae of L(T,) which either belong to some special constant or are
closed instances in L(T¢) of equality rules for L(T) or of nonlogical axioms of T. The rank of the special
constant for 3xA is the number of occurrences of 3 in 3xA. We let A,,(T) be the collection of formulae in
A(T) which do not belong to special constants of rank n + 1 or greater.

LEMMA. Let T be a first-order theory and A a theorem of T. Then any closed instance of A in L(T¢) is
a tautological consequence of formulae in A(T).

Proof. By tautological induction on theorems in T. Let A’ be a closed instance of A in L(T,). If A is a
substitution axiom, so is A’, and then A’ is in A(T) and is a tautological consequence of itself. If A is an
identity axiom, equality axiom, or nonlogical axiom of T, then A’ is in A(T) by definition. Suppose that A
is a tautological consequence of By, ..., B,,. By Proposition 2 of ch. 1 §3.3, A’ is a tautological consequence
of closed instances By, ..., B, in L(T.) of By, ..., B,. By induction hypothesis, each B! is a tautological
consequence of formulae in A(T), and hence so is A’. Finally, suppose that A is inferred from B - C
by the 3-introduction rule with the variable x. Then A’ has the form 3xB’ — C’ where 3xB’ and C’ are
closed instances in L(T,) of 3xB and C. Let i be the special constant for 3xB’. Then B[x|i] - C' is a
closed instance of B — C, and so by induction hypothesis it is a tautological consequence of formulae in
A(T). But then A’ is a tautological consequence of these formulae and the formula 3xB’ — B’[x]i] which
is also in A(T). L]

Let T be an open first-order theory. We let T* (resp. T.") be the formal system whose language is L(T)
(resp. L(T.)) and whose rules of inference are the propositional rules for L(T) (resp. for L(T.)) and the
instances in L(T) (resp. the closed instances in L(T.)) of the equality rules and nonlogical axioms of T.
Note that the nonlogical axioms of T, are exactly the formulae in Ag(T).

ConsISTENCY THEOREM. If T is an open first-order theory, the following statements are equivalent:

(i) T is inconsistent;
(ii) T? is inconsistent;

(iii) T* is inconsistent.

Proof. Suppose that T is inconsistent, and let us prove that T. is inconsistent. Let F be the formal system
whose language is L(T.) and whose rules of inference are the propositional rules. It will suffice to prove
that for some formulae Ay, ..., A, in A¢(T), F[A,,...,A,] is inconsistent. Let A be a formula in A¢(T).
By the lemma, 7IA is a tautological consequence of formulae By, ..., Bx in A(T). Then by the tautology
theorem, F[By, ..., By, A] is inconsistent. Since all of By, ..., By, and A are in A, (T) for some n, the proof
will be complete if we can establish the following assertion: if n > 0 and if F[A,, ..., A] is inconsistent for
some formulae Ay, ..., Ax in A,,,;(T), then there are formulae By, ..., B; in A, (T) such that F[B4,...,B;]
is inconsistent. We prove the assertion by induction on the number of special constants of rank n + 1
belonging to Ay, ..., Ag. If there are none, then Ay, ..., Ay are already formulae of A,(T) and there is
nothing to prove. Otherwise, let these special constants be iy, ..., i,, and i where the level of i is as great
as the levels of iy, ..., i,. Say i is the special constant for 3xB. Let Cy, ..., C, be the formulae among A,
... A which are in A, (T) or belong to one of iy, ..., i, and let Dy, ..., D, be those which are substitution
axioms belonging to i. Then D; is B[x|a;] — 3xB for some closed term a; of L(T¢).
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For u a designator of L(T.) and 1 < j < g, we define a designator u”) by induction on the greatest level
of a special constant in u. If u contains no special constant, u'’/) is u. If uis i, then u'” is a;. If u is the
special constant for 3yC and u is distinct from i, then u'?) is the special constant for 3yC”. Otherwise,
u'? is the expression obtained from u by replacing every occurrence of a special constant j by j*. We now
prove thatfor 1< i < p,if C; isin A,(T), so is (CHY, and if C; belongs to one of iy, ..., i,, so does (CHW,
If C; is a closed instance of a nonlogical axiom of T, so is Cs.j ) and if C; belongs to a special constant j of
rank at most #, then this special constant is not i and hence Cg.j ) belongs to j. If C; belongs to one of iy, ...,

ir, then since the level of i is as great as the levels of iy, ..., iy, ng ) belongs to the same special constant. In
view of this and the induction hypothesis, it will suffice to prove that

F[Cy,...,Cp, (CDY, ..., (C)D, ... (CHW, ..., (Cp ] )

is inconsistent.

We observe that 3xB does not occur in C, ..., Cp. If C; is an instance of a nonlogical axiom of T,
then it is open by hypothesis. Since there are #n + 1 occurrences of 3 in 3xB, it clearly cannot occur in
a formula belonging to a special constant of rank at most n. If 3xB occurs in a formula belonging to a
special constant of rank exactly » + 1, then this special constant must be i, and hence it cannot occur in
formulae belonging to i, ..., i, either. Now if A’ denotes the formula obtained from A by replacing each
occurrence of 3xB by B[x]i], then by Proposition 2 of ch. 1 §3.3 and the tautology theorem, F[A], ..., A}]
is inconsistent. The formula D; is B[x|a;] — B[x]|i]. If some A; is the special axiom for i, then Aj is the
tautology B[x|i] — B[x]i], so by the tautology theorem

F[Cy,...,Cp,B[x[a;] - B[x[i],..., B[x|a,] - B[x[i]] (8)

is inconsistent. Hence F[(C)",...,(C,)", (B[xa;] - B[x[i)'”,..., (B[x|ay] — B[x|i])”"] is inconsis-
tent for1 < j < g by the proposition of ch. 1 §3.3 and the tautology theorem. Noting that (B[x|a] — B[x|i])(j)
is B[x[a] ) — B[x]a;],

FI(CYY,...,(C,)Y, B[x|a]¥ - Blx[aj],. .., Blx|ag]¥ — B[x]a;]] (9)

is inconsistent for all j. Let V be a truth valuation on L(T,) assigning T to each (C)HY. Then by the
inconsistency of (9) and the tautology theorem, V must assign F to B[x|a;] for all j. But then by the
inconsistency of (8) and the tautology theorem, V must assign F to some C;. Thus there is no truth
valuation V assigning T to all formulae in (7), and so by the tautology theorem (7) is inconsistent.

Next, suppose that T. is inconsistent. By Proposition 2 of §1.1, there exists a tautology A which is a
disjunction of negations of instances in L(T¢) of equality rules and nonlogical axioms of T} let iy, ..., i, be
the special constants occurring in A, and let xy, ..., X,, be distinct variables not occurring in A. Then by
replacing each occurrence of i; by x; for all i, we obtain a formula A" in T*, which is again a tautology by
Proposition 2 of ch. 1 §3.3. Clearly, A* is a disjunction of negations of instances in L(T) of equality rules
and nonlogical axioms of T. By Proposition 2 of §1.1, T* is inconsistent.

Finally, suppose that T* is inconsistent. By the substitution rule, T is an extension of T*. Hence x = x
and x # x are theorems of T, which is therefore inconsistent by the tautology theorem. O

CoROLLARY. Let T be an open first-order theory and A a closed existential formula of T. Then A is a
theorem of T if and only if some disjunction of intances of the matrix of A is a tautological consequence
of instances of equality rules for L(T) and instances of nonlogical axioms of T.

Proof. Say A is 3x;...3x,B with B open. By proposition 1 of §1.1, A is a theorem of T if and only if
T[1A] is inconsistent. By prenex operations and the closure theorem, this is the case if and only if T[7B]
is inconsistent, and by the consistency theorem, this is the case if and only if T[7B]” is inconsistent. By
Proposition 2 of §1.1, this is in turn equivalent to the existence of a tautology which is a disjunction of
negations of formulae of the following kind:

(i) instances of equality rules for L(T);
(ii) instances of nonlogical axioms of T}

(iii) instances of 71B.
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If 77By, ..., 171B,, are the negations of the formulae of type (iii) appearing in such a disjunction, then
B, v---vB, is a tautological consequences of formulae of types (i) and (ii). Conversely, if there are instances
Bi, ..., B, of the matrix of A whose disjunction is a tautological consequence of formulae C;, ..., C,, of

types (i) and (ii), then
7By v vaTB, vV IG Ve v G,

is a tautology. 0

4.3 Herbrand forms and Skolem forms. Let L be a first-order language and let A be a formula of L in
prenex form. Then A can be written in the form

X, 3K, Yy 3K, 413X, VYR TXy - 3K, B (10)
where B is open and 0 < 1y < -+ < ny,y. A Herbrand form of this prenex form is any formula of the form
3xy ... 3y, Blyn - Vel fiXr o X e BrXr L X ] (11)

in some extension of L, where the f; are distinct and do not occur in A. Thus, each f; has index n;. Dually,
A can also be written in the form

VX1 VX 3y VR 1 VX, YK Y X h - VX, B (12)
where B is open and 0 < 1y < -+ < ng4y. A Skolem form of this prenex form is any formula of the form
VXp .. VX, Bl - VelfiXe .o X oo BrXa L X, ] (13)

in some extension of L, where the f; are distinct and do not occur in A. If A is an arbitrary formula of L,
a Herbrand form (resp. a Skolem form) of A is defined to be a Herbrand form (resp. a Skolem form) of a
prenex form of A. Observe that Herbrand forms are existential formulae while Skolem forms are universal
formulae.

THEOREM. Let T be an open first-order theory, A a closed formula of T and A" a Herbrand form of
A. Let T’ be obtained from T by the adjunction of the new function symbols in A*. Then }-7A if and
Only if l—TI A*,

Proof. By the theorem on prenex operations, we may suppose that A is in prenex form, say in the form (10),
and that A* has the form (11). Then |7v+A — A" by the tautology theorem and several applications of
the substitution theorem and of the distribution rule. Now if }-7A, then |-vA and so |-~A* by the
detachement rule.

Before proving the converse we introduce some notations. For1 < i < k, let A; be the subformula
of (10) starting on the left from 3x,,,;, and let B; be Vy;A;. We also write A, for A and By, for B. Let a;,
..., 4y, be closed terms of L(T¢). For 1 < i < k, we shall denote by k;(ay, ..., a,,) the special constant for
the instantiation

Jy;iAily - yicki(an . a,), L kis(@n o an, )X X lan e, ]
Welet A;(ay, ..., a,,) be the formula
Aily, ..o yiki@n . an), . Ki(an . an) X - X fan - g, ]
(setting ny = 0), and similarly B;(ay, . .. ,a,,) is the formula
Bilyi,....vialki(@r, .. .,an,), ... K@@y, .. an, )X .o X far, - an, ]

We claim that
l_TCB(ab-")ank_H) - A. (14)

By the tautology theorem, it will suffice to prove

l_TcBi(al: e )an,') - Ai—l(al) e )an,*,l) and
l_TCAi(ala cee )an,-) - Bi(ala oo )an,-)a
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the former for 1 < i < k + 1 and the latter for 1 < i < k. The former follows from n; — n;_; substitution
axioms and the tautology theorem, while the latter is a tautological consequence of the special axiom for
Ki(@p, ... an,).

Letay, ..., a,,,aj, ..., a,, beclosed terms of L(T.). We claim that for all i

Frai=a) > —a, =a, ~>kia,...,a,) =ki(a,...,a,). (15)

We prove this fact by induction on i. Suppose it is proved for all j < i. Let Jy;7A!(ay, ..., a,,) be the
formula for which k;(ay, ..., a,,) is the special constant. Then by the equality theorem, the tautology
theorem, and the V-introduction rule,

Fra=a; > > a,, =a, > Vyi(DAj(,....a,,) < TAj(ay,...,a,)),
and we obtain the desired result from the tautology theorem and the special equality axiom
Vy; (Al (ay, ..., a,,) < 1A a], ... ,a’n,,)) —ki(ay,...,a,,) =ki(aj, ... ,a;i).

Suppose that |7/ A*. By the corollary to the consistency theorem, we can find in L(T”) a disjunction
of the form

Blyn, ..o Velfixi oo X X X X S Xy AL - ALy, ]

Ve VBlyL L YR EX X BeXa X X S X | - A, ] (16)

which is a tautological consequence of instances in L(T") of equality rules for L(T’) and nonlogical axioms
of T. Let Cy, ..., C, be such instances. Then each C; is an open formula because the nonlogical axioms of T
are open. We now modify the formula (16) and the formulae C, ..., C, simultaneously as follows. Choose
a variable occurring in some a, ; or some C; and replace all its occurrences by some special constant.
Continue to do so until there are no more variables left. Then, select an occurrence of a term of the form
fia;...a,, in (16) or some C; such thatfj, ..., f; donotoccurina;, ..., a,,, and replace all such occurrences
byk;(aj,...,a,,). Continue to do so until there are no more occurrences of fi, ..., f. These modifications
tranform (16) into a formula

B(aj,,....a, )V VB(@,,,....a,, ) (17)

of L(T.), where the a;, q are closed terms, and they transform C, ..., C, into formulae Cj, ..., C, of L(T.).
Since these transformations only affect atomic formulae, it follows from Proposition 2 of ch. 1 §3.3 that (17)
is a tautological consequence of Cj, ..., C;. But the C] are again instances in L(T,) of equality rules for
L(T) and nonlogical axioms of T, unless C; is an equality axiom of the form x; = y; — X, = yu, —
fix,...x,, = fiy1...ys,. But then Cj is a theorem of T by (15). Thus Ci, ..., C; are theorems of T/, so by
the tautology theorem, (17) is a theorem of T_. By (14) and the tautology theorem, A is a theorem of T
and hence, by the theorem of §4.1, a theorem of T. O

This theorem and the following corollary are in fact true for an arbitrary first-order theory T, as we
shall prove in §4.6 below.

COROLLARY 1. Let T be an open first-order theory, A a closed formula of T and A° a Skolem form of
A. Let T' be obtained from T by the adjunction of the new function symbols in A°. Then | r1A if and
only if |- 1A".

Proof. We can obtain a Herbrand form of 1A from 11A° using prenex operations. Thus, the corollary
follows from the theorem, the theorem on prenex operations, and the tautology theorem. O

COROLLARY 2. Let T be an open first-order theory, A a closed formula of T and A* a Herbrand form
of A. Let T’ be obtained from T by the adjunction of the new function symbols in A*. Then |-rA if
and only if some disjunction of instances in L(T”) of the matrix of A* is a tautological consequence of
instances in L(T") of equality rules for L(T") and instances in L(T") of nonlogical axioms of T".

Proof. This follows at once from the theorem and the corollary to the consistency theorem. O
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4.4 Functional extensions.

THEOREM ON FUNCTIONAL EXTENSIONS. Let T be a first-order theory, A a formula of T, and x;, ...,
X,, and y distinct variables including the variables free in A. If |-73yA, then the first-order theory
obtained from T by the adjunction of a new n-ary function symbol f and the axiom A[y|fx;, ..., x,]
is a conservative extension of T.

Proof. Let T' denote the extension of T to be proved conservative. Let T, be the first-order theory with
language L(T) and without nonlogical axioms, and let T; be obtained from Tj by the adjunction of the
n-ary function symbol f. By the closure theorem, it suffices to prove that any closed formula of T which is
a theorem of T” is a theorem of T. Let B be such a formula. By the reduction theorem, there are formulae
Cy, ..., Cx among the closures of the nonlogical axioms of T such that Vx; ... Vx,Alylfx; ... x,] > C; —
-« > Cy — Bis a theorem of T;. Let C be the latter formula and let D be the formula Vx; ... Vx,3yA —
C; —» -+ > C; — B. Let C* be a Herbrand form of C, and let T{ be obtained from T; by the adjunction of
the new function symbols in C*. Then it is clear that C* is also a Herbrand form of D. By two applications
of the theorem of §4.3, we obtain first |-7,C* and then |-, D. Then by the hypothesis, the closure theorem,
and the detachement rule, |-1B. O

Remark. The theorem on functional extensions can be used to prove the second part of theorem on
functional definitions almost instantly, by deriving the equivalence between the defining axiom of f and
Dly|fxy,...,x,] using a uniqueness condition for y in D. However, the direct proof of §2.2 produces a
much shorter derivation of a translation of A from a given derivation of A, and thus is practically pre-
ferrable.

We shall use this theorem to prove that any first-order theory has a conservative Skolem extension,
using a construction similar to that of T¢. Let L be a first-order language. We define the special function
symbols of level n, for n > 1, by induction on n. Let I';(L) denote the collection of instantiations of L.
Suppose that, for some #n > 0, the collection I';(L) has been described. For every formula 3xA in I',(L)
and every choice of distinct variables x, xj, ..., X, including the variables free in A, we choose a new n-ary
function symbol called the special function symbol for 3xA and x, ..., X,; the special function symbols of
level n+1are the special function symbols for all the formulae of I, (L) and all suitable families of variables.
We then let T4 (L) consists of the instantiations not in I}, (L) of the language obtained from L by adding
the special function symbols of level at most n + 1. The first-order language obtained from L by adding
all the special function symbols is denoted by L¢. If f is the special constant for 3xA and xy, ..., X,, the
special axiom for f is the formula 3xA — A’[x|fx;...x,], where A’ is a variant of A, fixed once and for
all, in which fx; .. .x, is substitutible for x. If now T is a first-order theory with language L, we let Tt be
the first-order theory whose language is Lf and whose nonlogical axioms are those of T and the special
axioms for the special function symbols of L¢. It is then obvious that T is a Skolem extension of T

We form T from T; by adding as further nonlogical axioms all the formulae of the form

Vx(A < B) > fx;...X, = gy1-.. Vi

where f is the special function symbol for 3xA and xy, ..., X, and g is the special function symbol for 3xB
andvyy, ..., Y.

CoroLLARY. T; and TY are conservative extensions of T.

Proof. Follow the proof of the theorem of §4.1, using the theorem on functional extensions instead of the
lemma used there. The only difference is that in proving (3) using the deduction theorem we must first
replace the free variables by new constants, and in the derivation we use the corresponding instances of
the axioms of T} rather than the axioms themselves. O

4.5 The e-theorems. The goal of this paragraph is to indicate how two famous theorems of Hilbert can be
recovered from the results of this section. As we shall see, they are merely reformulations of our own theo-
rems. Given a first-order theory T, we define the e-terms and e-formulae of T by simultaneous induction
as follows:

(i) variables are e-terms;

(i) ifay,...,a, are e-terms and f is an n-ary function symbol, then fa; ... a, is an e-term;
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(iii) ifay,...,a, are e-terms and p is an n-ary predicate symbol, then pa, .. .a, is an e-formula;
(iv) if A and B are e-formulae, then VAB is an ¢-formula;
(v) if A is an e-formula, then A is an e-formula;
(vi) if A is an e-formula and x is a variable, then 3xA is an e-formula;
(vii) if A is an e-formula and x is a variable, then exA is an e-term.

If we specify that any occurrence of x within an occurrence of a term of the form exA is to be bound, we
can define the notions of free and bound occurrences for e-terms and e-formulae in the obvious way, and
we can then define instances and variants.

We let T, be the formal system whose alphabet is that of T together with the new symbol &, whose
formulae are the e-formulae of T, and whose rules of inference are: the nonlogical axioms of T; if exA
is substitutible for x in A, infer 3xA — A[x|exA]; infer Vx(A < B) — exA = exB; and the rules (i)-(x)
of ch.1§2.9 in which A, B, and C are now any e-formulae. Clearly T is an extension of T. Note that there
is some redundancy in the language of T, as we have |7, 3xA < A’[x|exA] for a suitable variant A’ of A.
We could thus have discarded the symbol 3 entirely, modifying the rules of inference appropriately.

To any e-term or e-formula u of T, we associate a term or formula u* of T{ using recursion on (i)-(vii).
If u is a variable, u”* is u. If u is exA, u* is fx; .. .x, where xy, ..., x,, are the variables free in A* except x
in alphabetical order and f is the special function symbol for 3xA* and x;, ..., X,,. If u is obtained by (ii)-
(vi), u” is defined in the evident way. A straightforward induction on theorems in T, shows that for any
formula A of T, if |-, A, then I—Tf/ A" (in fact, the converse is also easily proved). Since A" is Aif Aisa
formula of T, the corollary of §4.4 implies that T, is a conservative extension of T, a result known as the
second e-theorem.

The first e-theorem is the following statement: if T is an open first-order theory and A is an open
formula of T such that |-, A, then A is a tautological consequence of instances of equality rules for L(T)
and nonlogical axioms of T. To see that it is true, apply first the second e-theorem to deduce that A is a
theorem of T. Then let A’ be obtained from A by replacing the free variables by as many new constants,
thereby forming an extension T’ of T. By the substitution rule, }-7+A’. By the corollary to the consistency
theorem, A’ is a tautological consequence of instances in L(T") of equality rules for L(T’) and nonlogical
axioms of T. By Proposition 2 of ch. 1 §3.3 and the fact that replacing all occurrences of the constant e by
a variable in the equality axiom e = e yields an identity axiom, we deduce that A itself is a tautological
consequence of instances of the contended kind.

4.6 The fundamental theorem of Herbrand-Skolem theory. Let T be a first-order theory. We denote by
T° any first-order theory whose language is an extension of L(T) and whose nonlogical axioms consist of
the matrices of Skolem forms of all nonlogical axioms of T.

LemMA. T° is a conservative extension of T.

Proof. Let us first prove that T° is an extension of T. By the substitution axioms, the distribution rule,
the tautology theorem, and prenex operations, A’ — A is a theorem of T° for any formula A of T° with
Skolem form A°® in T°. In particular, by the detachement rule and the closure theorem, the nonlogical
axioms of T are theorems of T°.

To prove that T° is a conservative extension of T, we may suppose, by the reduction theorem and
transitivity of conservative extensions, that T has only one nonlogical axiom A. Let A” be the nonlogical
axiom of T°. Let A be written in the form (12) so that A° is the matrix of (13). For 0 < i < k, let A; be the
formula

EVZISA0 SHNTRUNE S SHINNIE= )% 5 SRR 5 S 1) SIS 1) b IS SHUDINS > NS #9 N

i

Then Ay is A°. Let T; be the first-order theory obtained from T by the adjunction of the function symbols
fi, ..., f; and of the nonlogical axioms Ay, ..., A;. By the functional extension theorem and the closure
theorem, T; is a conservative extension of T;_y, for 1 < i < k, and hence Ty is a conservative extension of
T. By the proposition of ch. 1 §4.2, any formula of T which is a theorem of T° is a theorem of T, so T° is
also a conservative extension of T. O

Let A be a closed formula of T, and let A* be a Herbrand form of A in some extension L’ of L(T),
chosen in such a way that there exists a first-order language L’ which is a common extension of L’ and
L(T®). Let T’ (resp. T") be the first-order theory with language L’ (resp. L'°) whose nonlogical axioms
are those of T (resp. those of T°).
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HEerRBRAND-SKOLEM THEOREM. With the notations of this paragraph, the following assertions are
equivalent:

(i) Aisatheorem of T;
(ii) A isatheorem of T°;
(iii) A is a theorem of T”;

(iv) A* is a theorem of T'°.

Proof. By the lemma, (i) and (ii) are equivalent and (iii) and (iv) are equivalent. But T° is an open first-
order theory by definition, so by the theorem of §4.3 and the proposition of ch. 1 §4.2, (ii) and (iv) are
equivalent. Hence, all four conditions are equivalent. O

This theorem reduces the problem of deriving a formula in a first-order theory to the problem of
deriving an existential formula in an open first-order theory. Combining the Herbrand—-Skolem theorem
with the corollary to the consistency theorem, we also obtain a criterion for theoremhood in an arbitrary
first-order theory T in terms of tautologies. This reduction of first-order logic to propositional logic was
achieved by J. Herbrand and is generically known as Herbrand's theorem.

§5 Craig’s interpolation lemma

5.1 Compatibility. We say that two first-order languages are compatible if they have a common first-order
extension. If L; and L, are compatible, we can form the first-order language L, U L, (resp. Ly N Ly; L1 — L)
as follows: a nonlogical symbol is an n-ary function symbol of L, U L, if and only if it is an n-ary function
symbol of L; or of L, (resp. of L; and of L,; of L; but not of L, ), and similarly for predicate symbols. If T; and
T; are first-order theories such that L(T}) and L(T3) are compatible, we say that T; and T, are compatible
and we define Tj U T; to be the first-order theory with language L(T;) u L(T3) and with nonlogical axioms
those of T together with those of T5.

5.2 Eliminating function symbols. Two first-order theories T and T are called weakly equivalent if some
extension by definitions of T is equivalent to some extension by definitions of T”. In this paragraph we shall
prove that any first-order theory is weakly equivalent to a first-order theory without function symbols.

Let L be a first-order language. We form a new first-order language L as follows: each n-ary predicate
symbol of L is an n-ary predicate symbol of L®, and for each n-ary function symbol f of L, L® has an
(n+1)-ary predicate symbol pg. It is understood that ps is distinct from all the symbols of L and is distinct
from pg if f is distinct from g. Thus, L’ has no function symbols, and L and L® are compatible. Let T be a
first-order theory with language L, and consider the first-order theory obtained from T by the adjunction
of the n-ary function symbol f and the nonlogical axiom y = fx;...x, < psyx;...x,, for every n-ary
function symbol f of L. For A a formula of L, we shall denote by A’ a translation of A into T, as defined
in §2.2. Thus, A% is a formula of L°.

Let now T be a first-order theory with language L. We define T® to be the first-order theory with
language L® whose nonlogical axioms are the formulae A’ for each nonlogical axiom A of T and the
formulae 3ypsyx; ... x, and pgyxy...x, > pey'x1...x, = y = ¥ for each n-ary function symbol f of T.

Tueorem. With the notations of this paragraph, T and T® are weakly equivalent.

Proof. Let U be obtained from T by the adjunction of the (n +1)-ary predicate symbols p¢ and the axioms
y =fx1...X, <> pgyx1...x, for each n-ary function symbol f of L. Let U® be obtained from T*® by the
adjunction of the n-ary function symbols f and the axioms y = fx;...x, < pgyxi...x, for each n-ary
function symbol f of L. Clearly U is equivalent to an extension by definitions of T and U® is an extension
by definitions of T%, so it will suffice to prove that U and U® are equivalent. It is clear that U and U® have
the same language, namely L U L.

Let A be a nonlogical axiom of U. If A is a nonlogical axiom of T, then A’ is a nonlogical axiom of
TS, and | ysA if and only if |1sA® by the theorem of §2.3. Thus |-ysA in this case. If A is of the form
PeyXi...X, <> y =fx;...x,, then A is also a nonlogical axiom of U®. Thus, U® is an extension of U.

Conversely, let A be a nonlogical axiom of US. If A is B for some nonlogical axiom B of T, the first
part of the theorem on functional definitions shows that |-yB <> A, and so }yA. Suppose that A is
Jypeyxi ... x,. To prove |-y A, it will suffice, by the equivalence theorem, to prove y3y(y = fx;...x,).
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But this follows from an instance of an identity axiom, the substitution axioms, and the detachment rule.
Similarly, if A is pgyxy...x, = pey'x1... Xy = y = ¥, to prove A, it suffices to prove

Foy=fxi...x, >y =fx;...x, > y=y"

This is true by the equality theorem, an instance of an identity axiom, and the tautology theorem. Thus, U
is also an extension of U®, so that U and U® are equivalent. O

Consider, more generally, two weakly equivalent first-order theories T and T®. For any formula A of
T, let A® be a translation of A into T®, and for any formula B of T%, let Bg be a translation of B into T.

ProposITION. Let T and T° be weakly equivalent first-order theories. Let A be a formula of T and B
a formula of T°. Then

(i) FrAifand onlyif F7sAS;
(ii) FrsBif and only if 1 Bg;
(iii) FrA < (A%)s;
(iv) FrsB < (Bg)*.

Proof. Note that it suffices to prove (i) and (iv). Let U and U® be equivalent extensions by definitions of
T and TS, respectively. By the conservativity of extensions by definitions, }-rA if and only if |-A, and
by (ii) of the theorem of §2.3, |-ys A if and only if |-7s A%, This proves (i). By the first part of the theorem
on functional definitions, we have |-yB <> Bg and |ysBs <> (Bs)®, so FysB < (Bg)®, whence (iv) by
conservativity. O

5.3 Craig’s interpolation lemma. In this paragraph we give a finitary proof of a famous result of first-order
logic known as Craig’s interpolation lemma: if T and U are compatible first-order theories and A — B is
a theorem of T'u U, where A is a formula of T and B of U, then we shall show how to find a formula C
of L(T) n L(U) such that A — C s a theorem of T and C — B is a theorem of U. Our strategy will be as
follows. In a first step, we prove the result with “theorem” replaced by “tautology”. In a second step we use
Herbrand’s theorem to generalize the first step to first-order theories with no function symbols. Finally,
we prove the result for arbitrary first-order theories using the procedure described in §5.2.

LEMMA 1. Let L and M be compatible first-order languages. Let A be a formula of L and B a formula
of M. If A — B is a tautology, then there exists a formula C of L n M such that A - Cand C — B are
tautologies. Moreover, C can be chosen so that the variables free in C are free in A.

Proof. We prove the lemma by induction on the number of elementary formulae D such that D has an
occurrence in A not happening within an occurrence of another elementary formula (we shall say that
this is a maximal occurrence of D) and such that nonlogical symbols of L — M occur in D. If there are
none, A is already a formula of L n M and we take C to be A. Otherwise, choose an elementary formula
D having a maximal occurrence in A and in which nonlogical symbols of L — M occur, and let A, (resp.
A_) be obtained from A by replacing every maximal occurrence of D by Jx(x = x) (resp. 13x(x = x)).
We claim that A - A, v A_ and A, v A_ — B are tautologies. To prove this, let V be a truth valuation
on L U M. By a straighforward induction on the length of A, we see that if V(D) is V(3x(x = x)), then
V(A) = V(A,), and otherwise V(A) = V(A_). It follows that V(A — A, v A_) is T in both cases. For
the second formula, we have by Proposition 2 of ch. 1 §3.3 that both A, — B and A_ — B are tautologies,
so A, vV A_ — B is a tautology. Note that the variables free in A, v A_ are also free in A. By induction
hypothesis, there exists a formula C of L n M whose free variables are free in A and such that A, vA_ - C
and C — B are tautologies. But then A - C and C — B are tautologies. O

LEMMA 2. Let T and U be compatible first-order theories with no function symbols. Let A be a closed
formula of T and B a closed formula of U such that |-7,yA — B. Then there exists a closed formula
Cof L(T) n L(U) such that A - Cand |yC — B.

Proof. Choose once and for all a Skolem form Vx; ... Vx,A° of A, a Herbrand form B* of B, and Skolem
forms of all the nonlogical axioms of TuU, and let L° be the first-order language obtained from L(T)nL(U)
by the adjunction of all the new function symbols introduced, as well as a new constant e. Let T° be the
first-order theory with language L° u L(T) whose nonlogical axioms are the matrices of the prescribed
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Skolem forms of the nonlogical axioms of T, and define U° in the same way. Let also T’ (resp. U’) be the
first-order theory obtained from T (resp. from U) by the adjunction of the function symbols of L°. By the
detachment rule, B is a theorem of T[A] u U, so by the Herbrand-Skolem theorem, B is a theorem of
T°[A°]u U°. By the corollary to the consistency theorem, we can find instances By, ..., B, of the matrix of
B* whose disjunction is a tautological consequence of instances of equality rules for L(T°[A°] u U°) and
instances of nonlogical axioms of T°[A’] u U°. Of those instances, let Cy, ..., C; be the instances of the
equality rules for L(T°[A°’]) and of the nonlogical axioms of T°[A’], and let D, ..., D,, be the instances
of the other axioms. Then

(CiAAC) - (Dyv--vID,, VB Vv---VB,)

is a tautology. Substituting e for every free variable in the above formula and using Proposition 2 of ch. 1
§3.3, we can assume that the formula is closed. Using Lemma 1, we find a closed formula C of L° such that

(CiA---AC))>CandC— (D V-~V 1D, VB Vv--VB,) (1)

are tautologies. The first tautology in (1) tells us that C is a tautological consequence of instances of equality
rules for L(T°[A’]) and instances of nonlogical axioms of T°[A’]. By the substitution rule and the tauto-
logy theorem, |7o0]C, so by the closure theorem and the deduction theorem, |-7.Vx;...Vx,A° — C.
Now Vx;...Vx,A° - Cand A - C have a common Herbrand form, so |-+A — C by the Herbrand-
Skolem theorem. The second tautology in (1) tells us that B; v --- v B, is a tautological consequence of
C, instances of equality rules for L(U®), and instances of nonlogical axioms of U°. By the corollary to
the consistency theorem, |yo[c;B*, whence |-y.C — B* by the deduction theorem. Since C — B* and
C — B have a common Herbrand form, we obtain }-;;;C — B by the Herbrand-Skolem theorem.

Now the proof of the proposition of ch. 1 §4.2 shows that if x is a variable not occurring in given
derivations of A » Cin T’ and of C - B in U’ and if C* is obtained from C by replacing every occurrence
of a term that is not a variable by x, then }|-rA - C* and }-yC* — B. Then by the substitution axioms
and the tautology theorem, we have |-7A — 3xC*, and by the 3-introduction rule, we have }-;3xC* — B.
Thus, 3xC* satisfies the conclusion of the lemma. O

CRAIG’s INTERPOLATION LEMMA. Let T and U be compatible first-order theories. Let A be a formula
of T and B a formula of U such that |1,y A — B. Then there exists a formula C of L(T) n L(U) such
that A - Cand |-yC — B. Moreover, C can be chosen so that the variables free in C are free in
A - B.

Proof. Suppose first that A and B are closed. Form (T u U)® from T u U as in §5.2. Form also T® and
U® from T and U using the same symbols ps that were used in forming (T U U)®. Then (T u U)® is
TS U U®. By the proposition of §5.2, we have |7s,ysA% — B®. By Lemma 2, we obtain a closed formula
C of L(T®) n L(U®) such that }sA® - Cand |ysC — BS. Then, again using the proposition of §s.2,
FrA — Cs and FyCg — B. Since Cs is a closed formula of L(T) n L(U), the theorem is proved in this
case.

Suppose now that A and B are arbitrary. Let xy, ..., X, be the free variables in A — B, and let
T’ (resp. U’) be obtained from T (resp. from U) by the adjunction of n new constants ey, ..., e,. By
the substitution rule, b,y A[Xy,...,X4ler,....e,] = B[xy,...,X,ler,...,e,], so by the first part of
the proof, we find a closed formula C of L(T") n L(U’) such that A[x;,...,X,les,...,e,] > Cand
Fu:C = B[xq,...,X,le1, ..., e,]. Replacing C by a variant if necessary, we can assume that C has the form
C'[x},...,Xyler, ..., e,]. Then by the theorem on constants, we obtain |-rA — C’ and }-yC' — B. O

The following is a reformulation of Craig’s interpolation lemma that is useful for the study of consis-
tency.

JoINT CONSISTENCY THEOREM. Let T and U be compatible first-order theories. Then T u U is incon-
sistent if and only if there exists a closed formula A of L(T) n L(U) such that |-7A and |y 7A.
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Proof. Suppose that Tu U is inconsistent. Applying Craig’s interpolation lemma to the implication 3x(x =
x) — 13dx(x = x), we find a closed formula A of L(T) n L(U) such that }r3x(x = x) > A and FyA -
73x(x = x). Since |73x(x = x) and FyIx(x = x) by the identity axioms, the substitution axioms, and
the detachment rule, we obtain }-7A and |- 1A by the tautology theorem. Conversely, if |-7A and ;1A
for some formula A, then A and 71A are theorems of T'u U, which is therefore inconsistent by the tautology
theorem. O



Chapter Three
The Incompleteness Theorem

§1  Number-theoretic functions and predicates

1.1 Recursive functions and predicates. In what follows, “function” and “predicate” are used exclusively
for functions and predicates taking natural numbers as arguments and values. Also, a number is a natural
number. In discussing natural numbers, we shall use the signs 3, V, 7, v, A, —, <> with the usual meanings
“for some”, “for all’, “not”, “or”, “and”, “if ... then”, and “if and only if”. The context will always distinguish
them from the symbols and abbreviations of symbols of a formal system. We also use the expression ya
to mean “the first (natural number) a such that”. We use German letters to represent finite sequences of
numbers, with conventions that will be apparent.

The following functions are called initial functions:

(i) the binary function +;

(ii) the binary function -

0 ifa<b,
(iii) the binary function y. defined by y.(a, b) = thas .
1 otherwise;
(iv) foreverynandeveryiwithn >1and1< i < n,the n-ary function 7} definedby 7 (ay, ..., a,) = a;.
If g is a k-ary function and h, ..., hy are n-ary functions, the composition of g, hy, ..., hy is the n-ary

function f defined by f(a) = g(hi(a),..., hi(a)). If g is an (n + 1)-ary function and if Va3a(g(a, a) = 0),
the minimization of g is the n-ary function f defined by f(a) = pa(g(a, a) = 0). A recursive function is
one that is obtained from the initial functions through composition and minimization.

If p is a predicate, we define its representing function y, by

i p(a),
1o(a) = {0 if p(a)

1 otherwise.

We then say that a predicate is recursive if its representing function is recursive.
We now describe general rules to decide whether certain functions or predicates are recursive.

(i) If p is a recursive k-ary predicate, if hy, ..., hy are recursive n-ary functions, and if gq(a) <
p(hy(a), ..., hi(a)), then q is recursive.

The representing function of g is the composition of y, h, ..., hg, and hence is recursive.

(ii) If p is a recursive (n + 1)-ary predicate such that Ya3ap(a, a) and if f(a) = pap(a, a), then f is
recursive.

Indeed, f is the minimization of y,. In this situation, we say that f is the minimization of p.
We denote by ¢} the n-ary function defined by ¢} (a) = k.

(iii) For all # and k, ¢} is recursive.

We prove this by induction on k. For k = 0, ¢{l is the minimization of ;. If k > 0, then ¢} is the

minimization of p where p(a, a) < chll(a, a) < n"*1(a, a). But p is recursive by (i) and the induction

hypothesis, so ¢ is recursive by (ii).
(iv) If p and q are recursive n-ary predicates, then so are 1p, pv g, pAq, p = g, and p < q.

We have y-,(a) = x<(cg(a), xp(a)) and ypvq(a) = xp(a) - x4(a), so p and p v q are recursive. Since p A g
is(pvg),p—>qispvq,and p < qis (p - q) A(q = p), the other cases follow.

We denote by T" the n-ary predicate defined by T"(a) <> 0 < 1and by 1" the n-ary predicate 17".
Then by (i), (iii), and (iv),

41
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(v) Forall n, T" and L" are recursive.

We say that predicates ry, ..., r are mutually exclusive if r;(a) - 7rj(a) whenever i # j.
(vi) Let gi, ..., gk+1 be recursive n-ary functions and ry, ..., ry mutually exclusive recursive n-ary predi-
cates. If

gi(a) if ri(a),

JO= 0@ ifraa),

gk+1(a)  otherwise,

then f is recursive.

(vii) Letqu, ..., gk+1 be recursive n-ary predicates and ry, ..., ry mutually exclusive recursive n-ary pred-
icates. If

q1(a) if r(a),
PO @ ifr(a),
qk+1(a) otherwise,

then p is recursive.

We have f(a) = gi(a) - xr,(a) + - + g&(a@) - xr, (@) + gk1(@) - Xrn-nri (@) and pla) < (r1(a) A g1(a)) v
=V (ri(a) A gr(a)) v (r(a) A A TIre(a) A grea(a)).

(viii) The binary predicates < and = are recursive.

This follows from the relations a < b <> 7(n3(a, b) < n¥(a,b)) and a = b <> a < b A n3(a, b) < 7} (a, b).
Since we do not deal with negative integers, we set a — b to be 0 if a < b.

(ix) The binary function — is recursive.

The function — is the minimization of the ternary predicate p defined by p(a,b,c) < ni(a,b,c) =
n3(a, b, c) + mi(a, b, c) v i(a,b,c) < m(a,b,c).
We introduce some abbreviations. We write 3a.... and Va.... to mean “for some a < ---” and “for all

a < -7 respectively. We also write ga.... for “the first a such that a = --- or” (note that such an a always
exists).

(x) If p is a recursive (n + 1)-ary predicate and if f(a, a) = ub,p(a, b), then f is recursive.

The function f is the minimization of the (n + 2)-ary predicate q where q(a,a,b) < n"*2(a,a,b) =
" (a, a,b) v p(ni*3(a, a,b),..., 7" (a, a,b), n"2(a, a, b)). But q is recursive by our previous results,

so f is recursive.

(xi) If p is a recursive (n +1)-ary predicate and if g(a, a) < b, p(a, b) and r(a, a) <> Vb, p(a, b), then
q and r are recursive.

We have q(a, a) <> ubo,p(a,b) < n"ti(a, a) and r(a, a) < 13b.,1p(a, b).
1.2 Coding functions. A binary function f3 is called a coding function if

(i) forallaand b, B(a,b)<a-1;

(ii) forall n > 1and for all ay, ..., a,-1, there is a number a such that, for all i < n, $(a, i) = a;.

THEOREM. The function f3 defined by

Bla,i) = pbca13ccadd(a=(c+d)(c+d)+c+1ATec,(c=(((b+i)(b+i)+b+2)d+1)e))

is a recursive coding function.
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We do not give the proof of this theorem here since it can be recovered from the derivation of a for-
malized version of this theorem which we shall give in full in chapter 1v.

We now fix a coding function . Thus if ay, ..., a, are numbers, there exists a number a such that
B(a,0) = n, f(a,1) = ay, ..., f(a, n) = a,; we denote the first such a by (ay, ..., a,) (the function g will
always be fixed throughout a given discussion, so we shall not find it necessary to indicate it in the notation).
As an n-ary function of ay, ..., an, {a1,...,a,) is called a sequence function. If f is recursive, the n-ary
sequence function is recursive for every n, since (ay, ..., a,) = pa(B(a,0) = naf(a,1) = a;Ar--AfB(a, n) =
a,) and B is recursive. Note that $(0,0) = 0 because of (i), and hence () = 0. We abbreviate 5(a,i + 1)
to (a); and we write (a);,j instead of ((a););. We shall sometimes drop the parentheses when they are not
needed: thus we may write f(a, b); instead of (f(a, b));. We further define

(i) len(a) = f(a,0);
(ii) sq(a) if and only if there exists n and ay, ..., a, such that a = (ay, ..., a,);
(iii) a e bifand onlyif b = (ay, ..., a,) and a = a; for some i;
. (aty...»ap,b1,...,by) ifa={(ay...,a,)andb=(by,...,b,),
(iv) axb= ]
0 otherwise;

(ai,...,a;) ifa={(ay,...,a,)andi<n,

(v) ini(a,i) = {

0 otherwise;

(vi) rmv(a i)_{(al,...,ai_l,a,-ﬂ,...,a,,) ifa={(ay,...,a,)and1<i<n
i) =

otherwise.

In (vi), {ai,...,ai-1, Git1>...,ay) isto beread as (a,,...,a,)if n >2and i =1,as{(as,...,a,_1)if n > 2
andi=mn,andas()ifn=1andi=1

Suppose that  is recursive. Then obviously (i) is recursive. The recursiveness of (ii)—(vi) follows from
the relations

(ii) Sq(ﬂ) > Vb<uEli<len(a)+1(ﬁ(a) i)+ ﬁ(b, i));
(iii) a € b < sq(b) A Jicienw)(a = (b));
puc(len(c) = len(a) +len(b) A Vicen(a)((€)i = (@)i) A Vicien(v)(()itlena) = (b)i))
(iv) a*b= if sq(a) A sq(b),
0 otherwise;
) ini(a. i) - {yb(len(b) = iAYjl(B); = @) ifsq(a) A <len(a),
0 otherwise;
(vi) rmv(a,i) =
ub(len(b) = len(a) — 1A Vedenp)((c +1< i A (D) = (a)) V (i < c +1A (D) = (a)ci1)))
ifsqa) Ai #0Ai<len(a)Alen(a)+0

a otherwise.

1.3 Recursion. Fix a recursive coding function f. If f is an (n + 1)-ary function, we define an (n + 1)-ary
function f by f(0,a) =0 and, fora > 1, f(a,a) = (f(0,a),..., f(a—1,a)).

(i) The function f is recursive if and only if the function f is recursive.

This follows from the relations f(a,a) = ub(len(b) = a A Vi,((b); = f(i,a))) and f(a,a) = B(f(a +
1,a),a+1).

(ii) If gis an (n + 2)-ary recursive function and if f(a, a) = g(f(a, a), a, a), then f is recursive.

By (i), we need only prove thatf is recursive. But f(a, a) = ub(len(b) = a A Vi, ((b); = g(ini(b, i), i, a))),
and so f is recursive.

1.4 Recursively enumerable predicates. An n-ary predicate p is recursively enumerable if there is a recur-
sive (n + 1)-ary predicate q such that p(a) < Jaq(a, a).
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NEGATION LEMMA. Let p be an n-ary predicate. If p and 7p are recursively enumerable, then p is
recursive.

Proof. There are recursive predicates q and r such that p(a) < Jaq(a, a) and 7p(a) < Jar(a, a). Then
Va3a(gq(a, a) v r(a, a)), so we can define a function f by f(a) = ua(yqv,(a,a) = 0); f is recursive being
the minimization of the composition of -, x4, and y,. Clearly y,(a) = y4(n{(a),..., 7, (a), f(a)), so p is
recursive. O]

In this paragraph we examine briefly some properties of recursively enumerable predicates. We fix a
recursive coding function f3.

(i) Recursive predicates are recursively enumerable.

Let p be a recursive predicate. Define g(a, a) < p(a). Then q is recursive and p(a) <> Jag(a, a), so p is
recursively enumerable.

(ii) If p is a recursively enumerable k-ary predicate, if by, ..., hy are recursive n-ary functions, and if
q(a) < p(hi(a),..., hx(a)), then g is recursively enumerable.

There is a recursive (k + 1)-ary predicate p’ such that p(b) < Jap’(b, a). Define the (n + 1)-ary predicate
q' by q'(a,a) < p'(hi(a),..., hi(a), a). Then g’ is recursive, and since g(a) < Jaq’(a, a), q is recursively
enumerable.

(iii) If p is a recursively enumerable (n + 1)-ary predicate and if g(a) <> Jap(a, a), then q is recursively
enumerable.

Let p’ be a recursive predicate such that p(a, a) < 3bp’(a, a, b). Define g’ by ¢'(a, ¢) < p'(a, (¢c)o, (ch),
so that g’ is recursive. Clearly 3a3bp’(a, a, b) < Icq’(a, ¢), and since q(a) < JaIbp'(a, a,b), q is recur-
sively enumerable.

(iv) If p and q are recursively enumerable, then p v g and p A q are recursively enumerable.
Let p’, g’ be recursive predicates such that p(a) <> Jap’(a, a) and q(a) < Jaq'(a, a). Then p(a) v g(a) <
Ja(p'(a, a) v q'(a,a)) and p(a) A q(a) < FaIb(p’(a, a) A ¢'(a, b)), which shows that p v q is recursively

enumerable and, using (iii), that p A g is recursively enumerable.

(v) If p is a recursively enumerable (n + 1)-ary predicate and if g(a, b) <> Va,p(a, a), then g is recur-
sively enumerable.

Let r be a recursive predicate such that p(a, a) < Jcr(a, a, ¢). Then q(a, b) <> IcVapr(a, a,(c),) and so
q is recursively enumerable.

1.5 Graph of a function. If f is an n-ary function, the graph of f is the (n + 1)-ary predicate &f defined
by &f(a,b) < f(a) = b.

ProposITION. Let f be a function. The following assertions are equivalent: f is recursive; &f is recur-
sive; &f is recursively enumerable.

Proof. Itis obvious that the first assertion implies the second, and the second implies the third by (i) of §1.4.
Suppose that &f is recursively enumerable. Then

&f(a,b) < Jcp(a,b,c) (1)
for some recursive predicate p. In particular, Va3cp(a, f(a), ¢) and hence Va3cp(a, (c)o, (c)1). Thus we

can define a recursive function g by g(a) = gcp(a, (¢)o, (¢)1). We claim that f(a) = g(a)o, which will prove
that f is recursive. Indeed we have p(a, g(a)o, g(a);), and so Icp(a, g(a)o, ). The claim follows by (1). O
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§2 Representability

2.1 Numerical languages. A first-order language L is numerical if it has the constant 0 and the unary
function symbol S. A numeral of L is a term of L in which only 0 and S occur. If  is a natural number, we
denote by 71 the numeral of L having n occurrences of S, also called the numeral of n. If n is 0, this notation
coincides with the constant 0. If f is a function, f is the function which to a associates the numeral of f(a).
A numerical instance of a formula A of L is a closed formula of the form A[xy,...,X,|d1,...,d,]. A first-
order theory T is called numerical if L(T) is numerical. If L and M are numerical first-order languages,
an interpretation I of L in M is numerical if =; is =, Oy is 0, and S; is S.

2.2 Representability of functions. In this section, T is a numerical first-order theory. Let f be an n-ary
function, a a term of T, and x, ..., X, distinct variables. We say that a with xy, ..., X, represents f in T
ifforany ay, ..., a,, Fralxy, ..., X,|dy, ..., d,] = f(al, ...»an). We simply say that f represents f in T if
fx;...x, with xy, ..., x, represents f in T.

Let f be an n-ary function, A a formula of T, and xj, ..., X,,, and y distinct variables. We say that A
With Xy, ..., Xp, y represents f in T if for any ay, ..., an, FrA[Xy, ..., Xpld1, ..., d,] <y = f(al, e dp).
An n-ary function f is said to be representable in T if there is a formula A of T and distinct variables x;,
...»Xpn, y such that A with x;, ..., X,,, y represents f in T.

ProposITION. A function f is representable in T if and only if there exist an extension by definitions
T' of T, aterm a of T', and variables xy, ..., X, such that a with xy, ..., X, represents f in T".

Proof. Suppose that A with x;, ..., X,,, y represents f in T. Let y’ be distinct from xy, ..., X,,, y and not
occurring in A and let D be the formula

GyAA VY (A = Alyly] = y=Y)AA) v((FYyAA VY (A = Alyly'] > y=Y)) Ay =0).

We obtain T’ from T by the adjunction of a new n-ary function symbol f and the axiomy = fx; ... x, < D.
It is easy to derive existence and uniqueness conditions for y in D, so that T’ is an extension by definitions
of T. Clearly fx, . ..x, with x, ..., x,, represents f in T".

Conversely, suppose that a with x;, ..., X, represents f in some extension by definitions T’ of T. Let A
be a translation of y = ainto T. Since vy = a[Xy,...,Xy|d1, ..., dn] <>y = f(ay,...,a,) by the equality

theorem, we have rA[xy,...,X,|d1,...,d,] < v = f(ai,...,a,) by the theorem on definitions, so A
with xq, ..., X,, y represents f in T. O
2.3 Representability of predicates. Let p be an n-ary predicate, A a formula of T, and x, ..., x,, dis-
tinct variables. We say that A with xy, ..., X, represents p in T if for all ay, ..., an, p(a1,...,a,) implies
FrAlxy, ..., X4l ..., a,] and 7p(ay, ..., a,) implies F77A[Xy, ..., X,|d1,. .., d,]. If only the former

(resp. the latter) holds, we say that A with x;, ..., X, positively represents (resp. negatively represents) p in
T. We say that p represents p in T if px; ... x, with x1, ..., x, represents p in T. An n-ary predicate p is
said to be representable in T if there is a formula A of T and distinct variables x;, ..., X, such that A with
Xj, ..., X, represents pin T.

PropPOSITION. If |70 # 1, a predicate p is representable in T if and only if y, is representable in T.

Proof. Suppose that A with x;, ..., x,, represents p in T, and let y be distinct from xy, ..., X,. Let a3, ...,
a, be natural numbers, and let A’ abbreviate A[xy, ..., X,|d1, ..., d,]. If p(ay, ..., a,), then FrA’, and if
Ap(ay,...,an), then r1A”. In both cases, (A’ Ay=0) v (IA' Ay =1) < y= Xp(ar,...,ay) by the
tautology theorem. So (A Ay =0) v (A Ay =1) with xy, ..., X,,, y represents y,.

Conversely, suppose that A withxy, ..., X,, y represents y, in T. If p(ay, ..., a,), then y,(as,..., a,) =
0and so FrA[Xy,...,X,|d1,...,d,] <>y = 0. By the substituion rule, A [y|0][xy, . ..,X,|d1, ..., dn] <
0 = 0, whence 7A[y|0][xi,...,X,|d1,...,d,] by the identity axioms, the substitution rule, and the tau-
tology theorem. If 7p(ay, ..., a,), we find similarly 7A[y|0][x;,...,X,|d1,...,d,] < 0 = 1, whence
FrA[y|0][x1s . . ., Xp|d1, - - . » @4] by the hypothesis and the tautology theorem. Thus A[y|0] with xi, ...,
X, represents p in T. 0

2.4 Representability and interpretations. We remark that if an #n-ary function f is representable in T
and ifx;, ..., X, y are distinct variables, then there is a formula A of T which with x;, ..., X,,, y represents
f in T and in which no variable other than xi, ..., X,, and y is free. For if B with z,, ..., z,,, w repre-
sents f in T and if x|, ..., X/, are the variables free in B other than zy, ..., z,, and w, then the formula
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B'[x{,....X},,21,...,Z4,W|0,...,0,Xi,...,X,,y], where B is a variant of B in which x;, ..., X,,, y are not

bound, is as desired by the version theorem. A similar statement and its proof hold for predicates.

ProposiTION. Let T and U be numerical first-order theories and let I be a numerical interpretation
of T in U. Then any function or predicate representable in T is representable in U.

Proof. Let f be an n-ary function representable in T. By the remark preceding the proposition, we can
find a formula A which with xy, ..., X, y represents f in T and in which no variable other than xj, ..., X,
and y is free. Let b = f(ay, ..., a,). By the interpretation theorem and the fact that 7, is 7 for all n,

I—UUIy—>A1[x1,...,xn|d1,...,c'z,,]<—>y=b. (1)

But |-, U;b because by is b and I is an interpretation of L(T) in U, and hence }yy = b - Upy by the
equality theorem. From this and (1) we obtain |y (Ury A AflXy,...,Xpl|d1,...,d,]) < ¥ = b by the
tautology theorem, so Uyy A Af with xy, ..., X,,, y represents f in U.

Suppose that A with x;, ..., X, represents a predicate p in T and that no variable other thanx;, ..., x,

is free in A. Then A[Xi,...,X,|d1,..., d,] is Af[Xy, ..., Xp|d1, ..., dy) and (A[Xy, ..., X,|d1, ..., d,)) s
TA;[Xy, ..., Xp|d1s - . ., dy]. It follows from the interpretation theorem that A with xy, ..., x,, represents p
in U. O]

§3 Arithmetizations

3.1 Arithmetizations. An arithmetization of a first-order language L is an effective mapping that assigns
a natural number to every designator of L and to every sequence of formulae of L (including the empty
sequence) in such a way that different numbers are assigned to different designators, and different numbers
are assigned to different sequences of formulae. The number assigned to an object is called its expression
number. By an “effective” mapping we mean not only that we can determine the expression number of a
given designator or sequence of formulae, but also the following: if we are given a number, we can decide
whether it is the expression number of a designator (resp. of a sequence of formulae) or not, and if it is, we
can determine the designator (resp. the sequence of formulae) of which it is the expression number."

A first-order language will be called arithmetized when it is endowed with an arithmetization. Ifuis a
designator of an arithmetized first-order language, we write ‘u’ its expression number, and "u’ the numeral
of ‘w’. This notation can be ambiguous when we are dealing with several arithmetized languages, so we
shall occasionally refine these conventions. We say that a first-order theory is arithmetized if its language
is arithmetized.

If L is an arithmetized first-order language and T an arithmetized first-order theory, we define

(i) vbler(a) if and only if a is the expression number of a variable;

(ii) tmy(a) if and only if a is the expression number of a term of L;
(iii) atfmyp(a) if and only if a is the expression number of an atomic formula of L;
(iv) fmy(a) if and only if g is the expression number of a formula of L;

(v) desp(a) if and only if a is the expression number of a designator of L;

(vi) occr(a, b)if and only if a and b are expression numbers of designators of L and the designator with
expression number b occurs in the designator with expression number a;

(vii) frp(a,b)ifand only if des;(a) and vbley (b) and the variable with expression number b is free in the
designator with expression number g;

(viii) clp(a) if and only if a is the expression number of a closed designator of L;

(ix) subtl(a, b, c)if and onlyif desy (a) and vbler (b) and tmy (c) and the term with expression number ¢
is substitutible for the variable with expression number b in the designator with expression number
a;

(x) paxg(a) if and only if a is the expression number of a propositional axiom for L;

(xi) saxy(a) if and only if a is the expression number of a substitution axiom for L;

"This requirement that arithmetizations be effective is of course not used in any proof and hence is not strictly necessary.
However, some proofs would lose their constructive character if they were applied to noneffective arithmetizations.
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(xii) iaxy(a) if and only if a is the expression number of an identity axiom for L;
(xiii) feaxy(a) if and only if a is the expression number of a functional equality axiom for L;
(xiv) peaxy(a) if and only if a is the expression number of a predicative equality axiom for L;
(xv) axp(a) if and only if a is the expression number of a logical axiom for L;

(xvi) ctrp(a,b) ifand only if fm; (a) and fm (b) and the formula with expression number a is the conclu-
sion of a contraction rule whose premise has expression number b;

(xvii) expr(a,b) if and only if fmy (a) and fm[(b) and the formula with expression number a is the con-
clusion of an expansion rule whose premise has expression number b;

(xviii) assocy(a,b) if and only if fm (a) and fm; (b) and the formula with expression number a is the
conclusion of an associativity rule whose premise has expression number b;

(xix) cuty(a, b, ¢) if and only if fm; (a) and fmy, (b) and fm (c) and the formula with expression number
a is the conclusion of a cut rule whose premises, in order, have expression numbers b and c;

(xx) intrg(a, b) if and only if fm; (a) and fm (b) and the formula with expression number a is the con-
clusion of an 3-introduction rule whose premise has expression number b;

(xxi) nlaxr(a) if and only if a is the expression number of a nonlogical axiom of T;

(xxii) derr(a,b)ifand onlyiffmyry(a)and b is the expression number of a derivation in T of the formula
with expression number a;

(xxiii) thmr(a) if and only if a is the expression number of a theorem of T

3.2 Numerotations. We now describe a natural and highly applicable method to obtain arithmetizations
of first-order languages. Let L be a first-order language. We assume given a mapping ¢ which to each
symbol s of L associates a number o(s), called the symbol number of s. We require that different symbols
be associated to different numbers. Such a mapping is called a numerotation of L. We can then define

(i) vry(n) is the symbol number of the (n + 1)th variable in the alphabetical order;
(ii) funcy(a,n)if and only if a is the symbol number of an #-ary function symbol of L;
(iii) preds(a, n) if and only if a is the symbol number of an n-ary predicate symbol of L;

(iv) sym,(a) if and only if a is the symbol number of a symbol of L.

We call the numerotation o recursive if vr,, func,, and pred, are recursive and if vr, is an increasing
function, i.e., vrs(a) < vry(b) whenever a < b. When this is the case, sym, is recursively enumerable.

We now describe a method to obtain arithmetizations from numerotations. Let L be a first-order
language, 0 a numerotation of L, and f3 a coding function. We first show how to assign a number to every
designator of L. We do this by induction on the length of the designator. If u is a designator of L, then by
the formation theorem u can be written in one and only one way as su, ... u, where s is a symbol of L of

index n and wy, ..., u, are designators of L. We then define

W =(a(s), uy’,..., ).
If Ay, ..., A, is a sequence of formulae of L, then the expression number of this sequence is the number
(‘Ay’,...,‘Ay’). Tt is obvious that this defines an arithmetization of L, i.e., that different designators (resp.

different sequences of formulae) have different expression numbers."
We say that a first-order language L is arithmetized from the numerotation o by the coding function
B if it is endowed with the arithmetization just described.

THEOREM. Let L be a first-order language arithmetized from a recursive numerotation o by a recur-
sive coding function f. Then: the predicates (i)-(xx) of §3.1 are recursive; for each symbol s of L of
index # there is an n-ary recursive function f; such that for every designator of the form su; ... u,,

TTo define numerotations themselves, one can draw inspiration from this method and the remark concerning variables in ch. 1
§2.1: thinking of variables as concatenations of two symbols x and ’, if ¢ assigns injectively a number to x, /, and the symbols
of L that are not variables, then, if x, is the nth variable in the alphabetical order, the mapping o defined by o(x1) = (5(x)),
0(xp+1) = (¢("), 0(xx)), and o (s) = (¢(s)) for s not a variable is a numerotation of L. Moreover, vr, is automatically increasing,
so o will be recursive provided that funcc, pred, and 8 are recursive.
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fs(u’s. .., wy’) = ‘suy ... u,’; there is a recursive function sub such that for every designator u, dis-
tinct variables x;, ..., X,;, and terms ay, ..., a,,

Sub((u)) ((Xl)) DI (Xn’)) ((al’) I ‘an)» = (u[xla e ;Xn|a1) DI an]’;

there is a recursive function clos such that for every formula A, if A’ is the closure of A, clos(‘A”) = ‘A”.
If moreover L is numerical, then the function num defined by num(a) = ‘a’ is recursive.

If T is a first-order theory with language L and if nlaxr is recursive (resp. recursively enumerable),
then derr is recursive (resp. recursively enumerable) and thmr is recursively enumerable.

Proof. We define fi(ai,...,a,) = {(0(s),ai,...,a,). Then f; is recursive and has the desired property.
Define f(a, b) = pi((a)o = 0(3) v ((a)1 € b) v (i # 0 A (a); = (b, 1))). This is obviously well defined
and recursive, and f(u, (‘’x;’, ..., X,’)) is the first i such that x; is x if u is 3xA and such an i exists, and is
0 otherwise. We let sub(a, b, ¢) be S(c, pi(7(a € b) va = (b);) +1) if vbley(a) Aa € b,

pd(len(d) =len(a) A (d)o = (a)o A Vidien(a)-1((d)i1 = sub((a)i1, rmv(b, f(a, b)), rmv(c, f(a, b)))))

if 71vbler(a), and a otherwise. It is easy to check that sub(‘w’, (x;’, ..., %), (‘ar’, ..., a,))) = ‘ulxy,...,
Xp[a1,...,a,]’. The recursiveness of sub, (i)-(xii), and (xv)-(xx) follows from the relations
(i) vbler(a) <> a =((a)o) A Ib.,(vr4(b) = (a)o) (here we use that vr, is increasing);
(ii) tmp(a) < vbler(a) v (sq(a) Alen(a) # 0 A func,((a)o,len(a) — 1) A Vbojen(a)-1(tmL((a)p+1)));
(iii) atfmp(a) <> sq(a) Alen(a) # 0 A preds((a)o,len(a) —1) A Vben(a)-1(tmr((a)p+1));

(iv) fmp(a) < atftmg(a)Vv(a = (o(V), (@)1, (@)2)Afmy ((a)1)Afmz((a)2))v(a = (o (7), (@) )Afmy ((a)1))V
(a =(0(3),(a)1, (a)2) A vbler((a)) A fmp((a)2));

(v) desy(a) <> tmp(a) v fmy(a);

(vi) occp(a, b) <> desp(a) Adesy(b) A (a = bV Jidenay-10ccL((@)is1, b));

occr(a,b) if tmg (a) v atfmg (a),
. fro((a)1, b) v fri((a)2, b) if a = (a(v),(a),(a)2),
(vii) fry(a, b) <> desr(a) A vbler(b) A £, ()0, b) ifa = {o(). (@),

frr((a), b)An(a) £ b otherwise;
(viii) cly(a) <> desy(a) A 13b, frr(a, b);

(ix) subtlz(a, b, c) <> desi(a) A vbler (b) A tmy(c)

subtl; ((a)1, b, ¢) A subtl;((a),, b, ¢) ifa=(a(v),(a),(a)),

subtly ((a):, b) ifa=(o(),(a)),

subtly((a)2, b, ¢) A (Tfrr((a)2, b) v frp(c, (a)1)) ifa =(0o(3),(a)1,(a)2) A (a) # b,
0=0 otherwise;

(x) pax(a) « fmr(a) A a = (a(V),(a(7),(a)2), (a)2);

(xi) saxg(a) <> fmp(a) A a = {a(V),(d(7),(a)1,1),{0(), (@)2,1,(a)2,2))
A b, (tmp (b) A subtly ((a)2,2, (a)2,1, b) A (a)1,1 = sub((a)2,2, (a)2,1, b));

(xii) iaxr(a) <> a =(0(=),(a)1, (a):) A vbler((a)1);
(xv) axp(a) <> paxp(a) v saxp(a) v iaxy(a) v feax(a) v peaxr(a);
(xvi) ctrr(a,b) < fmp(a) Ab = (o(V), a, a);
(xvii) expr(a,b) < fmy(a) A a=(o(v),(a),b);
(xviii) assocr(a,b) <> fm(a) A a =(a(V),(a(V), (@)1, (a)1,2), (a)2)
Ab=(0(V),(a),1,{0(V), (a)1,2, (a)2));
(xix) cutz(a,b,c) <> fmy(b) Afmp(c) A b ={(o(V), (D)1, (D)2) A c =(a(V),{a(7), (b)), (c)2)
Aa=(a(Vv),(b)2,(c)2);
(xx) intrz(a, b) < fmp(a) A a = (o (v),(a(7),(d(3), (@)1,1,1, (@)1,1,2)), (@)2)
Ab=(0(V),{o(7), (@)1,1,2), (a)2) A T frp((a)2, (@)1,1,1)-
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The predicates feax; and peax;, require some more work. Let f be the binary function defined by f(a, n) =
(a)a,...,» with n occurrences of 2. Then f is recursive because

a itn=0,
fla,n) = .

fla,n—-1), otherwise.
Now if a is the expression number of an equality axiom for, say, an n-ary function symbol f and if 0 < i < n,
then f(a, i) is the expression number of

Xit1 = Viel = > Xy =Y~ XX, = £y Ly,
We thus have the relations

(xifi) feax; (a) < Fnea(f(a,n) = (o (=), fla, )1, f(an)2)
Alen(f(a,n);) =n+1nalen(f(a,n)y) =n+1
A funcg(f(a, n)1,0,n) A f(a,n)10 = f(a,n)z0
A Vi, (vbler (f(a, n)1,is1) A vbler (f(a, n)2,i41))
AVieu(f(a, i) ={a(V),(a(7),(a(=), f(a, D)1,1,1, f(a, D11,2)), f(a,i+1))
A f(a> i1 = f(a, m,ie1 A f(a, D12 = f(a, 1)2,i+1)) and

(xiv) peaxp(a) <> Inc,(f(a,n) =(o(v),(c (), f(a, n)1,1), f(a, n)2)
Alen(f(a,n)1) =n+1nalen(f(a,n);) =n+1
Apreds(f(a, m)i,0, 1) A fla, n)i0 = f(a,n)z0
AVicn(vbler (f(a, n)1,,i41) A vbler(f(a, n)z,i41))
AVieu(f(a, i) =(a(V),(a (), (o (=), f(a, D)1,1,1> f(@, D11,2)), f(a, i +1))
A fla, i1 = fla,min A fla, Dz = f(a,n)2,i4))

showing that feax; and peaxy, are recursive.
We define a unary function g by
() = (0(7),(0(3), ub(fri(a, b)), (0(7),a))) if Tcli(a),
& a otherwise;
Then g is recursive and g(‘A’) is A if A is closed and VxA otherwise, where x is the variable free in A
which comes first in the alphabetical ordering of all the variables free in A. We observe that there cannot
be more than ‘A’ variables free in A because each of them has a different nonzero expression number. We

then define
if n =0,
haun) = a ifn .
h(g(a),n —1) otherwise,

and finally clos(a) = h(a, a). Then clos is recursive and clos(‘A’) is the expression number of the closure
of A, as desired.
If L is numerical, we have

(a(0)) ifa=0,

(0(S),num(a —1)) otherwise,

num(a) = {

and hence num is recursive.
Suppose that T is a first-order theory with language L. We observe that

(xxii) derr(a,b) <> sq(b) Alen(b) =0 A a = B(b,len(b)) A Vcaen(p)(axy(c) v nlaxy(c)
Vv 3de (ctrp((B)c, (b)a) v expr((b)c, (b)a) v assoc((b), (b)a) v Te< cut((b)c, (b)a, (b))
v intrr((b)., (b)4))); and

(xxiii) thmy(a) <> Ibderr(a, b).

From these relations the remaining assertions of the theorem follow. O

There are yet more syntactical constructions which become recursive functions under suitable numero-
tations. For example, if L and L' are arithmetized from recursive numerotations ¢ and ¢’ by a recursive
coding function, if I is an interpretation of L in L', and if there is a recursive function f such that for
all variables, function symbols, and predicate symbols s of L, f(a(s)) = ¢'(sy), then there is a recursive
function which associates to the expression number of a designator of L the expression number of its
interpretation by I.
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§S4 The incompleteness theorem

4.1 The diagonal lemma. Let L be an arithmetized numerical first-order language. A unary function f is
a diagonal function for L if for some variable xs, f(‘A”) = “A[xf|"A’]" for all A. An arithmetized numerical
first-order theory T will be called diagonalizable if some diagonal function for L(T) is representable in T.

A unary function h is a negation function for T if for any formula A of T, if A’ is the closure of A, then
h(‘A’) is the expression number of a formula B of T such that |-B < 71A’. When a negation function for
T has been chosen, we define a unary predicate thm’. by thm’.(a) < 3b(derr(a, b)AVcp1derr(h(a), c)).
Note that thm?%.(a) - thmr(a).

D1agoNAL LEMMA. Let T be an arithmetized numerical first-order theory, let f be a diagonal function
for L(T), and let h be a negation function for T. If the predicate p defined by p(a) <> 7thm’.(f(a)) is
representable in T, then T is inconsistent.

Proof. There is a formula A of T with expression number a such that A with x represents p in T. By
definition of p, 1p(a) implies I—TA[xf|d]. But if p(a), then I—TA[xf|d] because A with xs represents p in
T, soinall cases |-rA[xs|a]. Choose b such that derr(f(a), b). If derr(h(f(a)), c) for some ¢ < b, then T
is inconsistent by the closure theorem and the tautology theorem. Otherwise, 71p(a), and since A with x¢
represents p in T, |-71A[xf|a]. By the tautology theorem, T is inconsistent in this case as well. O

Remark. The proof of the diagonal lemma is the only potentially nonconstructive proof on these pages.
Indeed, we might not be able to decide whether p(a) or 71p(a), in which case the proof does not actually
produce a derivation of A[x¢|a] in T, but merely establishes that the nonexistence of such a derivation leads
to a contradiction. However, in our only application of the diagonal lemma in §4.2, p will be recursive and,
in particular, decidable.

4.2 Church’s theorem and incompleteness. We give a first proof of the incompleteness theorem based on
the diagonal lemma. We let T be an arithmetized numerical first-order theory. We must assume that the
arithmetization of T is sufficiently well-behaved. Precisely, we shall require that

(i) the predicates fmy(ry and derr are recursive;
(ii) there is a recursive diagonal function f for L(T);
(iii) there is a recursive negation function h for T.
These assumptions are met for example if the arithmetization of L(T) comes from a recursive numerota-
tion by a recursive coding function and if nlaxy is recursive. For then, with the notations of the theorem

of §3.2, the function f defined by f(a) = sub(a, (‘x’), (num(a))) satisfies (ii), and the function / defined
by h(a) = f-(clos(a)) satisfies (iii). Note that (i) and (iii) imply that thm/. is recursively enumerable.

CHURCH’s THEOREM. Suppose that every recursive unary predicate is representable in T. If thm/, is
recursive, then T is inconsistent.

Proof. Since thm’, is recursive, the predicate p defined by p(a) < 71thm’.(f(a)) is recursive, and hence
representable in T. By the diagonal lemma, T is inconsistent. O

LeMMA. If T is complete, then thm’; is recursive.

Proof. Indeed, we have 1thm’(a) < fmy(ry(a)vIb(derr(h(a), b)AVcp(Tdery(a, ¢))), and so 7 thm?,
is recursively enumerable. By the negation lemma, thm/, is recursive. O

From Church’s theorem and the lemma, we obtain at once

INCOMPLETENESS THEOREM 1. Suppose that every recursive unary predicate is representable in T'. If
T is complete, then it is inconsistent.

Note that the diagonal lemma, Church’s theorem, and the above lemma can all be proved with thmy in
place of thm’.. However, the proof of the incompleteness theorem obtained in this way is not constructive
in most cases of interest, since the proof of the lemma would depend on the consistency of T.

4.3 The fixed point theorem. The above proof of the incompleteness theorem is constructive, but it is
somewhat unsatisfying: if a first-order theory T satisfying the various hypotheses is consistent, we are
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unable to use it to find a closed formula A of T such that neither A nor 7A are theorems of T. In the
remaining of this section, we shall give a proof of the incompleteness theorem (with different hypotheses
on T) by actually producing such a formula.

We let T be an arithmetized numerical first-order theory.

Fixep PoiNT THEOREM. Suppose that some diagonal function f for L(T) is representable in T. For
any formula A of T, we can find a formula B of T, whose free variables are those of A without x¢, such
that 7B < A[x|'B’].

Proof. Let x be distinct from x; and not occurring in A. There is a formula D of T such that D with x, x
represents f in T and in which no variable other than x; and x is free. Let a be the expression number of
3x(D A A[xf[x]), and let B be the formula Ix(D[x¢|a] A A[xf(x]). If b is the expression number of B, then
b = f(a). Since D with x¢, x represents f, we have

FrD[xsla] < x=b, (1)

whence |-rD[xy, x|a, b] by the equality theorem. The formula D[x, x|a, bIAA[x f\B] — Bisasubstitution
axiom, so .
FrAlxsb] - B (2)

by the tautology theorem. By the equality theorem, |rx = b — A[xs[x] < A[x/[b]. A tautological
consequence of this and (1) is -7rD[xf|a] A A[xf[x] — A[xf|ia]. Hence

B — Alx|b] (3)

by the 3-introduction rule. From (2) and (3), we obtain }-7B < A[x f|5] by the tautology theorem, which
is the desired result. O

As an example, we prove an interesting corollary to the fixed point theorem. A truth definition for T
is a formula A of T in which no variable other than x is free and such that for every closed formula B of
T, B < Alx|'B"].

THEOREM ON TRUTH DEFINITIONS. Suppose that T is diagonalizable. If there exists a truth definition
for T, then T is inconsistent.

Proof. Let A be a truth definition for T and let f be a diagonal function for L(T) which is representable in
T. By the fixed point theorem, we can find a closed formula B of T such that |-7B < 7A'[x[x/][x/|'B"],
where A’ is a variant of A in which Xy is substitutible for x. By the variant theorem, |-7B < 7A[x|B’].
But we also have |-7B < A[x|'B'], so T is inconsistent by the tautology theorem. O

4.4 Rosser’s formula and incompleteness. Let T be an arithmetized numerical first-order theory having
the binary predicate symbol < about which we make the following assumptions:

(i) T is diagonalizable;
(ii) some function f such that f~(‘A’) = “7A’ for all A is representable in T}

(iii) derr is representable in T;
and for some formula U of T in which only x is free,

(iv) forall n, F7U[x|n];
(v) foralln, F7U—->x<SA—>x=0V--vx=;

(vi) foralln, F7U —» x <Snv i < Sx.

Intuitively, we intend the formula U to mean “x is a natural number”.

Let f be a diagonal function for L(T) which is representable in T, and let X, y, z, and w be distinct
variables, distinct from x; and not occurring in U. By assumptions (ii) and (iii), there are formulae C and
D of T such that C with x, y represents f- in T and such that D with y, z represents derr in T. We may
suppose that no variable other than x and y is free in C, and no variable other than y and z is free in D.
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Taking variants if necessary, we may assume that x is substitutible for x in C and for y in D, and that w is
substitutible for z in D. Applying the fixed point theorem to the formula

VyVz(U[x|z] - C[x|xs] = D[y|xs] = 3w(U[x[w] A w < Sz A D[z|w])),
we find a closed formula R of T such that

FR < VyvVz(U[x|z] - C[x

R'] - D[y

R’] - Iw(U[x|w] A w < Sz A D[z|w])). (1)

INCOMPLETENESS THEOREM 2. With the hypotheses of this paragraph, if either |-rR or |- 7R, then T
is inconsistent.

Proof. Assume first that |-rR and let n be the expression number of a derivation of R in T, i.e., such
that derr(‘R’, n). By (4), the tautology theorem, and the substitution theorem, we find |;U[x|n] —
C[x,y|'R", R'] - D[y, z|'R", 1] > Iw(U[x|w] A w < S11 A D[y, z|" R, w]). But }-7U[x|#] by (iv), and
F7Clx,y|'R", 1R ]and |tD[y, z|'R’, /1] by representability, so |- Iw(U[x|w]Aw < SiAD[y,z|" R, w])
by the detachment rule. By an instance of (v), the tautology theorem, and the distribution rule, |-73w((w =
0 AD[y,z| R, w]) vV --- v (w = 2 A D[y, z|"R", w])). Hence by 3-v distributivity and the replacement
theorem,

FDly,z|R",0] v - v D[y, z|R’, 7). (5)

We now consider two possibilities. If der7(“7R’, k) for some k with 0 < k < n, then |-77R, in which case T
isinconsistent. Otherwise, derr(‘R’, k) forall k with 0 < k < n. By representability, |- 1D[y,z| 1R, k]
for all k with 0 < k < n. Together with (5), we conclude that T is inconsistent in this case as well.

Assume now that |-77R and let n be the expression number of a derivation of 7R in T. By repre-
sentability, |-rD[y, z|"R’, #], whence 77 < Sz - Iw(U[x|w] A w < Sz A D[y, z|"TR", w]) by (iv), the
tautology theorem, and the substitution axioms. From this by the equality theorem, |17 < Sz - y =
"R' - Iw(U[x|w] A w < Sz A D[z|w]) whence

it < Sz - C[x

R'] = Iw(U[x|w] A w < Sz A D[z|w]) 6)

by representability and the equivalence theorem. As before, we consider two cases. If der7(‘R’, k) for some
k with 0 < k < n, then }-rR and T is inconsistent. Otherwise, derr(‘R’, k) for all k with 0 < k < n. By
representability and the equality theorem, -7z = k — “ID[y|'R’] for all k with 0 < k < n. Using an
instance of (v) and the tautology theorem, we obtain

rUlx|z] > z < Sit - “D[y|'R’]. )

From (6), (7), and (vi) by the tautology theorem, we find |;U[x|z] — C[x|'R'] - D[y|'R"] —
Iw(U[x|w] Aw < Sz A D[z|w]), whence |-7R by the generalization rule and (4). So T is inconsistent. [

Remark. 'This theorem does not imply that T[R] and T[7R] are inconsistent. In fact, in view of Proposi-
tion 1 of ch. 11 §1.1, it implies that if either T[R] or T[7R] is inconsistent, then T itself is inconsistent.

We delay to the next section the introduction of a large class of arithmetized first-order theories which
satisfy the hypotheses of either version of the incompleteness theorem.

§5 Minimal arithmetic

5.1 Minimal arithmetic. We introduce a first-order theory called minimal arithmetic and denoted by N.
The nonlogical symbols of L(N) are the constant 0, the unary function symbol S, the binary function
symbols + and -, and the binary predicate symbol <. In particular, L(N) is numerical. We abbreviate the
terms +ab and -ab by (a + b) and (a - b), respectively. As usual, we shall drop the parentheses whenever
possible. The nonlogical axioms of N are

N1 Sx # 0;

N2 Sx =Sy » x=y;
N3 x+0 = x;

N4 x+Sy=S(x+y);
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Ns x-0=0;

N6 x-Sy=(x-y)+x;

N7 (x < 0);

N8 x<Sy«<x<yvx=y;
N9 x<yvx=yvy<x.

5.2 Properties of N. We intend to prove that N satisfies the hypotheses of (both versions of) the incom-
pleteness theorem. We begin by investigating some basic properties of N.

(i) If m #+ n, then |-y = 13
(ii) if m +n = p, then by + 7 = p;
(iil) if mn = p, then -y - A = p;
(iv) if m < n, then |t < 7
(v) if m > n, then |-y (ri < 71);
(vi) Fnx <Syvy<Sx;
(vii) Fnyx<SAox=0V--Vvx=1;
(viii) FnIx(x<SAA) < A[X[0] V- v Alx|n];
(ix) FnVX(x<Sit— A) < A[X[0] A - A Alx|7];
(x) ifagis x and a,41 is Sa,,, then Fyx + 71 = a,;
(xi) ifbgis 0 and b, isb, + x, then Fyx-71=b,,.

To prove (i) we may assume #n < m by the symmetry theorem. Using k = m — n instances of N2 and the
tautology theorem, |-y 71 = 72 - k = 0. But |-k # 0 by N1 and the substitution rule, so |-y # 7 by the
tautology theorem.

We prove (ii) by induction on n. If n = 0, then p = m and 71 + 0 = i1 is an instance of N3. Suppose
that |y + (n — 1) = p = 1. By the equality axioms, nS(#1 + (n 1)) = p, whence |-y + 71 = p by an
instance of N4 and the equality theorem. The proof of (iii) is also by induction on n. If n = 0, then p = 0
and ri1-0 = 0 is an instance of N5. Suppose that |-y (n=1) = p = m. By N6, -yt 11 = (rin- (n =1)) + 1in,
whence -y - 71 = (p = m) + 1 by the equality theorem. By (i), Fn(p = m) + i = p,so - 71 = p by
the equality theorem.

We prove (iv) by induction on n. Suppose that m < n + 1. If m < n then |y < 7 by induction
hypothesis, whence |71 < S# by an instance N8 and the tautology theorem. Otherwise m = n and (iv)
is a tautological consequence of |-y = # and an instance of N8.

If n = 0, (v) is an instance of N7. Suppose that n > 1and that m > n+1. Then m > nand so |-y 7(71 < #)
by induction hypothesis. But also m # n and hence |-y # 71 by (i). From these by an instance of N8 and
the tautology theorem, |-y 7(ri2 < S#).

The formula (vi) is a tautological consequence of N8 and Ng. The implication from right to left in (vii)
follows from (iv) with the tautology theorem. We prove the other implication by induction on n. If n = 0,
the result is a tautological consequence of N7 and an instance of N8. Suppose that n > 1. By N8, |-yx <
Sf — x < n Vv x = f and so (vii) follows from the induction hypothesis and the tautology theorem.

By an instance of (vii), the tautology theorem, and the equivalence theorem, F3x(x < S#1 A A) <
Ix((x=0AA)V--Vv(x = AA)), whence FnIx(x < STAA) < Ix(x=0AA)V--vIX(X = 1A A) by 3-v
distributivity. From this by the replacement theorem and the equivalence theorem, we obtain (viii). The
proof of (ix) is identical using V-A distributivity and the other statement of the replacement theorem.

The last two assertions are proved by induction on #, being axioms of N if n = 0. By N4 and the
substitution rule, X +S# = S(x + 1), so by induction hypothesis and the tautology theorem, |-yx +S# =
Sa,, that is, Fyx + S = a,4;. Similary, by N6 and the substitution rule, |-yx - S# = (x - 71) + x, so by
induction hypothesis and the equality theorem, yx - S#1 = by4.
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5.3 The representability theorem.
REPRESENTABILITY THEOREM. All recursive functions and recursive predicates are representable in N.

Proof. By (i), Fn0 # 1. Thus by the proposition of §2.3, it suffices to show that every recursive function
is representable in N. For this it will suffice to prove that initial functions are representable in N, and that
the composition and minimization of functions representable in N are representable in N.T We start by
proving that initial functions are representable in N. By (ii) and (iii), x + y with x, y represents + in N
and x - y with x, y represents - in N. By the proposition of §2.2, + and - are representable in N. By (iv)
and (v), x < y with x, y represents < in N; since -y0 # 1, y< is representable in N by the proposition
of §2.3. Finally, x; with xy, ..., x, represents 7! in N by the identity axioms and the substitution rule, so
n is representable in N by the proposition of §2.2.

Suppose that f is the composition of g, hy, ..., hy, and that g, hy, ..., hy are representable in N. Then
there are formulae B, Cy, ..., Ci such that B with y;, ..., yk, z represents g in N and C; with xy, ..., X, ¥;
represents h; in N, for all i. We may assume that no variable other than yy, ..., yi, z is free in B. Let A be

dy1... 3y (Cr A - ACk AB).
Suppose that h;(as, ..., a,) = ¢; and that f(ay,...,a,) = g(c1,...,cx) = b. Then for all i, FnCilxy,. ..,
Xp|d1,...,4,) < yi = €, whence FnA[xy, ..., x4ld1, ..., d,] < (31 = &L A+ A yp = Cx A B) by the
equivalence theorem. By k uses of the replacement theorem, we obtain FyA[xq,...,x,ld1,...,d,] <
B{y1, .-, Yilét - s ék]- But By, - -5 yilérs ..o 6k < 2 = vay representability and hence yA[x;,
cXp|a1, . Ap) oz = b by the tautology theorem. Thus, A with xy, ..., x,, z represents f in N.

Finally, suppose that f is the minimization of g and that g is representable in N. There is a formula B
such that B with xy, ..., x,, y, z represents g in N. Let A be

B[z|0] A Vw(w < y — T1B[y, z|w, 0]).

Suppose that f(a,...,a,) = b. Then g(ay,...,a,,b) = 0and g(ay,...,an, k) = cx # 0 for k < b. By
representability, FxB[x1, ..., %, ¥|d1, ..., a4y, b] < z = 0, so

I—NB[xl,...,xn,y,z|t’11,...,()1,,,i),0] (1)
by the equality theorem and the tautology theorem, and hence
I—Ny:Z)—>B[xl,...,xn,z|d1,...,dn,()] (2)
by the equality theorem. Also by representability, FxB[x1,..., %, y|d1, ..., dns k] & z = ¢ if k < b.
Since ¢k # 0 by (i), Fny = k - B[xp, .. ,Xn>2|d1, ..., an, 0] by the ta.utology theorem and the
equality theorem. By (ix), this implies |y < b = B[x1, ..., Xy, 2|d1, . . ., 4y, 0]), whence
FaBlxt s X, 2ldns - 6, 0] > Ty < b) (3)
by the tautology theorem, and
Fny = b — Vw(w < y = TBlx1, ... X, Y5 2|15 ey Gy W, 0]) (4)
by the substitution rule, the generalization rule, and the equality theorem. By the substitution theorem, (1),

and the tautology theorem, FyVw(w < y — 7B[x1,...,Xx,, ¥, 2]d1, ..., A, w,0]) = (b < y). From this,
(3), and an instance of N9, we obtain

FNA[Xl)--.,Xan,--wdn]—>)/:b (5)

by the tautology theorem. From (2), (4), and (5) we get FnA[x1,...,Xp|d1,....d,] < ¥ = b by the
tautology theorem. So A with xy, ..., x,, y represents f in N. O

"This statement holds in fact for any extension T of N, as will be apparent from the proof. But we shall never use this stronger
result.
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5.4 The incompleteness of arithmetic. It is easy to devise a recursive numerotation for L(N). For example,
we can set the symbol number of the (n + 1)th variable to be n + 9, and assign the numbers 0 through 8 to
the other symbols of L(N). For any arithmetization of N, nlaxy is recursive, because if ny, ..., ng are the
expression numbers of N1-Ng then nlaxy(a) <> a = n; v--- v a = ng. Thus N itself can be arithmetized so
that it satisfies the hypotheses of both versions of the incompleteness theorem (taking U to be x = x for
the second version).

More generally, suppose that T is a first-order theory which is arithmetized from a recursive numero-
tation by a recursive coding function in such a way that nlaxy is recursive, and suppose given an interpre-
tation I of N in T for which = is =. Renaming the symbols of T if necessary, we may assume that 0; is 0,
Sris S, and < is <. By the representability theorem and the proposition of §2.4, every recursive function
or predicate is representable in T, and hence T satisfies the hypotheses of the first version of the incom-
pleteness theorem. Taking U to be the formula U;x, we see that T is also subject to the second version of
the incompleteness theorem.

THEOREM. Let T be a first-order theory and I an interpretation of N in an extension by definitions of T
such that =; is =. Assume that T is arithmetized from a recursive numerotation by a recursive coding
function in such a way that nlaxr is recursive. If T' is complete, then T is inconsistent.

Proof. Let o be the given numerotation of T, § the given coding function, and T” the given extension by
definitions of T. If T is obtained from T by the adjunction of n defined symbols, we can devise a recursive
numerotation ¢’ for T’ by letting o”(s) be o(s) + n if s is a symbol of T and by assigning the numbers 0
to n — 1 to the new symbols. Let T’ be arithmetized from ¢’ by f8, and let ay, ..., a, be the expression
numbers of the new nonlogical axioms of T’. Define recursive functions f and g by

f(b) = pa(len(a) =len(b) A (a)e = (b)o + 1 A Viden)-1((a)iv1 = f((0)ix1)))s
g(a) = ub(len(b) = len(a) A (b)o = (a)o — 1 A Viden(a)-1((D)is1 = g((@)i41))).

Then
nlaxy/(a) < (nlaxr(g(a)) Aa = f(g(a))) va=ayv--va=a,,

so nlaxyv is recursive. By the theorem on definitions, T’ is also complete, so it is inconsistent by the
preceding discussion. But T’ is a conservative extension of T, so T is inconsistent. O

We end this section by noting that N is, in fact, consistent and, therefore, incomplete. Observe that all
the nonlogical axioms of N are open, so by the corollary to the consistency theorem, 0 # 0 is a theorem of
N if and only if 0 # 0 is a tautological consequence of instances of equality rules and nonlogical axioms
of N. By Proposition 2 of ch. 1 §3.3, this will be the case if and only if 0 # 0 is a tautological consequence
of closed instances of equality rules and nonlogical axioms of N. Let A, ..., A, be such closed instances.
Define a truth valuation V on L(N) as follows: if A is elementary, V assigns T to A if and only if A is 0 = 0
or an atomic subformula of Ay, ..., A, for which A, (see ch. 1v $1.4 for the definition of the predicate A,).
By analyzing each axiom in turn, we see that V(A;) is T for all i. But clearly V(0 # 0) is F, and so 0 # 0 is
not a theorem of N.



Chapter Four
First-Order Number Theory

§1 Recursive extensions

1.1 Numerical realizations. Let L be a first-order language. A numerical realization o of L is the association
of an n-ary function f, to each n-ary function symbol f of L and of two n-ary predicates p}, and p, to
each n-ary predicate symbol p of L, with the requirement that both =}, and =, be =. When p}, and p,, are
the same predicate, we say that a decides p. We define a function or predicate u, for every designator u of
L. We first define u;, and u;, simultaneously by induction on the length of u. Let xy, ..., X, be the variables
free in u in alphabetical order. If u is a variable, set u;(a) = a. If uis fa; ... a, and if x;,)), ..., Xj,(x,) are
the variables occurring in a; in alphabetical order, set

ui(al, e a,,) = fa((al)j(ajl(l), cees ajl(kl)), PN (a,,)j(ajn(l), ey ajn(kn))).
Ifuispa;...a, and if xj,1), ..., Xj,(k;) are the variables occurring in a; in alphabetical order, set

ui(an,. .., a,) < py(@)5(aj,0) - @jykn)s - > @n)5 (@, 1) - Ao (kn)))
Ifuis Bv Candifx;, ..., x;, (resp. Xj,, ..., X;,) are the variables occurring in B (resp. in C) in alpha-
betical order, set uj(ai,...,a,) < Bi(ai,...,a;) Vv C;(aj,...,a;). Ifuis 7B, set u;(a,...,a,) <
“Bl(ai,...,a,). Finally, if u is 3xB, set uX(ay,...,a,) < Bi(aj,...,a,) if x is not free in B and
ui(ay,...,a,) <> 3aBi(ay,...,ai,a,ai4,...,a,) otherwise, where i is such that x precedes x;,; and is

preceded by x; in the alphabetical order (0 < i < n). Let u, be uj.
Two formulae A and B of a first-order language L will be called numerically equivalent if
(i) A and B have exactly the same free variables;
(ii) A < Bis derivable without nonlogical axioms;
(iii) for every numerical realization « of L the predicates A, and B, are equal.
We shall use the notation A ~ B (in this section only) to mean that A and B are numerically equivalent.
Observe that numerical equivalence is an equivalence relation.
If u is a designator of the form su, ... u,, we see at once from the inductive definition of uZ that uZ
depends only on each (u;)% and on which variables are free in which u;. Also, condition (iii) implies that

A and B are equal for every «a, as we see by considering the “opposite” realization. These two remarks,
together with the equivalence theorem, immediatly imply the following result.

ProposiTION 1. If B is obtained from A by replacing an occurence of Cby D and if C ~ D, then A ~ B.

ProPOSITION 2. The formulae A[x|a] and 3x(x = a A A) are numerically equivalent, provided that a is
substitutible for x in A, that x is free in A, and that x does not occur in a

Proof. Condition (i) is obvious and condition (ii) is true by the replacement theorem. To prove (iii), con-
sider the more general situation of a designator u in which x is free and a is substitutible for x. Let xy, ...,
X, be the variables free in u[x|a], x;,, ..., X;, those among them free in u, and x;,, ..., X;j, those among
them occurring in a (all arranged in alphabetical order). Suppose that x comes between x;, and x; ,, in
the alphabetical order. It is then easily proved by induction on the length of u that

ulxfali(ay,...,a,) isuz(ai,...,ai,84(aj,,...,a),), a5 Ai)s

i.e., the left-hand and right-hand sides are the same number if u is a term and are equivalent if u is a
formula. On the other hand, since =, is =, we have

(Ix(x=anA))(ar,...,a,) < Jala = aq(aj,...,a;,) NAs(ai,...,a,a,ai,,,...,a;)),
whence the result. O

56
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1.2 RE-formulae. Let L be a first-order language. The strict RE-formulae of L are defined inductively as
follows:

(i) y=1x;...x, is a strict RE-formula;
(ii) px;...x, and 7px;...Xx, are strict RE-formulae;
(iii) if A and B are strict RE-formulae, then A v B and A A B are strict RE-formulae;

(iv) if L has the binary predicate symbol < and if A is a strict RE-formula, then Vx(x <y — A) is a strict
RE-formula;

(v) if A is a strict RE-formula, then 3xA is a strict RE-formula.

A formula A of L is called an RE-formula if it is numerically equivalent to a strict RE-formula of L. Itis a
PR-formula if both A and 71A are RE-formulae.
We shall establish the following closure properties of the classes of RE-formulae and of PR-formulae.

(i) Open formulae are PR-formulae.
(ii") Any instance of an RE-formula is an RE-formula.
(iii") If A and B are RE-formulae, then A v B, A A B, Vx(x < a — A), and 3xA are RE-formulae.
(iv’) If A and B are PR-formulae, then A v B, 1A, 3x(x < a A A), and Vx(x < a — A) are PR-formulae.

We first show that x = a is an RE-formula by induction on the length of a. If a is a variable, x = aisa
strict RE-formula. Suppose that ais fa; ...a, and choose new variables x;, ..., x,. Then by Proposition 2
of §1.1, we have

x=a~3Ix(x;=a; A---3x,(x, =a, AxX=1X...X,) ),

which is an RE-formula by the induction hypothesis and Proposition 1 of §1.1.
We now prove (i). It suffices to prove that any open formula A is an RE-formula, and we proceed by
induction on the length of A. If A is pa; . ..a, and if xj, ..., X, do not occur in A, then

A~3Ix(xp=a;A--3x, (X, =a, APXy ... Xp) )

by Proposition 2 of §1.1, and this is an RE-formula by the preliminary result and Proposition 1 of §1.1. The
same proof shows that 7pa; ... a, is an RE-formula. If A is B v C with B and C open, A is an RE-formula
by induction hypothesis and Proposition 1 of §1.1. Finally, suppose that A is 7B with B open. If B is atomic,
we have already seen that A is an RE-formula. If B is of the form 71C, then clearly A ~ C and C is an RE-
formula by induction hypothesis, so A is an RE-formula. If Bis Cv D, then A ~ 7C A 1D and 7C and 1D
are RE-formulae by induction hypothesis, so A is an RE-formula by Proposition 1 of §1.1.

To prove (ii’), it suffices to prove that if A is an RE-formula and x does not occur in a, then A[x|a] is
an RE-formula, since arbitrary instances can be obtained by taking several instances of this form. If x is
not free in A, there is nothing to prove. Otherwise, (i) and Propositions 1 and 2 of §1.1 immediatly show
that A[x[a] is an RE-formula.

Finally, the assertions (iii") and (iv’) are easy consequences of (i’) and Propositions 1 and 2 of §1.1.

1.3 Recursive extensions. Let L be a first-order language and let T be a numerical first-order theory whose
language is an extension of L. A function symbol f of T is called recursiveon Lin T if 7y =fx;...x, < A
for some RE-formula A of L. A predicate symbol p of T is called recursive on L in T if Fr(px1...xp Ay =
0) v (Ipx; ... x4 A y= 1) <> A for some RE-formula A of L. A predicate symbol p of T is called recursively
enumerableon L in T if |-rpx; ...x, < A for some RE-formula A of L. Observe thatif -7px;...x, < A
for some PR-formula A of L, then p is recursive on L in T. In these definitions we sometimes identify a
list of nonlogical symbols of T with the first-order language having these symbols as its only nonlogical
symbols, and we often drop the reference to T when the context makes it clear which T is intended.

Let L’ be another first-order language of which L(T) is an extension. We say that L’ is recursive on L
in T if every nonlogical symbol of L’ is recursive on L in T. Note that L is always recursive on extensions
of itself in T since y = fx;...x, and (px;...x, A y = 0) vV (px;...x, A y = 1) are RE-formulae. We say
that T is recursive on L if L(T) is recursive on L in T. A recursive extension of T is an extension of T that
is recursive on L(T).
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PrOPOSITION. Let L and L’ be numerical first-order languages having the binary predicate symbol <
and let T be a first-order theory in which L’ is recursive on L. Suppose that |10 # 1. Then for every
RE-formula A of L', we can find an RE-formula A’ of L such that A < A’.

Proof. We may suppose that A is a strict RE-formula, and we proceed by induction on the length of A.
Suppose that A isy = fx; . ..x,. Since f is recursive on L, there is an RE-formula A’ of L such that |- A <
A’, and the proposition is proved in this case. Suppose that A is px; . . . X,,. Since p is recursive on L, there
is an RE-formula B of L such that |7(px;...x, Ay = 0) vV (7pX;...X, Ay = 1) <> B for some y distinct
from xy, ..., X,. Since |70 # 1, we have 7y = 0 - px;...x, < B by the tautology theorem and the
equality theorem, whence F7px;...x, < B[y|()] by the equality theorem, and the right-hand side is an
RE-formula of L. We derive similarly |-77px;...x, < B[yli], and the right-hand side is again an RE-
formula of L. If A is B v C (resp. B A C), then the desired result follows by the induction hypothesis and
the tautolgy theorem. Finally, suppose that A is Vx(x < y - B) (resp. 3xB). By induction hypothesis,
there is an RE-formula B’ of L such that 7B < B’. By the tautology theorem and the distribution rule,
FrA < Vx(x <y — B’) (resp. FrA < 3xB’), and the right-hand side is an RE-formula of L. O]

The proposition can be rephrased as follows. For any numerical first-order theory T such that |70 # 1,
the relation “L’ is recursive on L” is transitive in the collection of numerical first-order languages having
L(T) as an extension and containing the symbol <. A special case of this situation that is worth mentioning
is obtained when T" is an extension by definitions of T with exactly one new nonlogical symbol s: if it has
been previously proved that T is recursive on L, then it suffices that s be recursive on L(T) in T’ for T to
be recursive on L, and the former certainly happens e.g. if the right-hand side of the defining axiom of s
is a PR-formula or, if s is a function symbol, an RE-formula.

Remark. A recursive function or predicate symbol is intended to be a formal analogue to a recursive func-
tion or predicate. However, even if T is a substantial extension of N, it is not always true that a recursive
function or predicate can be represented by a symbol recursive on L(N) in an extension by definitions of
T. A function or predicate is sometimes called provably recursive in T if it has the latter property. If we use
the construction given in the proposition of ch. 111 §2.2 to obtain a defined function symbol representing
a given recursive function, this function symbol need not be recursive on L(N) since its defining axiom
might not be an RE-formula. We shall prove in chapter v that the recursive functions and predicates asso-
ciated with a first-order theory arithmetized from a recursive numerotation by a recursive coding function
are provably recursive in Peano arithmetic (see §2) if the numerotation and the coding function are.

1.4 The theorem on RE-formulae. Let L be a first-order language and o a numerical realization of L. If T'is
a numerical first-order theory whose language is an extension of L, we say that « is faithful in T if for every
function symbol f of L, f represents f, in T', and for every predicate symbol p of L, p positively (negatively)
represents p; (p;) in T. We say that « is well-founded in T either if L does not have the binary predicate
symbol < or if for all n there exist ay, ..., ax with a; < nsuchthat Frx <1 >x=d; vV x = dg.

THEOREM ON RE-FORMULAE. Let L be a first-order language, T a numerical first-order theory whose
language is an extension of L, and « a numerical realization of L that is faithful and well-founded in

T.If A is an RE-formula of L and if xy, ..., X,, are the variables free in A in alphabetical order, then A
with xy, ..., X, positively represents A, in T
Proof. We need only prove the theorem when A is a strict RE-formula. We assume that Ay (ay,...,a,)

and we proceed by induction on the length of A. Let A’ be A[xy,...,X,|d1,...,d,], the formula to be
derived. If A isy = fx...x,, then A" has the form a = £b,...b, where a = £u(by,...,by), s0 FrA’
by representability and the equality theorem. If A is px;...x, (resp. Ipx;...X,) then A’ has the form
pl}l ... b, (resp. ‘lpBI ... ZJ”) where pt(by,...,b,) (resp. p,(b1,...,by)), and hence A’ by positive
(resp. negative) representability. If A is B v C or B A C, the result follows from the induction hypothesis
by the tautology theorem. If A is Vx(x <y — B), then A’ has the form Vx(x < 7 - B’) and by induction
hypothesis |-1B’[x|ri1] for all m <, n. By the equality theorem, |-7x = #1 — B’ for all m <, n, whence by
well-foundedness and the tautology theorem, }-7rx < 72 — B’. By the generalization rule, -7A’. Finally,
suppose that A is 3xB and that A’ is 3xB’. Then |-yB’[x|#] for some # by induction hypothesis. Hence
1A’ by the substitution axioms. O

Let « be faithful and well-founded in T. If A is PR-formula of L with free variables xi, ..., X, in
alphabetical order, the theorem on RE-formulae shows that A with xy, ..., x,, positively represents A, in
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T and negatively represents A, in T. Thus in case « decides the predicate symbols occurring in A, we
obtain that A with xy, ..., x,, represents A, in T.

We define a numerical realization v of L(N) as follows: 0, is 0, S,(a) = a + 1, +, is +, -y is -, =7 are
both =, and < are both <. By (i)-(v) and (x) of ch. 111 §5.2, v is faithful in N. By (vii) of ch. 111 §5.2, v is
well-founded in N.

COROLLARY. Let A be an RE-formula (resp. a PR-formula) of L(N) and xq, ..., X, the variables free in
A in alphabetical order. Then A with x;, ..., X, positively represents (resp. represents) A, in N.

Here is an important example of application of this theorem. Let L be a first-order language and T
a numerical first-order theory whose language is an extension of L. Suppose given a faithful and well-
founded realization « of L. Then the theorem on RE-formula gives a method to derive representability
conditions for symbols recursive on L in T. Suppose for instance that 7y = fx;...x, < A for some
RE-formula A of L in which precisely x;, ..., x,, y are free. If there is an n-ary function f such that for
all numbers ay, ..., a,, Ag(f(a1,...,an), a1,...,ay,), then f represents f in T. For by the theorem on RE-
formulae, FrA[xq,...,%,, yla,... ,dn,f(al, ...,a,)], whence I—Tf(al, ...,ay) = fa;...a,. A similar
conclusion holds for recursive predicate symbols: if F7(px;...x, Ay = 0) VvV (px;...x, Ay =1) < A
for some RE-formula A of L in which exactly x;, ..., x,,, y are free, and if we can find a predicate p such
that for all numbers ay, ..., a,, Ag(xp(a1,. .., an), a1, ..., ay), weobtain F7(pd; ... d, A ¥plas,...,a,) =
0) v (Tpdy...du A Xp(ay, ..., a,) =1); thenif |70 # 1, we conclude that p represents p in T.

We see that the theorem on RE-formulae is a powerful tool to obtain constructive proofs of repre-
sentability of functions and predicates in recursive extensions.

§2  The first-order theory PA

2.1 Peano arithmetic. We introduce a first-order theory known as Peano arithmetic and denoted by PA.
The language of PA is L(N) and the axioms of PA are the axioms N1-N8 of N and all the formulae of the
form

A[x|0] - Vx(A — A[x|Sx]) - A, (1)

called induction axioms.

An extension P of PA is called a good extension if the formula (1) is a theorem of P for any formula A
of P. Such a formula is then also called an induction axiom of P. It is certainly the case that if P is obtained
from PA by the adjunction of new constants and new axioms, then P is a good extension of PA (by the
substitution rule). Note also that if P is a good extension of PA and if P’ is an extension by definitions of
P, then P’ is a good extension as well. For a translation of (1) into P is simply obtained by replacing A by
a translation A*, and hence is an induction axiom of P.

2.2 PA is an extension of N. We note that PA is an extension of N by deriving Ng in PA. We have }-p,0 <
0 v 0 = 0 by the identity axioms and, by N8, Fps0 < yv0 =y — 0 < Sy v 0= Sy, whence

FpaO<yvo=y (2)

by the induction axioms. Let A be the formula x < y — Sx < Sy. By N7, -p4 A[y|0], and by two instances
of N8 and the equivalence theorem, FpsA[y|Sy] < x < yvx = y - Sx < Sy v Sx = Sy. By the
equality axioms, |pyx = y > Sx = Sy, and so by the tautology theorem, ps A — A[y|Sy]. Hence }py A
by the induction axioms. Let B be N9g. By (2), FpaB[x|0]. The formula B — B[x|Sx] is a tautological
consequence of x = yvx <y - y < Sxand A. But }-ppx = y vV y <x - y < Sx by an instance of N8,
the symmetry theorem, and the tautology theorem. Hence pyB — B[x|Sx], and we conclude using the
induction axioms.

2.3 A few theorems of PA. We introduce some definitions: x < y <> x < yvx = y,Divxy < 3z(x = y-2),
andz=-xy < (y<xAx=y+2)V(x<yAz=0). We must check that

Fpadz((y <xAx=y+2)V(x<yArz=0))and

Foay<xAax=y+2)v(x<ynz=0)—>(y<xAax=y+zZ)v(x<ynz=0)-z=2.

These follow from (i), (vi), and (x) below. We abbreviate —ab by (a — b).
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(i) Fpax+y=y+x;

(ii) Fpax+(y+2)=(x+y)+z
(i) Fpax-y=y-x
(iv) Fpax-(y-2)=(x-y)z

(V) bpax-(y+2)=(x-y)+(x-2);
(Vi) Fpax+tz=y+z-o>x=y;

(Vil) Fpaz#0—>x-2=y-z2>x=y;

(viii) Fpax #0 < Jy(x =Sy);
(ix) Fpax <y <> Jz(y =x + Sz);
(x) Fpax <y« Jz(y=x+2);
(xi) Fpax#0<0<x;

(xii) Fpa0 < x;

(xiii) Fppx<y—>y<z—->x<z;

(xiv) Fpax =y —> x<y)

(xv) Fpax<y—>Tx=yVvy<x)

(xvi) Fpax<y—-z<w—-ox+z<y+w;
(xvil) Fpaw #0 > x<y—>z<w—ox-2<y -w;
(xviil) Fpax <x+Sy;

(xiX) Fpax <x+y;

(xxX) Fpay#0—>x<x-y;

(xxi) Fpalx+y)-y=x;

(xxii) Fpay<x—>(x-p)+y=x;

(xxiii) Fpax —y<x;
(xxiv) Fpax 0>y #0—>x—-y<x;

(xxv) FpaDivxy <> Jz(z<SxAx =y-2);
(xxvi) Fpax #0 - Divxy > y<x;

(xxvii) |paDiv0x;
(xxviii) FpaDivix - x = I
(xxix) FpaDivx0 <> x = 0;

(xxx) FppDivxy — Divyz - Divxz;
(xxxi) FpaDivxy — Div(x-z)(y - 2);
(xxxii) Fppz # 0 — Div(x - z)(y-z) - Divxy;

(xxxiii) FpaDivxz — Div yz — Div(x + y)z;
(xxxiv) FpaDivxz - Div(x + y)z - Div yz;
By the identity axioms, }-py0 + 0 = 0 + 0, and by N1, N4, and the equality theorem, fpyx +0 =0+ x —

Sx+0=0+Sx,so
I—pr+O:0+x (3)

by the induction axioms. By N1 and the equality theorem, FpsSy +0 = S(y +0), and by N4 |p,Sy + Sx =
S(Sy + x) whence |paSy + x = S(y + x) = Sy + Sx = SS(y + x). But by N4 and the equality theorem,
FpaSS(y + x) = S(y + Sx), so by the equality theorem, |psSy + x = S(y + x) = Sy + Sx = S(y + Sx). By
the induction axioms |psSy + x = S(y + x), whence by N4 and the equality theorem, }pySy +x = y + Sx.
Therefore by N4 and the equality theorem,

Fpax+y=y+x—->x+Sy=Sy+x. (4)

From (3) and (4) by the induction axioms, we obtain (i).
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The derivations of (ii)-(xxxiv) are of a similar nature and are omitted. Complete derivations of many
of them can be found in [5].

Clearly < and - are recursive on L(N). By (xxv), Div is also recursive on L(N). The above theorems
and N1-No allow us to derive all the elementary identities of arithmetic, such as (x + y) - (x + y) = ((x -
)+ (x- ¥))) + (¥ y), using only the logical rules. All such results will often be used tacitly afterwards
as the complexity increases.

§3 Definitions in PA

3.1 Complete induction. In this section we shall prove general methods for building extensions by defi-
nitions of PA and introduce such extensions which will be useful later on. In this paragraph, P is a good
extension of PA.

PrINCIPLE OF COMPLETE INDUCTION. Let A be a formula of P and x, y distinct variables such that y
does not occur in A. Then |pVx(Vy(y < x — A[x]y]) > A) - VxA.

Proof. Let B be Vy(y < x - A[x]y]). By N7 and the tautology theorem, |-py < 0 — A[x|y], whence
pB[x]0] (1)

by the generalization rule. By N8 and the tautology theorem, }-p(y < Sx - A[x]y]) < (y < x = A[x]y]) A
(y = x = A[x|y]). From this by the equivalence theorem, V-A distributivity, and the replacement theorem,
I pB[x|Sx] <> B A A. Now by the substitution theorem and the tautology theorem,

FpVx(B - A) - B > BAA, (2)
so pVx(B - A) — B - B[x|Sx], and hence
FpVx(B — A) > Vx(B - B[x|Sx]) (3)

by the V-introduction rule. From (1), (3), and the induction axioms, |-pVx(B — A) — B, and by (2), the
tautology theorem, and the V-introduction rule, FpVx(B - A) - VxA. O

The following corollary will also be called the principle of complete induction.

COROLLARY. Let A be a formula of P and xy, ..., X, y1, ..., ¥, distinct variables such thatyy, ..., y, do
not occur in A. If f is an n-ary function symbol of P, then

FpVxp... VX, (Vyr... Vyu(fyr...yn <fXp...%, = A[X, .., X0 V1 - 25 V0]) = A) = Vxp ... VXA

Proof. Let z and w be distinct from X;, ..., X, Y1, ..., Y» and not occurring in A and let B be the formula
Vx;...Vx,(z = fx;...x, — A). Using prenex operations, the equality theorem, and the equivalence
theorem, we find

FpVxy...Vx,(Vyi... Yy (fy1 ...y, <fx1...%, > A[X1, .., Xp|y1, - - -5 ¥u]) = A)
< Vz(Vw(w < z - B[z|w]) —> B).

We also clearly have |-pVzB — VX, ... Vx,A. By the principle of complete induction, |-pVz(Vw(w <z —
B[z|w]) - B) — VzB. The desired theorem is a tauological consequence of those three formulae. O

LEAsT NUMBER PRINCIPLE. Let A be a formula of P and x, y distinct variables such that y does not
occur in A. Then FpIxA — Ix(A A Vy(y < x = TA[x|y])). If |-p3xA, then existence and uniqueness
conditions for x in A A Vy(y < x - T1A[x]y]) are theorems of P.

Proof. The first assertion follows from the principle of complete induction (with 1A instead of A) by the
tautology theorem and the equivalence theorem. Assuming }-p3xA, the existence condition is obtained
from the first assertion by the detachment rule. A uniqueness condition has the form

A AVy(y <x = TA[x]y]) > Alx[x'] A Vy(y < X' — A[x]y]) > x=x' (4)

for some suitable x’. By the substitution theorem and the tautology theorem, FpA A Vy(y < x' —
TA[x[x']) - (x < x) and FpA[x]x'] A Vy(y < x > TA) - (X’ < x). Now (4) is a tautological con-
sequence of these formulae and an instance of No. O



62 FIRST-ORDER NUMBER THEORY Iv 3.2

Thus if x, Xy, ..., X, are distinct and include the variables free in A and if y does not occur in A, the
first-order theory obtained from P by the adjunction of a new n-ary function symbol f and the axiom
x = fx;...X, < A A Vy(y < x > 7A[x]y]) is an extension by definitions of P. We shall often abbreviate
the defining axiom of f by fx; ...x, = yxA. The loss of the variable y in this abbreviation does not matter
since different choices of y, as long as they do not occur in A, yield equivalent extensions by definitions by
the variant theorem. Sometimes we even use yxA as a term, the necessary extension by definitions being
taken implicitly.

It is clear that if FpA < B for some PR-formula B of P, and if f is defined as above, then f is recursive
on any language containing < and the nonlogical symbols occurring in B.

We remark now once and for all that if A has the form x = a v B where x does not occur in a, then
since |-p3x(x = a) and |-px = a - x = aVv B, we have |-p3xA by the distribution rule and the detachment
rule. Thus in this particular case, the hypothesis of the least number principle is verified.

3.2 The theorem on sequences. We define RPxy < Vz(Div(x - z)y - Divzy), OPxy = ((x + y) - (x +
¥)) + Sx, and

Bxy=pz(z=x-1v3Ix'Iy (x' <xAny <xanx=0Px"y ADivx'S(SOPzy- y'))).

Note that Fpyx < OPxy Ay < OPxy, FpaOPxy # 0, and FpyBxy < x — 1. It is clear that OP and B are
recursive on L(N). By the theorem on RE-formulae, we see that B represents in PA the coding function
of ch. 11 §1.2.

LEMMA 1. Fpyy # 0 > RPxy — RP yx.

Proof. Let P be the first-order theory obtained from PA by the adjunction of new constants e;, e;, e; and
the axioms e, # 0, RP eje,, and Div(e; - e3)e;. By the deduction theorem and the definition of RP, it will
suffice to prove |-pDiv eze;. By the substitution axioms, the definition of Div, and the symmetry theorem,
Fpe,-e; = e, -z — Div(e; - z)e,, whence

Fpes-es3 = e -z — Divze, (5)

by definition of RP and the new axioms. By the equality theorem, |-pe,-e; =e;-zAnz=€,-2 > €;-€3 =
e;-(ey-2'), whence pey-e3 =€ -zAz=e,-2' > e;-e; = (e;-€;) -2’ by properties of -. From this by the
distribution rule and prenex operations, |-pe; - e; = €; - z A Divze, — Div(e; - e3)(e; - e;). Using (5) and
the 3-introduction rule, |-pDiv(e; - e3)e; — Div(e; - e3)(e; - €1), and finally }-pDiv(e; - e3)e; - Divese;
because | pe, # 0. By the axioms of P, }-pDivese;. O

LEMMA 2. FppOPxy =OPx’y' o x=x"ny ="

Proof. The implication from right to left is tautologically equivalent to an equality axiom. To derive the
other implication, we shall first prove

Fpax+y<x'+y - OPxy<OPx'y and (6)
Fpax'+y <x+y—>OPx'y <OPxy. (7)

We have FpaS(x+)-S(x+y) = ((x+p)-(x+ )+ (SCx+ y) + (x+ y)), and since FpaSx < S(x+y)+(x+y),
we find
FpaOPxy <S(x + y)-S(x + y). (8)

On the other hand we can easily derive

Fpalx’ +y") - (x"+y") <OPxy'. (9)
Now fpax+y < x'+y" = S(x+y) < x"+y". Combining this with (8) and (9) we obtain (6). The derivation
of (7) is similar. From (6) and (7), we obtain

FpaOPxy=0Px'y > x+y=x"+y (10)

whence FppOPxy = OPx'y’ —» (x + y) - (x + y) = (x" + ') - (x + y'). From this by definition of OP
and properties of +, Fpp,OPxy = OPx’y’ — Sx = Sx’, and hence |pyOPxy = OPx'y’ - x = x’ by Na.
Together with (10) and properties of +, this implies FppOPxy = OPx’y’ - y = y". O
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LEMMA 3. FppDivxy — RPS((z + y) - x)S(z - x).

Proof. Let P be obtained from PA by the adjunction of new constants e;, e,, e3, and e4, and the axioms
Diveje; and Div(S((e; + e3) - €1) - €4)S(e; - 1) (henceforth referred to as first and second axiom). By the
deduction theorem and the definition of RP, the lemma is reduced to

|—pDive4S(e3 -el). (11)

We shall first prove
FpaRP xS(z - x). (12)

We know that |paDiv((w - z) - x)x and FppDiv((w - z) - x)x — Div(w + ((w - z) - x))x = Divwx, whence
FpaDiv(w + ((w - 2) - x))x — Divwx. Since FpaS(z- x) - w =w + ((w - 2) - x), we obtain (12).

We have |-pS((e; +€5) -e;)-es = (S(ez - e1) - e4) + ((ez - €) - e4). Using |-pDiv(S(es - €;) - e4)S(es - e;)
and the second axiom, we infer |-pDiv((e; - €;) - €4)S(es - €;). By an instance of (12) and properties of -, we
obtain

FpDiv(ey - €;)S(es - €1) (13)
By the first axiom and properties of Div, |-pDiv(es-e;)(e4-€2). By (13) and the transitivity of Div, |-pDiv(es-
e;)S(es - €;), and hence (11) by an instance of (12) and the substitution theorem. O

LEMMA 4. Let P be a good extension of PA, aa term of P. If xand z do not occur in a, then |-p3IxVy(y <
Z—> a<Xx).

Proof. Let A be the formula to be derived. We have }-pA[z[0] and |pVy(y <z — a <x) > Vy(y < Sz —>
a < Sx + a[ylz]), whence }pA — A[z|Sz] by the substitution axioms and the 3-introduction rule. By the
induction axioms, |-pA. O

LEMMA 5. Let P be a good extension of PA, A and B formulae of P, and x, y, z variables such that y, z
are not free in A and x, z are not free in B. Suppose that
(i) FpIz(A - x<2);
(ii) +pB[yli]; and
(i) pA - B > RPxy.
Then }p3z(VYx(A — Divzx) A Vy(B - 1Divzy)).
Proof. Let w be distinct from X, y, z and not occurring in A. We first derive in P the formula 3zC, where
Cis
Vx(x < w - A — Divzx) A Vy(B — 1 Divzy),

using an induction axiom. We have }-»B — y # 1 by (ii), whence |-pB — 11Divly by properties of Div.
By N7 and the tautology theorem, |-px < 0 - A — Divix. From the last two formulae, we find

Fp3zC[w]0]. (14)
We claim that
FpC — Alx|w] > x<w > A > Div(z- w)x, (15)
FpC — Alx|w] > x=w = A - Div(z - w)x, (16)
FpC — A[x|w] - B - 1 Div(z - w)y, (17)
FpC — TA[x|w] > x <w - A - Divzx, (18)
FpC— 1A[x|w] > x=w —> A - Divzx, (19)
FpC — 1A[x|w] > B - 1Divzy. (20)

To obtain (15), apply the substitution theorem to the left-hand side of C, and use |-pDivzx — Div(z - w)x.
To obtain (16), use |-pDiv(z - x)x and the equality theorem. By hypothesis (iii) and the defining axiom of
RP, }-pA[x|w] — B — 1 Divzy — 71 Div(z-w)y; (17) is a tautological consequence of the latter and | pC —
B — 71 Divzy. Finally, (18) and (20) are straightforward and (19) is obtained from the tautology 1A [x|w] —
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A[x|w] — Divzw using the equality theorem. The following formulae are tautological consequences of an
instance of N8 and (15)-(16) (resp. (18)-(19)):

FpC — A[x|w] > x < Sw - A — Div(z - w)x, (21)
FpC — TA[x|w] > x < Sw > A - Divzx. (22)

From (17) and (21) by the V-introduction rule, we obtain }pC — A[x|w] - C[z, w|z-w, Sw] and similarly
from (20) and (22), FpC — 1A[x|w] - C[z,w|z - w, Sw]. Using the substitution axioms, these become
FpC — A[x]w] - FzC[w|Sw] and }-pC — 1A[x|w] - FzC[w]|Sw]. Combining these two formulae with
the tautology theorem and using the 3-introduction rule, we obtain

Fp3zC — 3zC[w]|Sw]. (23)

From (14) and (23) by the induction axioms, we find |-p3zC. We let D be the formula (x < w - A —
Divzx)A(B — 1 Divzy), and D’ the formula (A — Divzx)A(B - 1Divzy). Then (A - x < w)AD — D'is
a tautology. Using the distribution rule thrice and the 3-introduction rule, we obtain }-pIw3zVxVy((A —
x <w) A D) - JzVxVyD’, whence Iw(A - x < w) A 3zC - Fz(Vx(A — Divzx) A Yy(B — 1Divzy)) by
prenex operations. Using the hypothesis (i) and our previous result, we obtain |-p3z(Vx(A — Divzx) A
Vy(B — 71 Divzy)) as desired. O]

We are now able to prove the main result of this section.

THEOREM ON SEQUENCES. Let P be a good extension of PA, a a term of P, and X, y, z variables such
that x and z do not occur in a. Then |-p3IxVy(y < z - Bxy = a).

Proof. Let xy, ..., X, be the variables other than y occurring in a, and let x’, w, w’ be variables distinct
from x, y, and z and not occuring in a. By lemma 4, |-p3xVy(y < z - SOPay < x). Define fzx; ...x, =
pxVy(y < z - SOPay < x). The hypotheses of lemma 5 are clearly satisfied when A and B are x <
fzx,...x, Ax # 0 and y = 0. Hence we can define g by gzx;...x, = pw(Vx(x < fzx;...X, AX # 0 >
Divwx) A Vy(y = 0 - 1 Divwy)). We denote by b the term gzx; . .. x,,. Note that since |-pDiv 00,

Fpb = 0. (24)

Using Fpz <y > z+(y—2) =y, bpz < y > y—z # 0, and lemma 3, we obtain pz < y —
x # 0 - Divx(y — z) - RPS(y - x)S(z - x), an instance of which is Fpz < y — gwx;...x, # 0 >
Divgwx;...x,(y —2) > RPS(y - gwx;...x,)S(z- gwx; ... x,). But the definition of g is such that }pz <
y—y<fwx;...x, > Divgwx;...x,(y — z), and so, using (24),

Fpz<y—y<fwx;...x, > RPS(y -gwxi...x,)S(z-gwxy...x,). (25)
Inverting the roles of y and z in the above formula and using lemma 1, we obtain
Fpy<z—z<fwx;...x, > RPS(y -gwxi...x,)S(z-gwx;...x,). (26)
From (25) and (26),
Fpyxz—->y<fwx;...x, > z<fwx;...x, > RPS(y-gwxy...x,)S(z- gwxy...x,). (27)

We let A be y(y < zAw = S(SOPay - b)) and B be Ix(x < fzx;...x, Al < xAVy(y <z - x #
SOPay) Aw' = S(x-b)) vw = 0. We claim that

Fpix(A - w<x), (28)
FpB[w'[i], and (29)
FpA - B > RPww'. (30)

Now by the definition of f and (24), }-pA — w < S(fzx; . .. X,, -b), and thus (28) holds. Also by (24), Fpi <
x — S(x - b) # 1 and hence (29) holds. By the definition of f, |-py < z - SOPay < fzx; ...x, and by the
substitution theorem, |-py <z — Vy(y <z - x # SOPay) — x # SOP ay. From these and (27) we obtain
Fpy<z—>x<fzx;...x, - Vy(y<z—>x+SOPay) > w=S(SOPay-b) > w =S(x-b) > RPww'. By
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the tautology theorem, the 3-introduction rule, and prenex operations, we obtain (30). Thus by lemma s,
we may define h by hzx; ...x, = ux’'(Vw(A - Divx'w) A YW/(B — 1Divx'w’)). We let ¢ be hzx; ... x,.

We now show that |-py < z - B OP cby = a. By the generalization rule and the substitution axioms,
this will complete the proof of the theorem. By the definition of B, it will suffice to prove

Fpy <z —c<OPcbAb < OPcbADivcS(SOPay -b), (31)
I—Py<z—>x<a—>x#:OPcb—i,and (32)
Fpy<z—>x<a—>w<OPcb—>w <OPcb— OPcb+ OPww’ v 1DivwS(SOPxy - w)). (33)

Now (31) follows at once from the definition of h and the fact that |-px < OPxyAy < OP xy. To prove (32),
since -pOPxy # 0 and }-py < OP xy, it will suffice to prove

Fpy<z—>a<b (34)

But by definition of g, |-py < z - DivbS OP ay, and so by (24), -py < z - SOPay < b, whence (34). By
lemma 2, pw # c VW' = b — OPcb # OPww/, and so to prove (33) we need only prove Fpy <z - x <
a — 1DivcS(SOPxy - b). Given the definition of h, it suffices to prove

Fpy <z —>x<a—SOPXy< fzx;...x, A1 <SOPxy A Yy(y < z > SOPxy # SOPay).

This easily follows from the definition of f and the properties of OP. O

3.3 Coding function symbols. A binary function symbol f of an extension P of PA will be called a coding
function symbol in P if pfxy < x — 1, and if whenever a is a term of an extension by definitions P’ of P
in which x and z do not occur, |-p:3IxVy(y < z — fxy = a). We have just proved that there exists a coding
function symbol in any good extension of PA which is recursive on L(N) in PA, namely B. From now on
we fix a good extension P of PA and a coding function symbol B in P.

In the sequel, applications of the theorem on sequences will appear as definitions of the form
fzx;...x, = pxA where FpA < Vy(y < z - Bxy = gx...x,) for some defined function symbol g.
It will usually be obvious how to define g suitably.

We abbreviate BaSb by (a)p, and ((a)p). by (a)p,c. If # is a natural number, we also write (a), instead
of (a);. In the same way that coding functions were used to define recursive n-ary sequence functions,
we can use coding function symbols to discuss sequences of numbers in PA. We now introduce defined
symbols for this purpose.

(i) Lenx = Bx0;

(ii) Sqx < Vy(y <x — 3z(z < SLenx A Bxz + Byz));

(iii) x e y < Sqy A 3Jz(z <Leny A x =(y).);

(iv) *xy = pz(Lenz = Lenx + Len y A Vw(w < Lenx — (2),, = (x)w) A Vw(w <Leny — (2)w+Lenx =
()’)w)),

(v) Inixy = pz(Lenz = y AVw(w < y = (2)y = (x)));

(vi) z= Rmvixy < (y # 0nSqzALenz = Lenx—'i/\Vw(w <Lenx—-1—-w<y—(2)y = (x),)AYw(w <
Lenx—1—-y<w = (2)y =(X)sw)) V(y=0Az=x).

We abbreviate *ab by (a * b). Observe that Len, Sq, €, *, Ini, and Rmv are recursive on L(N) with B. The
fundamental property of Sq is the theorem

FpSqx - Sqy = Vz(z <SLenx - Bxz=Byz) > x=y (35)

which we now derive. We have |-pSqx — y < x — 3z(z < SLenx A Bxz # Byz) by definition of Sq. By
rudimentary operations, |-p713z(z < SLenx A Bxz # Byz) <> Vz(z < SLenx — Bxz = Byz). From these
by the tautology theorem,

FpSqx - Vz(z < SLenx - Bxz = Byz) - (y < x), (36)
whence by the substitution rule and the symmetry theorem,

FpSqy - Vz(z < SLen y - Bxz = Byz) - 1(x < y). (37)
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By the substitution theorem and the definition of Len, |-pVz(z < SLenx — Bxz = Byz) > 0 < SLenx —
Lenx = Leny. Since p0 < SLenx, we obtain |pVz(z < SLenx — Bxz = Byz) - Lenx = Leny,
whence

FpVz(z < SLenx — Bxz = Byz) » Vz(z < SLen y —» Bxz = Byz) (38)

by the equality theorem. From (36), (37), (38), and Nog by the tautology theorem, we obtain (35).
Other properties of these symbols are listed below. All of them are immediate consequences of the
definitions.

(i) FpLen(x * y) = Lenx + Len y;
(i) FpSq(x * y);
(iil) Fpx*(yr2)=(x*y)*z
(iv) FpSqy >Sqz—o>xecy*rzexeyvxez;
(v) FplenInixy = y;
(vi) FpSqlnixy;
(vii) Fpy=0—Rmvxy=x;
(viii) I—Py¢0—>Leanvxy:Lenx—i;
(ix) Fpy#0—SqRmvxy.
(x) I—Pqu—>Lenx=0—>x=0;

The proof of (x) uses the fact that |pBxy < x — 1.

3.4 Sequences in PA. We now show how sequences can be defined in P. Let a be a term of P and x, xy, ...,
Xu, Y, Z, and w distinct variables such that x;, ..., X,, and y include the variables occurring in a. Define
a function symbol gby z = gywx;...x, <> (y = 0Az = w) v (y # 0 Az = a[yly - 1]), and let f be
defined by fzwx; ...x, = uxVy(y < z - Bxy = gywx;...X,). We then define an (n + 1)-ary function
symbol h by hwx; . ..x, = fSwwx; ...x,. Intuitively, it is understood that hwx; .. .x, is a number for the
sequence of a as y varies from 0 to w — 1 (being the empty sequence if w = 0). Observe that h is recursive
on any language containing L(N), B, and the nonlogical symbols of a. In the particular case when xj, ...,
X, are exactly the variables occurring in a other than y in alphabetical order, we shall abbreviate the term
hbx; ...x, to (a)y<p. Note that y does not occur in (a)y<p unless it occurs in b.

Suppose now that f is the (n + 1)-ary function symbol defined by y = fxx;...x, & (x =0A y =
x)Vevix=n-lay=x,)Vv((x= Ovevx=n=-1A y = 0). We introduce the n-ary function
symbol ¢, by ¢nx1...x, = (fxx1...%4)x<i. By ch. 111 §5.2 (ix), we have

Fpdpxi...x, = yx(BxO = ABxl=x A ABxi = x,).

We use (ay, ..., a,) as an abbreviation of ¢,a; ...a,. All the symbols {, are recursive on L(N) with B.

Letx, Xy, ..., X,, ¥, and z be distinct variables and a, b terms of P such that xy, ..., x,, are the variables
occurring in a in alphabetical order except x and the variables occurring in b in alphabetical order except
x. Define f by w = fzxx; ... x, < (x <zAw =a) v (T(x < z) Aw = b[y|x—z]) and gby w = gzxx; ...x, <
(x<z—>w=a)Vv ((x<z) Aw = a[x|Sx]). Then

(i) Fpy <z - ((a)x<r)y = al[x]y]
(i) Fplen(a)y<, =%
(iii) FpSq(a)x<ss
(iv) FpVx(x<z—>a=b) > (a)xes = (b)xess
(v) FpIni(a)re,y = (a)xeys
(Vi) Fp(a)xey * (b)xcz = (fyxX1 .. . Xp)xayszs

(vii) Fpy <z —> Rmv(a)x<,Sy = (YXX1 ... Xy )y i}

and for all natural numbers k and #,

(viil) Fp(a)xesi = (alx]0],...,a[x|n]);
(ix) ifl<k<n, FpB(xp,...,xn)k = x5
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(x) FpLen(xy,...,x,) =1
(xi) FpSq(xi,...,xn);
(xi) if1< k <n, FpIni(xy, ..., xa0k = (X1, ..., Xk);
(xiii) if1<k<nm FpRMV(X1, ..o Xk = (X1, -+ vy Xkt Xktls « « o> X )3

(xiv) FpQo = 0.
Again, these are straightforward consequences of the definitions.
3.5 The recursion principle.

RECURSION PRINCIPLE 1. Let P be a good extension of PA, B a coding function symbol in P, and g an
(n + 2)-ary function symbol of P. Then there is a defined (n + 1)-ary function symbol f of P which is
recursive on L(N) with B and g such that |-pfxx” = g(fxx" ), xx".

Proof. Let AbeLeny = x A Vz(z < x — BySz = glni yzzx"). We prove |-p3yA. Using the induction
axioms, it will suffice to prove

Fp3yA[x|0] and (39)
FpdyA — FyAlx|Sx]. (40)

Since FpLenf, = 0, we clearly have I—pA[x,y|0,()0], whence (39). We denote by a the term y *
(gIni yxxx") and we prove pA — Alx, y|Sx,a]. We can then infer (40) by the substitution axioms
and the 3-introduction rule. By properties of * and Ini, we have

Fpleny =x — z <Sx — Ini yz = Iniaz (41)
and pLen y = x - z < x - BySz = BaSz. From these we obtain
Fpleny=x -z <x — BySz = glni yzzx" — BaSz = gIniazzx" (42)
by the equality theorem. Also, by the choice of a, we have

Fpleny =x — Lena = Sx and (43)
Fpleny = x - BaSx = gIni yxxx". (44)

From (44) and (41) we obtain }-pLen y = x - z = x - BaSz = gIniazzx". From this, (43), and (42), we
obtain (40).

Thus we can legitimately define a function symbol f' by f’xx" = uyA. The actual definition of f is
then fxx” = Bf'Sxx"Sx. Since Ini is recursive on L(N) with B, f is recursive on L(N) with B and g. By the
definition of f’, we have

FpBf Sxx"Sx = gInif'Sxx"xxx" and (45)
FpLenf'Sxx™" = Sx. (46)

The latter implies |pz < Sx — BInif’Sxx"xSz = Bf'Sxx"Sz. By the definition of f’, |pz < Sx —
Bf'Sxx"Sz = Bf'Szx"Sz, whence }pz < Sx — BInif'Sxx"xSz = fzx" by the previous formula and the
definition of f. But by properties of sequences, }-pz < Sx - B(fxx"),,Sz = fzx”, and so

Fpz < Sx — BInif'Sxx"xSz = B{fxx"),<xSz. (47)

We also have |plenInif’Sxx"x = x and Fplen{fxx"),, = x, and together with (47) we obtain
FpInif'Sxx"x = (fxx"),<x by (35) of §3.3. From this and (45) by the equality theorem, }-pBf'Sxx"Sx =
g(fxx")x<xxx", which is the desired conclusion. O

We remark that if f and f’ both satisfy the conclusion of the recursion principle, then an easy applica-
tion of the principle of complete induction shows that |-pfxx" = f’xx", so in that sense f is “unique”. Some-
times we use fxx” = g(fxx"),,xx" as if it were the defining axiom of f. It is also possible to define predi-
cate symbols by recursion. If p is an n-ary predicate symbol in a numerical theory T such that |40 # 1, an
n-ary function symbol X;, can be defined by y = Xpx1...x, < (px1... %, Ay = 0) v (px1...x, Ay =1).



68 FIRST-ORDER NUMBER THEORY IV 3.6

RECURSION PRINCIPLE 2. Let P be a good extension of PA, B a coding function symbol in P, and q an
(n +2)-ary predicate symbol of P. Then there is a defined (# +1)-ary predicate symbol p of P which is
recursive on L(N) with B and q such that |-ppxx” <> q(Xpxx")cxxx".

Proof. Define f by the recursion principle so that pfxx" = Xq(fxx"),<,xx", and define p by pxx” <«
fxx" = 0. Then clearly |-pfxx" = Xpxx™ and fppxx” <> q(Xpxx"™)rcxxx". O

3.6 Examples of recursion. We end this chapter by discussing a few examples of application of the recur-
sion principle. First, it is useful to know that if f is defined so that |-pfxx” = g(fxx"),<xxx", then we can
“unroll” this formula to obtain |- Pficx” = a where f does not occur in a. We show this by induction on k.
If k = 0, then }-p(fxx"), 4 = 0 and so |pf0x" = g00x". Now if k > 1and for all r < k, |-pfix" = a, fora
term a, in which f does not occur, then }—Pka” =gag,..., ak_l)kx".

Let f be an (n + 1)-ary function symbol in P. Define the (n + 3)-ary function symbol g by

w=gzyxx" < (y=0Aw=x)Vv(y+0Arw=Bzy).

By the recursion principle, we can define an (n + 2)-ary function symbol f’ so that }pf yxx" =
g(f' yxx") <, yxx™. Now Fpy # 0 — B(f'yxx"),c,y = f'(y — 1)xx", and hence from the definition
of g we obtain Fpf'0xx" = x and Fpy # 0 — f yxx" = ff'(y — 1)xx"x". For these reasons the function
symbol f’ so defined is called the iteration of f, and we abbreviate f'baa; .. .a, to f*aa;...a,.

[include further examples]



Chapter Five
Arithmetical Theories

§1  The Hilbert-Bernays-Lob derivability conditions

1.1 Lob’s theorem. Let U be a numerical first-order theory and let T be an arithmetized extension of U.
Let D be a formula of U and x a variable. We say that D with x satisfies in U the derivability conditions for
T if no variable other than x is free in D and if for every closed formulae A and B of T
(i) FyDI[x|"A"] whenever A is a theorem of T;
(ii) +yD[x|"A - B'] - D[x|'A’] - D[x|'B'];
(iii) FyD[x|'A’'] — D[x|'D[x|"A"]'].

Lo6B’s THEOREM. Suppose that T is diagonalizable, and let A be a closed formula of T. Let D with x
satisfy in T the derivability conditions for T. If -7D[x|"A'] — A, then |-rA.

Proof. Let f be a diagonal function for L(T) that is representable in T and let D’ be a variant of D in
which x is substitutible for x. Using the fixed point theorem, we find a closed formula B of T such that
7B < D'[x|'B’] —> A, and so by the variant theorem,

FrB < D[x

‘B'] - A. (1)

From this by the tautology theorem and (i), we obtain |-rD[x

‘B — D[x

'‘B'] - A’'], whence
FrD[x|'B'] — D[x|'D[x|'B']'] - D[x|"A"]

by (ii) and the tautology theorem. As a tautological consequence of this, (iii), and the hypothesis, we
obtain

FrD[x|'B'] - A, (2)
so 7B by (1) and the tautology theorem. By (i), -rD[x|'B'], whence }-rA by (2) and the detachment
rule. L]

1.2. Lobs theorem has the following consequence, which is a very general version of Godel’s second in-
completeness theorem.

CoROLLARY. Suppose that T is diagonalizable. Let D with x satisfy in T the derivability conditions for
T.If F7D[x|"A’] for some closed formula A of T, then T is inconsistent.

Proof. From |-rD[x|"A’] we obtain |-rD[x
FrA. By (i), this implies -7D[x

"A’] - Abythe tautology theorem. Hence by Lob’s theorem,
"A’]. So T is inconsistent. O

If the formula D[x|"A"] is taken to mean “A is derivable in T, then any formula of the form 7"D[x|"A"]
means “T is consistent”. With this interpretation in mind, we might say of a formula C of T that it expresses
the consistency of T if for some formula D of T which with x satisfies in T the derivability conditions for T
and for some closed formula A of T, |-+C — 7D[x| A’]. Thus, the corollary can be rephrased as follows:
it T is diagonalizable and if some formula C expressing the consistency of T is a theorem of T, then T is
inconsistent.

There are two more steps to take before this result becomes meaningful. First, we must find concrete
examples of first-order theories for which the hypotheses of the corollary can be proved in a constructive
manner: the remaining of this chapter is devoted to the resolution of this issue. We should also intuitively
justify the interpretation of D[x|"A"] as “A is derivable in T” in these cases.

69
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§2  Arithmetical languages and theories

2.1 Arithmetical languages. In chapter 1v we have seen that many recursive functions and predicates that
we defined in chapter 111 can be “introduced” in PA by means of suitable defining axioms. Our goal is to
pursue this formalization further in order to be able to express statements about first-order languages and
first-order theories in PA. We begin with a formal analogue to numerotations of first-order languages.

Let L be a numerical first-order language and # a natural number. An arithmetical language £ in L
with n parameters is given by

(i') an n-ary predicate symbol Q of L;

(ii") an (n +1)-ary function symbol Vr of L;

(iii") a (n + 2)-ary predicate symbol Func of L;

(iv') a (n + 2)-ary predicate symbol Pred of L;

(V') n-ary function symbols v, , 3, =, 0, and S of L.
We agree to the convention that the symbols forming an arithmetical language will always be abbreviated
to Q, Vr, Func, Pred, v, 1, 3, =, 0, and S, the only possible variation being the uniform adjunction of
superscripts or subscripts. Accordingly, the name of that arithmetical language will be £ with the same
superscripts and subscripts. For example, the arithmetical language £, is composed of the symbols €,
Vrl, Funcl, Predl, \'/1, ;ll, 31, 51, 01, and S].

Let P be a numerical first-order theory. An arithmetical language £ in P with n parameters is an

arithmetical language in L(P) with n parameters such that

(i) Fpdx;...3x,Qx"%

(ii) FpQx" > x <y — Vrxx" < Vryx";

iii) FpQx™ — (Func Vrxx" yx™ v Pred Vr xx" yx™);
(iii) FpQx" (Func Vrxx" yx™ v Pred Vr xx" yx™)
(iv) FpQx" - 7Funcxyx” v 7 Pred xzx";

v) FpQx" — y # z > Funcxyx" — 71Funcxzx";

( ) '_ Q n y F y n F n
vi) FpQx™ — y + 2z — Predxyx" — 1 Pred xzx";
(vi) FpQx" —y#z — Predxyx" — 7 Predxzx”

(vii) FpQx" — A(Vrxx" = vx" v Vrxx" = x" v Vrxx" = Ix™);
(viii) FpQx" — (FuncVvx"xx" v Func “1x"xx" v Func 3x"xx");
(ix) FpQx™ — (Pred vx"xx" v Pred “ix"xx" v Pred 3x"xx");
X) FpQx™ - A(Vx" = “x" v vx" = 3x" v “x" = 3x"); an
( ) '_ Q n (' n = n v n EI n n 3 n) d

(xi) FpQx"™ — Pred =x"2x".

An arithmetical language £ in P with n parameters is numerical if moreover

(xii) FpQx" — Func0x"0x" and

(xiii) FpQx" — FuncSx"ix".

In practice, we are mostly interested in arithmetical languages with no parameters. In this case, Q is
a truth value and condition (i) is reduced to }-p(2, so that we can forget about Q in (ii)-(xiii). In an arith-
metical language with n parameters, Q) should be thought of as the parameter space: replacing the variable
parameters by closed terms in the parameter space yields an arithmetical language without paremeters.
Of course, an arithmetical language with #n parameters is much more than a collection of arithmetical lan-
guage without parameters. To simplify the notations, we shall usually omit these parameters and discuss
all arithmetical languages as arithmetical languages without parameters, but it will be clear that no such
restriction is necessary. When we do not specify the number of parameters of an arithmetical language,
it must be understood that our discussion applies to arithmetical languages with any number of parame-
ters by introducing the symbol Q) as needed. When, on the other hand, some development is specific to
arithmetical languages with a specific number of parameters, we mention it explicitely.

If £ and £’ are arithmetical languages (with as many parameters) in P, we say that £’ is an extension
of £in Pif pQ < Q, FpVrx = Vi’ x, FpFuncxy - Func’ xy, |-pPredxy — Pred’ xy, and for every f
among V, 71, 3, =, 0, and S, |-pf = f'.
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2.2. From now on we let P be a good extension of PA and we fix a coding function symbol B in P. Let £ be
an arithmetical language in P. We use this data to define new nonlogical symbols in P. For convenience,
we first define Disjxy = (V, x, y); Negx = (7, x); Instxy = (fl,x,y); Impxy = (Vv,(71,x), ); Cnjxy =
LV (20, (N Genxy = (9,(3,x, (%)) Eqay = (51,(V, (5, (v, (), p))s (50, (V5 (5, ), X))
These definitions must be modified in the obvious way if £ has parameters. For example, Disj is an (n +2)-
ary function symbol whose actual definition is Disj x yx” = (vx", x, y). In what follows we define predicate
symbols with formulae of the form px; ...x, <> A. In order to restore the parameters, these should be
read px; ...X, < Q A A. We also define function symbols with formulae of the formy = fx;...x, < A,
which should be read y = fx; ... x, < (QAA) vV (NQ Ay = 0).

(i) Symx<—>x:\’/\/x:*lvx:élvEIy(Funcxvaredxy\/x:Vry);

(if) Vblex < x = ((x)o) A Iy(y < x AVry = (x)o);

(iii) Tmx <> Vblex v Sqx A Lenx # 0 A Func(x)o(Lenx —1) A Vy(y <Lenx -1 — Tm(x)sy);

(iv) Atfmx <> Sqx ALenx # 0 A Pred(x)o(Lenx —1) A Vy(y <Lenx -1 — Tm(x)sy);

(v) Fmx < Atfm xv(x = Disj(x);(x)2 AFm(x); AFm(x);) v (x = Neg(x); AFm(x);) v (x = Inst(x);(x)2A
Vble(x); A Fm(x),);

(vi) Desx <> Tmx v Fmx;

(vii) Occxy <> Desx ADesy A (x = y v 3z(z < Lenx — 1 A Occ(x)s. »));

(viii) Frxy <> Desx AVble y A ((Tm x v Atfm x) AOccxy) v (x = Disj(x)1(x)a AFr(x)1y VFr(x)y) v (x =
Neg(x); A Fr(x)1y) v (x = Inst(x)1(x)2 A Fr(x)2y A y # (x)1);

(ix) Clx <> Desx AVy(y < x - T1Frxy);

(x) Subtlxyz <> DesxAVble yATmz A (x = Disj(x);(x)2 ASubtl(x); yz A Subtl(x), yz) v (x = Neg(x); A
Subtl(x); yz)v(x = Inst(x)1(x)2Ay # (x)1ASubtl(x), yzA 1 Fr(x), yv1Frz(x);) vImxvVAtim x vy =
(%)

(xi) w = Subxyz < (Vble.x Ax € yAWw = (2)fxy) V(O Vblex Aw = uw(Lenw = Lenx A (W) =
(x)oAVx'(x" < Lenx—1— (W), = Sub(x)s,s Rmv ygxy Rl'nvzgxy)))v(VblexA—!(x € Y)AW = X)
where fxy = uz(1(x € y) vx = (y),) and gxy = pz((x)o = 3 v I((x)1 € y) vz £ 0 A (x); = Byz);

(xii) Zubxy <> Sqx ASqy ALenx =Len y A Vz(z < Lenx — Vble(x), A Tm(y), A Vw(w <z = (x), #
(*)w));

(xiii) Paxx <> Fmx A x = Imp(x),(x)2;

(xiv) Saxx < Fmx A x = Imp(x)1,1 Inst(x)2,1(x)22 A Fz(z < x A Tmz A Subtl(x)22(x)212 A (X)11 =
Sub(x)2,2(x)2,12);

(xv) Taxx < x = (=, (x)1, (x)1) A Vble(x)y;

(xvi) Feaxx < Jy(y < x A BYx3 = (=, (B’x3),, (B’x3),) A Len(B?x3); = Sy A Len(B’x3), = Sy A
Func(B”x3)1,0¥ A (Bx3)1,0 = (BYx3)2,0 A Vz(z < y — Vble(B”x3)1,5, A Vble(BYx3),,5, A B?x3 =
Imp(=, (BZx3)1,1,1, (BZx3)1,1,2)B%x3 A (BZx3)1,1,1 = (B?x3)1,5; A (BZx3)1,1,2 = (Bx3)2,5.));

(xvii) Peaxx <> 3y(y < x A B’x3 = Imp(B”x3),1(B”x3), A Len(B’x3);, = Sy A Len(B’x3), = Sy A
Pred(B”x3)1,1,0y A (BYx3)1,1,0 = (Bx3)2,0 A Vz(z < y = Vble(B”x3)1,1,5, A Vble(B”x3),,5, AB*x3 =
Imp(=, (BZx3)1,1,1, (BZx3)1,1,2)B%x3 A (BZx3)1,1,1 = (B’ x3)1,1.52
A (B2x3)11,2 = (B7x3)2,52));

(xviii) Axx <> Paxx Vv Saxx v Iaxx Vv Feax x Vv Peax x;

(xix) Ctrxy <> Fmx A y = Disj xx;
(xx) Expxy <> Fmx A x = Disj(x)1y;
(xxi) Assocxy <> Fmx A x = Disj Disj(x)1,1(x)1,2(x)2 A y = Disj(x)1,1 Disj(x)1,2(x)2;
(xxii) Cutxyz <> Fm y AFmz A y = Disj(y)1(¥)2 A z = Imp(¥)1(2)2 A x = Disj(y)2(2)2;
(xxiii) Intrxy < Fmx A x = Imp Inst(x)1,1,1(%)1,1,2(x)2 A ¥y = Imp(x)1,1,2(x)2 A TFr(x)2(x)1,1,15

(xxiv) Infxy < Sqy A Jz(z < Leny A (CtrxBySz v ExpxBySz v AssocxBySz v Iw(w < Leny A
CutxBySzBySw) v Intr xBySz));

(xxv) y:Numx<—>(x:OAy:O)v(xthAy:(S,Num(x—i))).
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All these defined symbols are subject to the same notational convention as arithmetical languages: we
require that they inherit the superscripts and subscripts of the arithmetical language from which they are
defined. Thus from the arithmetical language £* are defined Vble*, Tm*, etc. We observe that all of them
except (i) are recursive on L(P), and in fact on any extension of L(N) on which B and the symbols of £ are
recursive.
We now list some consequences of the definitions.
(i') Fpx < Vrx;
(ii") FpVblex < x ={(x)o) A Iy(Vry = (x)o)s
(iii’) FpTmx — TFmx;
(iv') FpOccxy — y < x;
(v') FpVblex - Occxy > x = y;
(vi") FpOccxy — Occ yz - Occxz;
(vii') FpFrxy — Occxy;
(vili) FpTmx — Vble y > Tmz — Subtl xyz;
(ix") FpFmx — Vbley > Tmz - Vw(Vblew — Occxw — 1 0cczw) — Subtl x yz;
(x') FpFmx — Vble y > Tmz — x = Inst(x);(x); — Occz(x); = Subtlxyz - 1 Frxy;
(xi") FpTmx — Zub yz - Tm Sub xyz;
(xii") FpFmx — Zub yz - Fm Sub xyz;
(xili) FpDesx — Zub yz - Vw(w < Len y > 1Frx(y),) = Subxyz = x;
(xiv') FpDesx — Zub yz > w < Len y —» 1Frx(y),, - Subxyz = Subx Rmv ySw Rmv zSw;
(xv') FpDesx — Zub yz » Vw(Vblew — Frxw — w € y) > Yw(w < Lenz — Cl(z),,) - ClSubxyz;
(xvi") FpDesx — Zubyz — Vbley’ - Tmz' - Vw(w < Len y — Subtlx(y),(2)y) > Yw(w < Leny —
Occ(z)yy" — Subtlx(y),z") — SubtlSub xyzy'z';
(xvil’) FpDesx — Zubyy’ — Zuby'z - Vw(w < Leny — Subtlx(y),(y)w A TFrx(y)y) —
SubSubxyy'y’'z = Subxyz;

By the recursion principle we can define a function symbol h’ so that }-ph’Oxyz = x and }pw # 0 —
h'wxyz = Subh’(w — 1)xyz(Byw)(Bzw), and we set hxyz = h’ Len yxyz.

(xviii) FpDesx — Zub yz > YwVw/'(w' <Leny » w < w' = 10cc(2)(y)w') = hxyz = Subxyz;
(xix) FpDesx — Zubyz — Zuby'z’ - VwVw'(w < Leny —» w' < Leny’ — 1Fr(z)w(»)w A
AFr(2)w (¥ )w) > SubSubxyzy'z" = SubSub xy'z yz;

(xx') FpAxx — Fmx;
and if £ is numerical,

(xxi") +pTm Num x;
(xxii") FpClNum y.

[insert a few examples of derivations]

ProrosiTION. If £’ is an extension of £, then for every n-ary predicate symbol p among (i)-(xxv),
Fppxi...x, = p'X1... %y, FpSubxyz = Sub’ xyz, and | pNumx = Num'x.

The proof is straightforward using the defining axioms and the principle of complete induction when
the symbol is defined by recursion.

2.3 Arithmetical theories. An arithmetical theory T in P with n parameters consists of an arithmetical
language £(%) in P with n parameters, called the language of ¥, and an (n + 1)-ary predicate symbol Nlax
of P such that |-pQx" — Nlaxxx” — Fmuxx", where Fm is defined from £(). We agree that when
an arithmetical theory in T has the name T possibly with superscripts or subscripts, then the associated
predicate symbol will be Nlax with the same superscripts and subscripts, and, unless otherwise specified,
its language will be £ with the same superscripts and subscripts. An arithmetical theory is numerical if its
language is numerical. Our remarks on parameters in $2.1 also apply to arithmetical theories.
If ¥ is an arithmetical theory in P, we define
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(i) Derxy <> SqyALeny#0AVz(z<Leny - Ax(y), v Nlax(y), v Inf(y), Ini yz)
Ax =ByLeny;
(ii) Thmx <> JyDerxy;
(iii) Con <> dx(Fmx A 7 Thm x);
(iv) Cm < Vx(Fmx - Clx - Thmx v Thm Neg x);

(v) Hk < Vx(Fmx — Clx — x = Inst(x);(x),
— Jy(Func y0 A Thm Imp Inst(x),(x); Sub(x)2((x)1}{{(y))).

As for arithmetical languages, the above defined symbols inherit the superscripts and subscripts of the
name of the arithmetical theory from which they are defined. Note that the predicate symbols Con, Cm,
and Hk express the consistency, the completeness, and the Henkin property of T, respectively. It is clear
that Der is recursive on L(N) with B and the symbols of T. Moreover, if B and the symbols of £(%) are
recursive on an extension L of L(N) and if Nlax is recursively enumerable on L, then Der and Thm are
recursively enumerable on L.

We list a few easily verified results about arithmetical theories.

(i') FpAxx — Thmx;

(ii') FpNlaxx — Thm x;
(iii") FpDerxy — Vz(z < Len y - Thm(y),);
(iv') FpDerxy — z < Len y — Der(y), Ini ySz.

If ¥ and ' are arithmetical theories (with as many parameters) in P, we say that ¥’ is an extension of
T in P if £(%') is an extension of £(%), and if pNlaxx — Thm' x.

2.4 Extension and restriction. Let T be a arithmetical theory in P with n paremeters. We associate to ¥
two useful arithmetical theories T[] and ¥} with #n + 1 parameters in a recursive extension by definitions
of P. We shall abbreviate Vr[]aba, ...a, to Vr[b]aa;...a,, Vrlaba,;...a, to Vr;paa; ...a,, and similarly
for other symbols. As usual, we take n = 0 to simplify the notations. The symbols of [] are defined by:
Q[x] <« QASqx A Vy(y‘< Lenx —>.Fm(x)),); Vr[z]x = Vrx; Func[z]xy < Funcxy; Pred[z]xy <
Pred xy; for f among v, 7, 3, =, 0, and S, f[z] = f; Nlax[z]x <> Nlaxx v x € z.

The arithmetical theory T} has the same language as T[], except for Q;, < (, and we define
Nlax;, x <> Nlaxx A x < z. It is clear that T[] and T} are arithmetical theories in a recursive extension by
definitions of P. The fundamental properties of these arithmetical theories in relation to ¥ are expressed
below.

(i) FpQly] » Thm[y]x - Vz(z < Len y - Thm(y),) - Thm x;
(ii) FpThmx <> 3z Thm, x;
(iii) FpCon <« VzCon),.
[(i) is never used]
Note that }-pAx;, x <> Axx and Fplnf;, xy < Infxy. The implication from right to left in (ii) is an
easy consequence of this and the definition of Thm. The other implication is derived from }-pDerxy —

Dery, x y which again is immediate from the definition of Der. Then we have }p71'Thm x < Yz Thm,, x,
whence (iii).

2.5 Change of numerotation. Let £ and £’ be arithmetical languages in P with n parameters. An (n +1)-
ary function symbol f of P is called a change of numerotation from £ to £' if

(i) FpQx™ < Q'x™;
(ii) FpQx" — Symxx" — fxx" =fyx" — x = y;
(iii) FpQx" - VI’ xx" = f Vrxx"x™;
(iv) FpQx" - Funcxyx” < Func’ fxx" yx";
(v) FpQx™ > Predxyx" < Pred’ fxx" yx";

(vi) for gamong Vv, <, 3, =, 0,and S, FpQx™ — g'x" = fgx"x";
g g 8 8
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The condition (ii) allows the definition of an (n + 1)-ary function symbol f by y = f'xx" < (Qx" A
Sym yx" A x = fyx™) v ((Qx" A 3z(Symzx" A fzx" = x)) A y = 0). Using (iii)~(vi) we deduce that
FpQx™ — Sym’ xx" < Jy(Sym yx™ A x = fyx™). From this it is easy to check that f™! is a change of
numerotation from £ to £. Define temporarily h¢ by recursion so that

Fphexx™” = puy(Len y = Lenx A () = f(x)ox" A Vz(z < Lenx — 1 — (»)s, = hg(x)s,x™)).

We then define f, by y = f,xx" <> (Desx A y = hgxx™) v (7 Desx A y = 0) and £* by f*xx" = (f71),xx".

Let £ be an arithmetical language in P and f a function symbol of P such that (ii) holds. We can then
define an arithmetical language £¢ in an extension by definitions of P as follows: Q¢ <> Q; Vrgx = f Vrx;
Funct xy <> Funcf~'xy; Preds xy <> Pred f'x y; and for g among v, %1, 3, =, 0, and S, g = fg. Then f is a
change of numerotation from £ to £¢.

Let T and ¥ be arithmetical theories in P. A function symbol f of P is a change of numerotation from
% to T if it is a change of numerotation from £(%) to £(%’) and if |-pNlax’ x <> Nlaxf*x.

As before, if T is an arithmetical theory in P with n parameters and f an (n + 1)-ary function symbol
of P satisfying (ii), we can define an arithmetical theory ¥¢ in an extension by definitions of P so that f is
a change of numerotation from ¥ to Ts: let the language of T¢ be £¢ and define Nlax¢ x <> Nlaxf*x.

We say that £ and £ (resp. ¥ and ¥') differ by a change of numerotation in P if there is a change of
numerotation from £ to £’ (resp. from ¥ to ¥') in an extension by definitions of P. We should now make
a long list of theorems of the form }-pFm x < Fm’f,x, but since we do not intend to derive any of them,
we simply state the final result which will be used in §5.2.

Prorosrtion. If ¥ and ¥ differ by a change of numerotation in P, then }-pCon < Con'.

2.6 The formalized substitution rule. With the definition of an arithmetical theory in P and its associated
defined symbols, it is now possible to express and derive in P formal versions of the general results on
first-order theories for arithmetical theories: the derived rules, the tautology theorem, the equivalence
and equality theorems, the theorems on definitions, the interpretation theorem, etc. For instance, the
tautology theorem becomes the formula Tautx y — Thm([y]x for some suitably defined predicate symbol
Taut meaning “the formula x is a tautological consequence of the formulae z € y”. This is obviously a very
laborious task, so we shall be content with deriving only those few results which will be required later
on. These include a few instances of the tautology theorem, the substitution rule, and the interpretation
theorem. We begin by proving a result expressing that an application of a rule of inference to theorems
yields a theorem.

LEMMA 1. Let T be an arithmetical theory in P.

(i) FrThmx — Ctr yx - Thm y.

(ii) FrThmx — Exp yx - Thm y.

(iii) FyThmx — Assoc yx — Thm y.

(iv) FrThmx — Thm y — Cutzxy — Thmz.

(v) FrThmx — Intr yx - Thm y.

(vi) FrInfxy - Vz(z < Leny — Thm(y),) - Thm x.
Proof. We shall only prove (i); (ii)-(v) are completely analogous and (vi) is an easy consequence of (i)-(v).
By the substitution axioms and the 3-introduction rule, it will suffice to prove |-pDerxz — Ctryx —
Der y(z * (y)). Let P’ be obtained from P by the adjunction of new constants e,, e,, e3 and the axioms

Der eje; and Ctr e;e;. We must then prove |pDer e, (es * (e2)). We let a stand for e; * (e;). Then Fp/Sqa,
FpLena # 0,and |-pre; = BaLena. Since Fp/x <a — x <Lene; v x = Lenes, it remain to prove

Fpx < Lenes - Ax(a), v Nlax(a), Vv Inf(a), Iniax, and (1)

Fpx = Lene; — Inf(a), Iniax. (2)

Now (1) follows at once from the axiom Der eje;. From this axiom we also derive }-pre; = Bes Lenes.
From this and the axiom Ctr e,e;, we obtain |-p/Inf e,e;. But |-p.e; = (a)Lene, and |-p-e; = IniaLenes,
and hence (2) by the equality theorem. O



Vv 2.6 ARITHMETICAL LANGUAGES AND THEORIES 75

LeEMMA 2. If ¥’ is an extension of ¥, then }pThm x — Thm' x and |-pCon’ - Con.

Proof. The second assertion is a direct consequence of the first. By (vi) of lemma 1 and the substitution
rule,

FpInf' BySzIni yz > Vw(w < LenIni yz - Thm' BIni yzSw) — Thm' BySz.
Using FpLenIniyz = z and |pw < z - BIniyzSw = BySw, we obtain |-pInf’ BySzIniyz - Yw(w <
z - Thm' BySw) — Thm' BySz, whence

Fpz <Leny — Inf'BySzIniyz > Vw(w < z > w < Len y - Thm' BySw) — Thm'BySz. ~ (3)

By definition of Der, we have |-pDer xy — z < Len y - AxBySzvNlax BySzvInf BySz Ini yz. Since £(%")
is an extension of £(%), we have }-pAxBySz — Thm' BySz and }-pInf BySz Ini yz — Inf’ BySz Ini yz, and
since ¥’ is an extension of ¥, |-pNlaxBySz — Thm’ BySz. Thus

FpDerxy — z < Len y - Thm' BySz v Inf’' BySz Ini yz. (4)

From (3) and (4) by the tautology theorem, pDerxy — Yw(w < z > w < Len y — Thm’'BySw) — z <
Len y — Thm'BySz. By the V-introduction rule and the principle of complete induction, |-pDerxy —
Vz(z < Leny — Thm’BySz), whence |-pDerxy — Leny —1 < Leny — Thm’ x by the substitution
theorem. But |-pDerxy — Len y —1 < Len y, and hence we find }-pDer xy — Thm' x. We conclude using
the 3-introduction rule. O

Remark. For any arithmetical theories ¥ and ¥’ in P, we have |pVx(Nlaxx — Thm'x) - Thmx —
Thm' x, which by the deduction theorem is equivalent to b p{Niax x—Thm’x) Thm x — Thm' x. This is, in
fact, a consequence of the lemma, for ¥’ is certainly an extension of ¥ in P[Nlaxx — Thm'x] which is
also a good extension of PA. A similar argument can be made in many other situations.

We now use lemma 1 to derive some elementary formalized rules.

(i) FpThm Disjxy — Thm Disj yx;

(ii) FpThmImpxy - Thmx — Thm y;

(iii) FpThmImpxy — Thm Imp Neg y Neg x;

(iv) FpThmImpNegxy — Thm Imp Neg yux;

(v) FpThmx v Thm y - Thm Disj x y;

(vi) FpThmCnjxy < Thmx A Thm y;
(vil) }pThmNegDisjxy <> Thm Cnj Neg x Neg y;
(viii) FpThmEqvxy — Thmx < Thm y;

(ix) FpVblex - Thm y - Thm Gen x y;

(x) FpThmx — ThmNegx — Fm y — Thm y;

(xi) FpCon < Vx(Fmx — 7' Thmx v 7' Thm Neg x);
(xii) FpCon «> Vx(Fmx — Clx - 7 Thm x v 71 Thm Neg x);

(xiii) FpCon - Cm — Fmx — Clx — Thm Negx < 7 Thmx.

We remark that (i) is a formalized commutativity rule. In order to derive it, we first remember how to prove
commutativity rule: B v A is the conclusion of a cut rule with premises A v B and 1A v A, and the latter
is a propositional axiom. We have |-pFm x — PaxImp xx by definition of Pax, and |-pFmx — Fmy —
Cut Disj yx Disj x y Imp xx by the definitions of Cut. From the former, |-pFm x — Thm Imp xx, and from
the latter and (iv) of lemma 1, FpFmx - Fmy — ThmDisjxy — ThmImpxx — Thm Disj yx. Now
FpThmDisjxy — Fmx A Fm y, so by the tautology theorem we find }-pThm Disjxy — Thm Disj yx.
Derivations of (ii)-(x) are found in the same way, using lemma 1. We derive (x) as a further example.
By definition of Exp, pFmx — Fmy — Exp Disj yxx A Exp Disj y Neg x Neg x, whence |pThmx —
ThmNegx — Fm y — Thm Disj yx A Thm Disj y Neg x by (ii) of lemma 1. Using the formalized commu-
tativity rule, we obtain

FpThmx — Thm Negx — Fm y — Thm Disj x y A Thm Disj Neg x . (5)
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By definition of Cut, FpFmx — Fmy — CutDisjyyDisjxyDisjNegxy, and by definition of Ctr,
FpFm y — Ctr y Disj yy. From these by (i) and (iv) of lemma 1, FpThm x — Thm y - ThmDisjxy —
Thm Neg x y — Thm y. Together with (5), we obtain (x).

Let a be a variable-free term of P such that |-pFma A Cla, for example (3, Vr 0, (=, (Vr 0), (Vr O))). By
the substitution theorem, |pVx(Fmx - Clx - 7Thmx v 7ThmNegx) - Fma — Cla - 7Thmav
71Thm Neg a, whence by the tautology theorem, |-pVx(Fm x - Clx — 7Thm xv 1 Thm Negx) - Fman
71Thma v 7Thm Nega. From this by the substitution axioms and the tautology theorem, we obtain the
implication from right to left in (xii). The implication from left to right in (xi) follows from (x). Taken
together, these implications prove (xi) and (xii). Finally, (xiii) follows from (xi) and the definition of Cm.

We call (ii) and its instances the formalized detachment rule.

LEMMA 3. Let T be an arithmetical theory in P. Then
FpThmx — Vble y » Tm z — Subtl x yz — Thm Sub x(y)(z).

Proof. From the definition of Sax and Sub, we infer FpFmx — Vbley - Tmz — Subtlxyz —
SaxImp Neg Sub x(y){z) Inst y Neg x. Hence by (iv) and the definition of Gen, FpFmx — Vbley —
Tmz — Subtlxyz — ThmImp Gen yx Subx(y){(z). By the formalized detachment rule, FpFmx —
Vbley -— Tmz — Subtlxyz — ThmGen yx — Thm Subx(y)(z), and by (ix), FpFmx — Vbley —
Tmz — Subtlxyz - Thmx — Thm Subx(y){(z). Since |-pThmx — Fm x, the desired result follows by
the tautology theorem. O

LEMMA 4. Let T be an arithmetical theory in P and let h be the function symbol defined in $2.2. Then

FpThmx — Zub yz - Yw(w < Len y — Subtlx(y),,(2)y)
—> VwVw'(w <Leny - w' <w - 10cc(2)(y)w) > Thmhxyz.

Proof. Leth’ be defined as in §2.2. We shall prove |-pA where A is

FpThmx — Zub yz - Yw(w < Len y — Subtlx(y), (2)w)
- VwVYw' (w<Leny - w' <w — 10cc(2)(y)y) = w < Leny

— Subtlh’wx yz(y)w(2),, A Thmh'Swxyz

using the induction axioms. The conclusion follows by substituting Len y — 1 for w in A. Now since
Fph'Oxyz = x and p0 < Leny — Yw(w < Leny — Subtlx(y),(2),) — Subtlx(y)o(z)o, the first
conjunct of A[w|0] is derivable. Since |-ph’ix yz = Sub x((¥)0){(2)o), the second is derivable as well by
lemma 3, so we have FpA[w|0]. Recall that }ph’Swxyz = Subh/wxyz((y),){(2)w). If we substitute
h'wxyz for x, {()w) for y, ((2)w) for z, (¥)s, for ¥, and (2)s,, for z’ in (xvi’) of §2.2, we obtain

pDesh'wxyz — Zub((y)y}{(2)w) — Vble(»)sy = Tm(2)s,,
- Subtlh'wx yz(y)w(2)w = (Occ(2)y (¥)sw — Subtlx(¥)y (2)sw)
— Subtlh’Swxyz(y)sw(2)sw. (6)

Now it is clear that F pA — Sw < Leny — Desh’wxyz A Zub{(y),X(2)w) A Vble(¥)s,y A Tm(2)s, A
(Occ(2)w (¥)sw — Subtlx(y), (2)sw), so by (6) and the tautology theorem,

FpA — Sw < Len y — Subtlh’Swxyz(y)sw (2)sy- (7)
By this and lemma 3, we have pA — Sw < Len y — Thm Subh’/Swxyz((y)s, ){(2)sw), but by definition

of h’ this gives
FpA — Sw < Leny - Thmh'SSwxyz. (8)

From (7) and (8) by the tautology theorem, pA — A[w|Sw]. By the induction axioms, |-pA. O

FORMALIZED SUBSTITUTION RULE. Let ¥ be an arithmetical theory in P. Then

FpThmx — Zub yz - Vw(w < Len y — Subtl x(y),(2),) » Thm Sub x yz.
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Proof. Leth be the function symbol defined in §2.2. Define fxyz = yw(Lenw = Len yAVx'(x" < Len y —
(W) = (Vr((x * (y * 2)) + Sx')))). Then clearly }-pLenfxyz = Len y and

FpVw(w < Len y — Vble(fxyz),, A VW' (W <w — (fxyz),, # (fxyz),)), (9)

and so, by definition of Zub,
FpZub yz — Zub yfxyz A Zubfxyzz. (10)

and by (v') of §2.2, - pw < Len y > w’ < Len y - Occ(fxyz), (fxyz),, - w = w’, whence

Fpw<Leny — w' <Leny — Vw(w < Len y — Subtlx(y),,(2),)
- Occ(fxyz)y (fxyz)y — Subtlx(y)y(2)w. (11)

By (i), (iv"), and (v') of $2.2 and the definition of f, we have
Fpw<Leny —»w' <Leny — 10ccx(fxyz), A 10cc(fxyz)y (»)w A 10cc(2)y (Exy2)y, (12)
whence by (v') and (viii’) of §2.2,
FpDesx — Zub yz - w < Len y — Subtl x(y), (fxyz),. (13)
From (10), (12), and (13) by (vii’) and (xvii’) of §2.2,
FpDesx — Zub yz — Sub Sub x yfx yzfxyzz = Sub x yz. (14)

From (10) and (12) by (xviii’) of §2.2,

FpDesx — Zub yz — Subxyfxyz = hxyfxyz and (15)
FpDesx — Zub yz — Sub Subx yfxyzfxyzz = hhx yfxyzfxyzz. (16)

From (14) and (16),
FpDesx — Zub yz - Subxyz = hhx yfxyzfxyzz. (17)

In view of this we need only prove
FpThmx — Zub yz - Yw(w < Len y — Subtlx(y),,(2),,) - Thmhhx yfx yzfxyzz. (18)

If we substitute fxyz for z, (fxyz), for y’, and (z), for 2’ in (xvi’) of §2.2, we obtain

FpDesx — Zub yfxyz — Vble(fxyz), - Tm(z),-
— Yw(w < Len y — Subtlx(y),,(fxyz),) - Yw(w < Len y - Occ(fxyz),, (£xyz)
— Subtlx(y)y (2)wr) — SubtlSub x yfx yz(fx yz)y (2) 4

From this by (9), (10), (11), and (13),

FpDesx — Zub yz - Yw(w < Len y — Subtlx(y), (2)y)
—w' <Leny — Subtlhx yfxyz(fxyz),, (2),. (19)

From (12), (13) and (19), we obtain (18) by two instances of lemma 4. O

2.7 Arithmetical interpretations. We have introduced so far formalizations of the notions of first-order
language and first-order theory. We are now going to introduce a notion corresponding to interpretations.
For obvious reasons we shall only formalize interpretations that have 0 parameters. Let P be a good ex-
tension of PA and £ and £’ arithmetical languages in P with n parameters such that |pQx" < Q'x".
An arithmetical interpretation J in P of £ in £’ consists of an n-ary function symbol I3 of P called the
universe of J and an (n + 1)-ary function symbol ()5 of P such that

(i) FpQx"™ - Pred’ Usx"ix";

(ii) FpQx" = 05 Vrxx"x" = Vr’ xx";
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(iii) FpQx" - Funcxyx" — Func'(zxx" yx™;

(iv) FpQx" - Predxyx" — Pred’ (5xx" yx".

We take # to be 0 from now on, and we abbreviate ()5a to (a);. We define a unary function symbol f by
recursion so that

Fpy=1fx < Sqy
A(TmxALeny=Lenx A (¥)o = ((x)o)5 A Vz(z < Lenx —1 - (y)s; = f(x)s))
v (Atfmx ALeny = Lenx A (y)o = ((x)0)5 A Vz(z < Lenx — 1 — (y)s, = f(x)s,))
Vv (Fm x A x = Disj(x);(x)2 A y = Disj’ f(x),f(x)2)
Vv (Fmx A x = Neg(x); A y = Neg’ f(x);)
Vv (Fmx A x = Inst(x);(x)2 A y = Inst'((x)1)5 Cj’ (U, ((x)1)3)f(x)2)
v (1 Desx A y =0).

Define the unary function symbol g by gx = uy(Cl' x v Fr’ xy), and the binary function symbol h by
recursion so that Fpz = hxy < (y =0vCl'x Vv IFm'x)Az=x)v(y #0ATCUx AFm'x Az =
Imp'(843, ghx(y - D)hax(y - ).

We then define a unary function symbol Int by Intx = hfxx. Intuitively, Intx corresponds to the
interpretation of the designator x by J.

An arithmetical interpretation J of £ in £(%’) is an arithmetical interpretation of £ in ' if |-pThm’
Inst’(Vr’ 0)(U5, (Vr’ 0)) and FpFuncxy — Thm’huz(Lenz = SSy A (2)o = Uy A (2)1 = (x)3 A Vw(w <
¥y = (2)ssw = (VI' w)))y.

Let J be an arithmetical interpretation of £(%) in £(%"). We define a new arithmetical theory ¥5: the
language of T3 is £(%) and Nlaxy is given by

Nlaxy x <> Nlaxx A Thm' Int x.

ARITHMETICAL INTERPRETATION THEOREM. If J is an arithmetical interpretation of £(%) in ¥’ and if
Fplax x v Feax x v Peax x — Thm' Int x, then }pThmy x — Thm' Int x.

Proof. Just believe it. O

CoROLLARY. If J is an arithmetical interpretation of £(%) in ¥’ and if |-plaxx v Feaxx v Peaxx —
Thm' Int x, then |pCon’ — Conj.

Proof. We have |pClx — Cl'Intx, FpFmx — Clx — IntNegx = Neglntx, and by the arithmetical
interpretation theorem, |-p»1Thm' Intx - 71 Thmy x. From these formulae we obtain |pFmx — Clx —
7'Thm' Intx v 7'Thm’ NegIntx — Conj by the substitution axioms. Thus by the substitution theorem,
FpVx(Fmx — Clx - 7'Thm’ x v 7' Thm’ Neg x) — Cony, whence pCon’ — Conj by (xii) of §2.6. [

An arithmetical interpretation J of £(%) in ¥ is an arithmetical interpretation of T in T' if |-plaxx v
Feax x v Peax x v Nlaxx — Thm' Intx. In this case |pNlaxy x < Nlax x and the arithmetical interpreta-
tion theorem shows that }-pThm x — Thm’ Int x, and the corollary that }-pCon’ - Con.

PROPOSITION. If Fp(2)5 = =/, then }plaxx v Feax x vV Peax x — Thm' Int x.

Proof. [...exercise!] O

§3 Extensional application

3.1 Conventions. For the rest of this chapter, we fix a coding function f3, a good extension P of PA, and
B a coding function symbol in P representing 3 in P. The letter L with superscripts or subscripts is used
of a first-order language arithmetized from a numerotation by the coding function f. This numerotation
is written ¢ and its associated functions and predicates vr, func, and pred, with the same superscripts and
subscripts. The letter T with superscripts or subscripts is used of a first-order theory whose language is
denoted by the letter L with the same superscripts and subscripts. An arithmetical language or theory,
unless otherwise stated, has no parameters.
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3.2 Describing languages. Let £ be an arithmetical language in P. We let L(£) be the extension of L(N)
containing B, Len, Sq;, €, *, Ini, Rmv, {,, for each n, the symbols of £, and the symbols (i)-(xxv) of §2.2. In
applications, we wish to interpret the symbols of L(£) as describing an actual first-order language L. We
say that £ describes L in P if

(i) Vrrepresents vr in P;
(ii) Func positively represents func in P;
(iii) Pred positively represents pred in P;

(iv) v, 7, 3, and = respectively represent o(v), 6(7), ¢(3), and o(=) in P, and in the case that L is
numerical, 0 and S represent ¢(0) and ¢(S) in P, respectively.

We say that £ represents L in P if (i) and (iv) holds and if Func and Pred respectively represent func and
pred in P. Note that if £ describes L and L is numerical, then £ is numerical.

We would like to know how the nonlogical symbols of L(£) behave when £ describes or represents
L. For instance, there is an obvious similarity between these symbols and the predicates of ch. 11 §3.1,
which we suggestively indicated by using the same names with a capital letter. We shall now prove that, if
£ describes (resp. represents) L, almost anything (resp. anything) that should be true is true.

Given a first-order language L arithmetized from a numerotation, we define a numerical realization «
of L(£): a extends v; B, is 5; Len, is len; Sq¥ are sq; € are €; * 4 is *; Ini, is ini; Rmv, is rmv; ((,,), is the n-
ary sequence function; Vr, is vr; Func}, is func; Pred}, is pred; v, is 0(V); 7, is 0(7); Jpiso(3); =4 is 0(=);
0, is 0(0); Sy is 0(S); Sym} is sym; if p is among (ii)-(x) or (xiii)-(xxiii), p}, is the uncapitalized counterpart
of p of ch. 111 §3.1; Vbley, is vbler; Atfm}, is atfmy v fmy; Occ,(a, b) < occp(a, b) v 1desy(a) v 1des(b);
Fr_(a,b) < fry(a,b)vadesi(a); Cl, iscly vdesy; Subtl,(a, b, c) <> subtly(a, b, c)vdesy(a)vitmy(c);
if p ends in x, then p; is p}, v 71fmy; if p is Ctr, Exp, Assoc, or Intr, p,(a,b) < pL(a,b) v 1fmp(a) v
7fmp (b); Cut,(a, b, ¢) < cuty(a, b, c)vfmy(a)v1fmg (b)v1fmy(c); Sub, and Num, are the functions
sub and num defined in the proof of the theorem of ch. 111 §3.2; Zub (a, b) ifand only if a = (ay, ..., a,),
b=(bi,...,bm), n = m,vbler(a;) for all i, tmy (b;) for all i, and the a; are pairwise distinct; Xub(a, b)
if and only if Zub}(a, b) or tm((b);) for some i < len(b); Inf}(a, b) if and only if sq(b) and a is the
expression number of the conclusion of a rule of inference for L whose premises have expression numbers
in b; unspecified n-ary predicates p, are T". Let 7 be the numerical realization of L(£) for which £; is f,,
Symi is Symy, and pZ are both pZ, for p other than Sym.

THEOREM. If £ describes L, « is faithful in P. If £ represents L, 7 is faithful in P.

Proof. This is an application of the theorem on RE-formulae. We start from the realization v of L(N) which
is known to be faithful in P, and we extend it one symbol at a time starting from B which is assumed to
represent f3, applying the theorem on RE-formulae to the previous extension to obtain the representability
conditions for the new symbol. In all cases the relevant RE-formula or PR-formula is given by the defining
axiom of the symbol. O

3.3 A property of Sub. Let £ describe L in P. There is one more result which is not purely extensional
in nature that we must establish. It concerns the function symbol Sub when the third argument is vari-
able. Let u be a designator of L, x, ..., X, distinct variables, and by, ..., b, terms of P. We define
a term a{xy,...,x,/bs,...,b,} of P by induction on the length of u as follows. If u is x; for some i,
u{x;,...,Xy|bs,...,b,} is b;. Otherwise, let u be su; ... u,, where s is a symbol of index m and uy, ...,
u,, are designators. Then i{xy,...,X,|b;,...,b,}is

<(j'(S), ﬁ]{X], e ,Xn|b1, e ,bn}, e ,ﬁm{Xl, - ,Xn|b1, e ,bn}>,
unless u is 3x; A for some i, in which case it is
(0(3)) <6(Xi)>, A{Xb e X X4l e axn|bl) v 7bi—labi+l) v ,bn}>-

For example, if u is fxgy, then {x, z|b;, by} is (6(f), by, (3(g), (6(»)))). When n = 0, an easy induction
on the length of u, using the equality theorem and the fact that ,, represents the n-ary sequence function,
shows that

I—p u' = 1.
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We now prove that
l_Psubru1(rX11> e rXn‘l)(bl) e ’bn) = ﬁ{XI) e ,Xn|b1’ e )bn} (1)

by induction on the length of u. We let f and g be the defined function symbols of P as in §2.2. We can
extend « by setting f,(a,b) = pi(7(a € b) va = (b);) and gu(a,b) = pi((a)o = 0(I) v :((a)1 e b) v (i
0 A (a); = B(b,1))). Then a remains faithful by the theorem on RE-formulae. Suppose first that u is xj,
for some k < n. Then by faithfulness, |-pVble'w’, Fp'u' € ('x;",..., 'x, "), and Fpfu’('x;", ..., X, ") = k,
so by definition of Sub,

FpSubw'("xi’, ..., "Xy Nbi, .., by) = ((brs ..., b))y

and since Fp({by,...,b,)); = bi,, this proves (1).
Suppose now that u is a variable which is not among the x;. By faithfulness, |-pVble'u" and |-p7("u’ €
("x17,..., X, )), so the definition of Sub gives

FpSub'u'('x;',..., %, " Xby,...,b,) ="u’,

whence (1).

Suppose that uis su, . .. u,, where s is a symbol of L of index m that is not a variable and u,, ..., u,, are
designators of L. We consider two cases. Suppose first that either s is not 3 or u; is not among the x;. Then
by faithfulness Fpgu'('x;’,..., 'x,") = 0, and so by definition of Rmv, FpRmvxgu'('x;’,..., x,") = x.
Using the representabiliy of len by Len, the definition of Sub gives

FpSub W ("xi’,. .., "X, }by, ..., by) = pw(Lenw = Srit A (w)o = 6(s)
AYX(x" <1t > (W)se = Sub("W)sx (" x1s .., X Wi, bA))). (2)

For k < m, |-p("u’)g; = "uy’ by representability, so from (2), (ix) of ch. 111 §5.2, and the induction hypoth-
esis, we obtain

FpSub™w'('x;",..., X, Xby,...,b,) = pw(Lenw = Stit A (W)g = 6(s)

A (W)l = ﬁl{Xl, e )Xn|bl) e >bn} ARERAN (W)m = ﬁm{XI: e :Xn‘bl) cee )bn})'
But the right-hand side is just the definition of {,,., so that
I_PSUbru1<rxl1’ D) rxn1)<bl» e )bn) = <(7(S), ﬁl{xl) cee )Xn|b1; “ee abt’l}) e )ﬁm{xh e )Xn|b1a oo ,bn})‘

Now the term on the right is exactly 4{xy, ..., x,|bs,...,b,}. It remains to consider the case where s is
3 and w is Xy for some k < n. By faithfulness, pg'a’("x;’,..., 'x,") = Sk. By properties of Rmv,
FpRmv(xy,...,x,)Sk ={x1,..., Xk> Xk+25 - - - » X ). From this by induction hypothesis,

FpSub'w, Rmv('x;",..., x,)g0'('x;",..., X, ) Rmv(by,...,b,)gu'('x;",..., %, ")

= ﬁf{xla coos Xj>s Xk425 00 e ;Xn|b1) e )bkabk+2> e )bn}- (3)

When we inject this in the definition of Sub, we obtain as above with (ix) of ch. 111 §5.2

FpSub™w'('x;", ..., X, Xby,...,b,) = pw(Lenw = Srit A (W)o = 6(s)
/\(W)l :ﬁl{xla---)Xkyxk+2>---:xn|bla'--)bkabk+2>~--abn}

ARRRAN (W)m = ﬁm{xl,. .. ,Xk,Xk+2,...,Xn|b1,. .. ,bk,bk+2,.. . ,bn}).

Simplifying the right-hand side with the definition of ¢, we find the desired result.

In the above proof, we had to use that |pB(xy,..., x,,)ic = Xy, that FpRmv x0 = x, and that
FpRmv(xy,... LX)k = (X1y. .., Xke1s Xks1, - - - Xn), and in this only does it differ from a proof of the
representability of sub by Sub obtained from the theorem on RE-formulae. These are intensional proper-
ties of B and Rmv of which only numerical instances can be derived from representability conditions.

3.4 Describing theories. Let T be an arithmetical theory in P. We say that ¥ describes T in P if £(%) de-
scribes L(T) and if Nlax positively represents nlax in P. We say that T represents T in P if £(T) represents
L(T) and if Nlax represents nlaxr in P.
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We let L(T) be the extension of L(£(F)) containing the symbols Nlax, Der, and Thm. Let « and 7 be
the numerical realizations of L(£(T)) defined in §3.2. We extend them to numerical realizations of L(%),
which we continue to denote by « and 7, as follows: Nlax}, and Nlax? are nlaxr; Nlax], is T'; Der}, and
Der? are derr; Dery, is T2, Thm} and Thm? are thmy; Thm, and Thm; are T'.

THEOREM. If T describes T, « is faithful in P. If T represents T, 7 is faithful in P.
Proof. By the theorem on RE-formulae using the defining axioms of the symbols of L(F). O

3.5 Describing interpretations. Let £ and £’ be arithmetical languages in P with no parameters. We say
that an arithmetical interpretation J in P of £ in £’ describes in P an interpretation I of L in L' if

(i) £ describes L in P and £’ describes L in P;
(ii) 4y represents o’ (U) in P;

(iii) for every variable, function symbol, or predicate symbol s of L, |-p(6(s))5 = ¢’ (s).

Let f(a) denote the expression number of the interpretation of the designator with expression number
a if indeed a is the expression number of a designator, and 0 otherwise. We now have two numerical
realizations, one of L(£) associated with £ and L, and one of L(£’) associated with £ and L’. We let «
extend them both and we further let (4(5), be ¢’(U;) and Int, be f. Using (i)-(iii) and the defining axiom
of Int, an application of the theorem on RE-formulae shows that if J describes an interpretation I of L in
L', then « is faithful in P, i.e.,

FpInt'a’ = "a;" and (4)
FpInt"A” = "A™. (5)

PROPOSITION. Suppose that T describes (resp. represents) T, that T describes T, that J is an arith-
metical interpretation of £(%) in £(%’), and that J describes an interpretation I of T in T'. Then T3
describes (resp. represents) T

Proof. Let A be a nonlogical axiom of T. Then }A’ and hence |, Thm’"A’"’. Since |-, A"’ = Int"A",
we obtain |pThm’Int"A’. By definition of Nlaxy, |-pNlax; A’. If moreover ¥ represents T and a is
not the expression number of a nonlogial axiom of T, then }-p1Nlaxd and so by definition of Nlaxy,
FpT Nlaxy a. O

3.6 Generalization through interpretations. The definitions given in this section can be naturally gener-
alized with no more than a notational cost. Consider an arithmetical language £ in P and a first-order
language L. Let I be an interpretation of P in an arbitrary first-order theory P’ such that = is = and such
that different symbols of P have different interpretations (the latter is not an actual restriction, since we
can always “duplicate” function or predicate symbols of P’ using extensions by definitions). We also as-
sume that 0y is 0 and that Sy is S (again, not a restriction). We shall say that £ describes L with respect to
I if the interpretations by I of the representability conditions (i)-(iv) of §3.2 are theorems of P’. Given
our assumptions on =y, 0y, and Sy, it is equivalent to require that Vr; represents vr in P’ and similarly for
(ii)-(iv). Recall that, by the interpretation extension theorem, I can be extended to L(£) and still be an
interpretation in an extension by definitions of P’ (since there are constants in P/, for example 07). We
can then define a numerical realization «; on the symbols s; for s a nonlogical symbols of L(£) by letting
(s1)y, be s; (here we use that different symbols of P have different interpretations; otherwise a; might
not be well-defined). Then «; is faithful in P’. Indeed, « is faithful in P[I'] where T is the collection of
the representability conditions (i)-(iv), and I is an interpretation of P[T] in P’, whence the result by the
interpretation theorem.

We define similary the expressions “L represents L with respect to I” and “T describes or represents
T with respect to I, and we have analogous results of faithfulness. We shall only use these generalized
notions to give more applicability to the result of §4.3.

§S4 'The theorems on consistency proofs

4.1 The Main Lemma. Let P be a good extension of PA. Suppose that L(N) is arithmetized from a numero-
tation and that £ is an arithmetical language in P that describes L(N). We build an arithmetical theory
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%n in (an extension by definitions of) P by letting £(Ty) be £ and by defining Nlaxy by
Nlaxyx <> x =1 V-V X = fg

where ny, ..., ng are the expression numbers of the axioms N1-Ng. Since £ describes L(N), |pNlaxy x —
Fm x, and so Ty is indeed an arithmetical theory in P. It is evident that Nlaxy represents nlaxy in P, so
in particular Ty describes N.

The next theorem is a formalized statement of the theorem on RE-formulae for the numerical realiza-
tion v.

MaIN LEMMA. Let A be an RE-formula of L(N) and let xy, ..., X, be distinct variables including the
variables free in A. Then

FpA — Thmy Sub'A'('x;',..., X, " Numxy,..., Numx,).

Proof. Before embarking on the proof itself, we recall a few facts that will be used. Let yy, ..., yx be any
distinct variables. By (1) of §3.3, we have

FpSubu'(yr",..., 'yk WNumyy, ..., Numyg) = G{yy, ..., yg| Numyy, ..., Numy}. (1)

In view of this and the equality theorem, we need only prove the theorem for a particular choice of
the variables xj, ..., X,. By (xxi’) of §2.2, FpZub('y;’,..., "y, (Numyji,...,Numy,), and by (ix’)
and (xxii’) of §2.2, -pFmx — Vble y - Subtlxy Num z, so for any formula B of L(N), since }-pFm'B’
and }-pVble'x’, the formalized substitution rule yields

FpThmy B’ — Thmy Sub'B'("y; ', ..., "y, ¥ Numyy,..., Numyyg).
If A and B are formulae of L(N) such that }yA < B, then
FpThmy Sub’A < B ('y1', ..., 'yx ' W{Numyy,..., Numyy)

by positive representability and the formalized substitution rule. Directly from the definition of Sub, we
see that |pSub Eqv xx’yz = Eqv Sub x yz Sub x’ yz, and so we obtain

FpThmy Sub A ("y1', ..., 'y W Numys, ..., Numyy)
< Thmy Sub'B'("y; ', ..., 'y "W Numyy, ..., Numyy)

by (viii) of §2.6. This applies in particular if A and B are numerically equivalent. Thus we may suppose
that A is a strict RE-formula. This is our hypothesis from now on, and we prove the theorem by induction
on the length of A.

Suppose that A is x = 0. Since 0 = 0, we have |pThmy(=,0,0) because Ty describes N,
whence FpThmy(=, Num 0, 0) by definition of Num. From this by the equality theorem, }px = 0 —
Thmy (=, Numx, 0), which is the desired result by (1).

Suppose that A is y = Sx. Since Fynx = x we obtain |-pThmy'x = x* whence |pThmy(=, Num Sx,
Num Sx) by the formalized substitution rule. By definition of Num, pNum Sx = (¢(S), Numx), and so
FpThmy(=, Num Sx, (6(S), Num x)) by the equality theorem. From this by the equality theorem, }-py =
Sx - Thmy(=, Numy, (0(S), Numx)).

Suppose that Aisz = x+y. Weletabe (=, Num(x + ), (¢(+), Num x, Num y)). Since }yx = x + 0, we
have |-pThmy x = x + 0", whence }pThmy(=, Num x, (5(+), Num x, 0)) by the formalized substitution
rule. Since |pNum 0 = 0, we obtain

pThmy a[[0]. (2)

Since -z =x+y = Sz=x+Sy, wehave |-pThmy'z =x + y - Sz =x + Sy’, and hence
FpThmy Imp(=, Num z, (¢(+), Num x, Num y)}(=, (S, Num z), (6(+), Num x, (S, Num )
by the formalized substitution rule, and

FpThmy Imp(=, Num z, (6(+), Num x, Num y){(=, Num Sz, (¢(+), Num x, Num Sy))
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by the definition of Num. From this by the substitution rule, N4, and the formalized detachment rule, we
obtain
FpThmya - Thmya[y[Sy]. (3)

From (2) and (3) by the induction axioms, |-pThmy a. By the equality theorem and the substitution rule,
Fpz =x+y — Thmn(=, Numz, (¢(+), Numx, Numy)).

Suppose that A is z = x - y. We let a be (=, Num(x - y),(d(-), Num x, Num y)). Since 0 = x - 0,
we have |pThmy 0 = x - 07, whence }pThmy(=, 0, (¢(-), Num x, 0)) by the formalized substitution rule.
Since }pNum 0 = 0, we obtain

pThmy a[y[0]. (1)

Since Fyw=z+x »>z=x-y >w=x-Sy,wehave pThmy'w=z+x »z=x-y >w=x-Sy",and
hence

FpThmy Imp(=, Num w, (¢(+), Num z, Num x))
Imp(=, Num z, (¢(-), Num x, Num )=, Num w, (6 (-), Num x, Num S y)

by the formalized substitution rule and the definition of Num. Substituting z + x for w and using the
formalized detachement rule, we obtain

FpThmy (=, Num(z + x), (6(+), Num z, Num x))
— Thmy(=, Num z, (6(-), Num x, Num y)) - Thmy(=, Num(z + x), (¢(-), Num x, Num S y)

whence
FpThmy(=, Numz, (¢(-), Num x, Num y)) - Thmy(=, Num(z + x), (¢(-), Num x, Num S y)
by the previous case and the detachment rule. Substituting x - y for z and using N6, we obtain
FpThmy a — Thmy a[y|Sy]. (5)

From (4) and (5) by the induction axioms, }-pThmy a. By the equality theorem and the substitution rule,
Fpz =x-y —» Thmy(=, Numz, (6(-), Num x, Numy)).

Suppose that A is x = y. From |yx = x we obtain }-pThmy(=, Numx, Numx) by the formalized
substitution rule, whence FpA — Thmy(=, Numx, Numy) by the equality theorem.

Suppose that A is x <y, and let B be x < y - Thmy(d (<), Num x, Num y); by the substitution rule, it
will suffice to prove |-pB. By N1 and the tautology theorem,

pB[y[0] (6)

Since Fnx < ¥y = x < Sy and |nyx = y = x < Sy, we have, using the formalized substitution rule and the
definition of Num,

FpThmy Imp(d(<), Num x, Num y){(¢5(<), Num x, Num Sy) and
FpThmy Imp(=, Num x, Num y){d(<), Num x, Num Sy).

By the formalized detachment rule, these become

FpThmy(d(<), Num x, Num y) - Thmy(d (<), Num x, Num Sy) and
FpThmy(=, Num x, Num y) - Thmy(c (<), Num x, Num Sy).

By the previous case, px = y - Thmy(=, Num x, Num y), and since px < Sy - x < yvx = y, we
obtain
B — B[y[Sy] (7)

by the tautology theorem. From (6) and (7) by the induction axioms, |pB.

Suppose that A is x # y. Let B be the formula x # y — Thmy Neg(=, Num x, Num y), to be derived.
Since nSx # 0 we have |pThmy'Sx # 0" whence |pThmy Neg(=, Num Sy, Num 0) by the formal-
ized substitution rule and the definition of Num. By the equality theorem and the 3-introduction rule,
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Fpdy(x = Sy) - Thmy Neg(=, Num x, Num0). Now Fpx # 0 — 3y(x = Sy), whence }px # 0 —
Thmy Neg(=, Num x, Num 0) by the tautology theorem, i.e., |-pB[y|0]. By the induction axioms and the
closure theorem, it remains to prove |pVxB — VxB[y|Sy]. By the V-introduction rule and the tautology
theorem, we need only prove

Fpx=0— YxB — B[y|Sy] and (8)
Fpx #0 — VxB — B[y|Sy]. (9)

Since Fnx # 0 — 0 # x, we obtain
I pThmy Neg(=, Num x, Num 0) - Thmy Neg(=, Num 0, Num x)

by the formalized substitution rule, the definition of Num, and the formalized detachment rule. From this
and FpB[y|0], Fpx # 0 - Thmy Neg(=, Num 0, Num x), whence }pSy # 0 — Thmy Neg(=, Num 0,
Num Sy) by the substitution rule. By an instance of N1 and the detachment rule, |-, Thmy Neg(=, Num 0,
Num Sy) and hence by the equality theorem, |px = 0 — Thmy Neg(=, Num x, Num Sy), of which (8)
is a tautological consequence. By N2, Fyx # y — Sx # Sy, and so |-pThmy Neg(=, Num x’, Num y) —
Thmy Neg(=, Num Sx’, Num Sy) by the formalized substitution rule, the definition of Num, and the for-
malized detachment rule. From this by the equality theorem,

Fpx = Sx” - Thmy Neg(=, Num x’, Num y) - Thmy Neg(=, Num x, Num Sy). (10)
By the substitution theorem,
FpVxB — x’ # y - Thmy Neg(=, Num x’, Num y). (11)
From (10), (1), and |px = Sx’ - x # Sy - x" # y we obtain
Fpx =Sx’ - VxB — x # Sy - Thmy Neg(=, Num x, Num Sy) (12)

by the tautology theorem, i.e., -px = Sx’ - ¥xB — B[y|Sy]. By the 3-introduction rule and |px # 0 —
Jx’(x = Sx’), we obtain (9).

Suppose that A is 7(x < y), and let B be 7((x < y) - Thmy Neg(d(<), Num x, Num y), the formula
to be derived. By N7, }pThmy(x < 0)", whence | Thmy Neg(d(<), Num x, Num 0) by the formalized
substitution rule and the definition of Num. By the tautology theorem, |p»B[y|0]. Now by N8, |-y 7(x <
y)=>x#y—(x <Sy),s0 FpThmy(x < y) > x # y > (x <Sy)". Hence

FpThmy Neg(o(<), Num x, Num y) - Thmy Neg(=, Num x, Num y)
— Thmy Neg(d (<), Num x, Num Sy) (13)

by the formalized substitution rule, the definition of Num, and the formalized detachment rule. By the
previous case,
Fpx # y - Thmy Neg(=, Num x, Num y) (14)

By (13), (14), and an instance of N8, we obtain pB — B[y|Sy] by the tautology theorem. So }-pB by the
induction axioms.

Suppose that A is B v C where B and C are strict RE-formulae. By the induction hypothesis and the
tautology theorem,

FpA — Thmy Sub'B'('x;', ..., X, }Numxy,..., Numx,)
v Thmy Sub"C'('x; ', ..., 'x, " Y(Numxy,...,Numx,),
whence the desired result by (v) of §2.2. If A is B A C, the proof is similar using (vi) of §2.2 instead.
Suppose that A is Vx(x < y - B), where B is a strict RE-formula. By (1), we may suppose that y is

x; and that x is not among x;, ..., X,. We have FnA[X|0] by N7, and so }-pThmy Sub’A[x;[0]'("'x,7, ...,
X, }Numx;, ..., Numx,) by the formalized substitution rule. By (1),

FpSub’A'('x;",..., X, ¥Num0, Numx,, ..., Numx,)
= Sub Sub"A"("x; Y Num 0){'x,", ..., X, ¥Numx,, ..., Numx,),
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and by the definition of Num, |-p"A[x|0]" = Sub"A("x;")(Num 0), whence
FpThmy Sub"A™('x;", ..., X, ¥ Num 0, Numx5, ..., Numx,,)
by the equality theorem. Hence
FpA[x|0] - Thmy Sub’A™('x;’, ..., "X, }(Num 0, Numx,, ..., Numx,,) (15)

by the tautology theorem. Let B’ be a variant of B in which x; is substitutible for x. From N8 we obtain
easily FyA — B'[x|x;] — A[x|Sx;], whence pThmy'A — B’[x]x;] - A[x;|Sx;]". By the formalized
substitution rule, (1), the definition of Num, and the formalized detachment rule, we obtain

FpThmy Sub'A'('x;, ..., X, Y{(Numxy, ..., Numx,)
— Thmy Sub'B""('x", 'x;7, ..., X, " WNumx;, Numx;, ..., Numx,)

— Thmy Sub"A'("x;", ..., "X, }(Num Sx;, NumXx,, ..., Numx,). (16)

By induction hypothesis, the variant theorem, the substitution rule, and the remarks at the beginning of
the proof,

FpB'[x|x;] - Thmy SubB"('x", 'x;7, ..., "X, }{(Numx;, Numx;, ..., Numx,,). (17)

As a tautological consequence of (16), (17), and |pA[x;|Sx;] — A A B'[x|x;], we obtain

Fp(A - Thmy Sub'A'("x; ', ..., "X, }Numxj, ..., Numx,))
— A[x(|Sx;] - Thmy Sub’A™("x;, ..., "X, )(Num Sx;, Num x5, ..., Numx,). (18)

From (15) and (18) by the induction axioms, we obtain the desired result.

Finally, suppose that A is 3xB where B is a strict RE-formula. Here we assume that x is not among
X1, ..., Xy. The formula B — A is a substitution axiom, and hence pThmy'B — A’. By the formalized
substitution rule and the formalized detachment rule,

FpThmy Sub™B'('x", 'x17,..., X, }Numx, Numxqj, ..., Numx,)

— Thmy Sub’'A("x; ', ..., X, ){(Numxy, ..., Numx,).
and so by induction hypothesis,
FpB — Thmy Sub'A™('x;,..., "X, " YNumxy,...,Numx,).
Then by the 3-introduction rule, we obtain the desired result. OJ

Let L be an extension of L(N) and let £ describe L in P. We define an arithmetical language £y in P
as follows. We set Vi x = Vrx, Funcyxy < (y = 0Ax =6(0)v(y=1ax=60S)v(y=2rx =
o(+)vx =0()), Predyxy < (y =2Ax =0(=)vx = 6(<)), VN = 6(V), In = 6(7), In = 6(3), =x = 6(=),
Ox = 6(0), and Sy = 6(S). We let oy be the restriction of the numerotation ¢ to L(N), and we let L(N)
be arithmetized from oy. It is then obvious that £y describes L(N). Since £ describes L and since L is an
extension of L(N), we have |-pFunc ¢(f)#n and }-pPred ¢(p)7 for all n-ary function and predicate symbols
of L(N), and so £ is an extension of £y by definition of Funcy and Predx.

Suppose now that T is an extension of N and that ¥ describes T in P. We can construct £y and oy as
above so that £y describes L(N) and £(¥) is an extension of £5. We can then define as at the beginning of
this paragraph the arithmetical theory Ty with language £x which describes N, and we claim that T is an
extension of Ty. It suffices to prove |pThm #; for 1 < i < 9. This follows from the facts that ¥ describes
T and that N1-Ng are theorems of T. Then by lemma 2 of §2.6, we have |-pThmy x — Thm x, and so

CoOROLLARY. Let A be an RE-formula of L(N) and let xj, ..., x,, be distinct variables including the
variables free in A. If ¥ describes an extension T of N in P, then

FpA - ThmSub'A'("x;",..., X, " ¥ Numxy,..., Numx,).
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Note that the corollary uses the fact that N has finitely many nonlogical symbols and nonlogical axioms
in an essential way.

4.2 The theorems on consistency proofs. In this paragraph we shall prove several general versions of the
result known as Godel’s second incompleteness theorem. We now assume that our fixed coding function
symbol B is recursive on L(N) in P. An arithmetical theory ¥ in P will be called recursively enumerable if
Q, Vr, Func, Pred, v, 7, 3, =, 0, S are recursive on L(N) and if Nlax is recursively enumerable on L(N). In
this case, Thm is recursively enumerable on L(N).

THEOREM. Let Pj be an extension of PA, P a good conservative extension of Py, T an extension of Py
arithmetized from a numerotation, and ¥ a recursively enumerable arithmetical theory in P which
describes T. Let D be a formula of Py in which only x is free. If -pThmx <> D, then D with x satisfies
in Py the derivability conditions for T.

Proof. The first derivability condition is a special case of the positive representability of thmy by Thm in
P, and the second derivability condition follows from |p'A — B" = Imp'A’''B’" and an instance of (ii)
of §2.6.

Since Thm is recursively enumerable on L(N), there is an RE-formula A of L(N) in which only x is
free such that |-pThmx < A. By the hypothesis on D, |-pD < A. Since Py and hence T is an extension
of N, the corollary of §4.1 yields -pA - Thm Sub"A’("x"){Num x), whence

FpD — D[x|Sub"A™("x"}(Num x)]. (19)

By conservativity, we also have |-p D <> A, and since T is an extension of Py, D < A, whence
FpThm'D < A’ by positive representability. By the formalized substitution rule, pThmSub'D «
A'('x")(Numx). By properties of Sub and (viii) of §2.6,

FpThm Sub'D'("x")(Num x) <> Thm Sub"A’("x"){(Num x),
and hence, by the hypothesis on D,
F»D[x| Sub'D'("x"}{Numx)] <> D[x|Sub"A’("x"}(Numx)].

From this and (19), we obtain
FpD — D[x|Sub'D("x"){Numx)]. (20)

Let A be a closed formula of T. From (20) by the substitution rule, we obtain
FpD[x

But |pSub™D'('x"){Num'A’") = 'D[x

'A’] - D[x|Sub'D'("x")(Num"A")].

"A’]" because £(%) describes L(T), and hence

FpD[x

‘A'] > D[x

D[x

AT

Since P is a conservative extension of Py, this proves that D with x satisfies in Py the third derivability
condition for T. O

Note that (ii) of §2.6 (the formalized detachment rule) and (20) above are much stronger than the
second and third derivability conditions: the latter consist of infinitely many numerical instances of the
former.

THEOREM ON CONSISTENCY PROOFS 1. Let Py be an extension of PA, P a good conservative extension
of Py, T an extension of P, arithmetized from a numerotation, and ¥ a recursively enumerable arith-
metical theory in P which describes T If C is a formula of Py such that |-pC - Con and if }-7C, then
T is inconsistent.

Proof. By (xi) of §2.6, FpCon < Vx(Fmx — 7' Thmx v 71'Thm Neg x), whence by the substitution the-
orem, |pCon - Fm'0 = 0" » 71 Thm'0 = 0’ v 7ThmNeg'0 = 0. But |-pFm'0 = 0", FpThm'0 = 0',
and }pNeg'0 = 0" = "0 # 0" because T describes T, and so by the tautology theorem and the equality
theorem,

FpC—1Thm'0+0". (21)
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Since ¥ is recursively enumerable, there is a formula D of L(N) in which only x is free such that
FpThm x <> D. Then by the previous theorem, D with x satisfies in Py (and therefore also in T') the deriv-
ability conditions for T. By (21), -pC — D[x|"0 + 0'], whence by conservativity, |-, C — TD[x|0 # 0'].
By the hypothesis and the detachment rule, 7D[x|0 # 0']. By the corollary of §1.2, T is inconsis-
tent. O

Note that a formula C as in the statement of the theorem on consistency proofs always exists. This is
because there are formulae A and B of L(N) satisfying |-pFmx <> A and |-pThmx < B, and hence we
can take C to be the formula 3x(A A 7B) of L(N).

THEOREM ON CONSISTENCY PROOES 2. Let Py, P, T, and ¥ be as in the first theorem on consistency
proofs. Let T’ be a first-order theory arithmetized from a numerotation, I an interpretation of T in
T’, ¥ an arithmetical theory in P which describes T’, and J an arithmetical interpretation in P of ¥
in T which describes I. If C is a formula of Py such that -pC — Con’ and if |-~ C!, then T[C] and
T’ are inconsistent.

Proof. We define an arithmetical theory T in an extension by definitions P’ of P as follows. Its language is
£(%) and Nlax* x <> Nlaxx vx = "C". Clearly T* describes T[C]. Assume }-1-C. Now since |-pInt'C’ =
‘C""" and |pThm’"C""’, we find that J is an arithmetical interpretation of T* in T’. By the corollary to
the arithmetical interpretation theorem, |pCon’ — Con*. As ¥ is recursively enumerable, T* is also
recursively enumerable. Therefore we can find a formula A of L(N) such that |-pCon* < A, and we
have |-pC — A. Since P is a conservative extension of Py and T is an extension of Py, |r(cjA. By the
first theorem on consistency proofs applied to Py, P’, T[C], and ¥*, T[C] is inconsistent. But I is an
interpretation of T[C] in T’, so T’ is inconsistent by the interpretation theorem. O

In practice, verifying that J is an arithmetical interpretation of ¥ in ¥’ can be quite technical. It turns
out that, to obtain the conlusion of the second theorem on consistency proofs, it is enough that J be an
arithmetical interpretation of £(%) in ¥, provided that T is recursively enumerable. For then, as we know,
J is an interpretation of T5 in ¥’ and T describes T, so the hypotheses of the theorem remain valid if we
replace ¥ by T5. For T5 to be recursively enumerable, it suffices that (5 and ()5 be recursive on L(N) and
that T’ be recursively enumerable. We shall discuss a concrete example of this in §6.3.

4.3 A counterexample. In this paragraph we consider the following specialization of the hypotheses of
the theorems on consistency proofs: Py is a good extension of PA and P is an extension by definitions of
Py. Let T be an extension of Py, and let ‘¥ be an arithmetical theory in P. We say that the pair (T, %) is
reflexive if |-1Cony;, for all n (by this we really mean that a translation of Cony;; into Py is a theorem of T)).
More generally, let I be an interpretation of Py in T, with Py, P, and ¥ as before. Assume that =; is = and
that I satisfies the other nonrestrictive assumptions of §3.6. We say that the pair (T, ) is reflexive with
respect to I if |-7(Cony;)! for all n. This concept is only interesting when T describes T with respect to
I, in which case its meaning is close to “T proves the consistency of all its subtheories with finitely many
nonlogical axioms”. We shall see that this implies “T can prove its own consistency”. However, we will not
be able to deduce that T is inconsistent, because one hypothesis of the theorem on consistency proofs will
not be fulfilled, namely, that of recursive enumerability.

The result of this paragraph was discovered by Feferman [3]. Its relevancy will only appear once we
know of interesting theories having the reflexivity property. We do not discuss the question of reflexivity
further here (but see §6.3).

We shall admit the following result without proof: if P is a good extension of PA and ¥ is an arithmetical
theory in P, then |-pCon . This is of course a formalization of the fact that a first-order theory with no
nonlogical axioms is consistent (cf. ch. 11 §1.2). The reader should convince himself that the methods used
in the proof of this fact are all amenable to formalization within PA.

LEMMA. Let P be a good extension of PA and ¥ an arithmetical theory in P. Let ¥’ be the arithmetical
theory with the same language as ¥ and with Nlax’ x < Nlax x A Con;s,. Then |pCon’.

Proof. Note that ¥ is an extension of ', and hence

pCon — Con’. (22)
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By (iii) of $2.4, Fp1Con — 3z71Cony,. By the least number principle,
Fp1Con — 3z(11Cony, AVx(x < z — Conyy)). (23)
Now pConyj, and so |-p1Cony, — 3y(z = Sy). From this and (23), we obtain
Fp71Con — Jy(7Conysy AVx(x < Sy - Conyy)). (24)

Using the obvious theorems px < y = Sx < Sy, FpVx(x < Sy - Conjx) - Cony,,, and |p71Conys, —
Conysy — x < z together with (24), we infer p7Con — 3z(Con;, AVx(x < z < Conysy)). From
the definition of Nlax’ comes |p1Con — 3z(Cony, AVx(Nlax;, x < Nlax’x)). By lemma 2 of §2.6
and the remark following it, FpVx(Nlax;, x < Nlax’x) - Con,;, < Con’, and therefore |-p1Con —
3z(Con,, A(Cony, <> Con’)), whence

Fp1Con — Con’ . (25)

From (22) and (25) by the tautology theorem, |pCon’. O

THEOREM. Let Py, P, T, and I be as above. Let T be an arithmetical theory that describes (resp. repre-
sents) T with respect to I. If (T, ¥) is reflexive with respect to I, there is an arithmetical theory ' in
an extension by definitions of P which describes (resp. represents) T with respect to I and such that
IpCon’. In particular, }-7(Con’)..

Proof. Define T’ as in the lemma, so that pCon’. Suppose that T describes T with respect to I. Let
A be a nonlogical axiom of T. Then |1(Nlax"A")! by hypothesis and |7(Cons's)! by reflexivity, so
k7 (Nlax’"A")! by definition of Nlax’ and the interpretation theorem. If moreover ¥ represents T and a is
not the expression number of a nonlogical axiom of T, then |7(7Nlax )’ and so |-7(7Nlax’ )’ by the
tautology theorem. O

§5 Arithmetical completeness

5.1 The interpretation in PA. In this section we shall prove that any reasonable first-order theory T has an
interpretation in the first-order theory obtained from PA by adding a suitable axiom expressing the con-
sistency of T. The proof is a direct formalization of the result of model theory known as the completeness
theorem. We begin with the definition of the interpretation.

Let T be a first-order theory arithmetized from a numerotation, and let ¥ be an arithmetical theory in
P which describes T. We define an interpretation I of L(T) in L(P"), where P’ is an extension by definitions
of P, by

(i) Ux < Tmx A Clx;
(i) frxi...xn = (0(£), x15. .., X0 )5

(iii) prxy...x, < Thm(a(p), x1, ..., Xx,).

LEMMA 1. Let u be a designator of L(T). If xi, ..., X, are distinct variables including the variables free
inu, then }pUx; - - »> Ux, > ClSub"u'('x; ", ..., "X, " WX, ..., X,).
Proof. This follows from §2.2 (xv’) and the fact that £(%) describes L(T). O

LEMMA 2. If }-p3x Func x0, then I is an interpretation of L(T) in P’.

Proof. We must prove
FpdxUrx (1)

and for every function symbol f of T,
FpUrxy = - = Upx, — Urfrx; ... x,. (2)

Now (1) follows from the hypothesis and }-pFunc x0 > Up{x) by the 3-introduction rule and the substitu-
tion axioms. Let f be an n-ary function symbol of T. Then |pTm'fx; ... x,", and hence |pTmfyx; ... x,
by (xi) of §2.2. Then (2) follows from this and lemma 1. O
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LEMMA 3. For every term a of T, if xy, ..., X,, are distinct variables including the variables occurring in
a,
Fpa;=Sub'a’('x;",..., X, WX15...,Xp).

Proof. By induction on the length of a. If a is a variable, then, since a is one of the x;, -pa = Sub"a’("x,’,
> Xp WX1,...,Xy). Suppose that a is fa; . .. a,,. By the definition of f; and the substitution rule, }-pa; =
(o(f), (@)1, ..., (a,)r). By induction hypothesis,

FpUrx; = -+ = Urx, — (a;)r = Suba; ' ('x; ', ..., "X NX1, ..., Xy)
for each i, and so
FpUxg —» - = Urx, —
ar=(o(f),Sub"a; ('x;", ..., X, MX1, .. .»Xu), ..., Sub a " (xy 7, L, X UKL, L X))

by the tautology theorem and the equality theorem. By the definition of Sub, we obtain }pUx; - --- —
Ux, >ar=Sub’a’('x;',..., X, MXp,...,X,). O

LEMMA 4. Suppose that |-pCon A Cm A Hk. For every formula A of T, ifxy, ..., X, are distinct variables
including the variables free in A,

FpUrxy > - > Urx,, > Ar < Thm Sub'A™("x;", ..., "X, " WX, ..., Xy).

Proof. We use induction on the length of A. We shall denote by u the two-term expression ('x;’, ...,
"Xy WX1,...,Xn). Suppose that A is pa; ...ax. By lemma 3, -p(a;); = Sub'a; u for each i. By definition
of py and the equality theorem, we obtain

FpA; < Thm(o(p),Suba;'u,...,Sub"a; u),

whence by properties of Sub, |-pA; <> Thm Sub"A'u, from which the desired result follows by the tautol-
ogy theorem.
Recall that, by (xiii) of §2.6, |-pCon A Cm implies

FpFmx — Clx - Thm Negx <> 7 Thmx. (3)

Suppose that A is B v C. By lemma 1, |pUx; - - - Urx, - ClSub’A’u, }pUrx; - - - Ux, —
ClSub'B'u, and }-pUx; — -+ — Usx, — ClSub'C'u, so by (3),

FpUx; » -+ = Urx, > Thm Sub"™1A'u <+ 7Thm Sub"A’u, )

FpUx; —» -+ = Usx,, > Thm Sub"1B'u <> 7' Thm Sub'B'u and U;x; — -+ - Ujx, - Thm Sub"7C'u +
71 Thm Sub"C'u. Thus by (vi) of $2.6,

FpUx; > -+ = Urx,, > 17Thm Sub’'B'u A 7 Thm Sub"C'u <> Thm Sub" 7B A 7C u. (5)

By (vii) of §2.6,
FpThm Sub"™ B A 7C'u <> Thm Sub" 1A u. (6)

From (4), (5), and (6) by the tautology theorem, |-pUrx; - --- = Ux,, - Thm Sub'B'uvThm Sub'C'u <~
Thm Sub"A'u. By induction hypothesis and the tautology theorem, we obtain }-pUx; - -+ - Ujx,, —
A <> Thm Sub"A'u, as required.

If A is 1B, the result follows from (4), with B instead of A, the induction hypothesis, and the tautology
theorem.

Finally, suppose that A is 3xB. By properties of Sub, we may assume that x is not among xj, ..., Xy,
and we have

FpUrx — Sub Sub B u("x")(x) = Sub'B"'('x", 'x1',..., X, X, X15...,Xyu),
so by induction hypothesis, the tautology theorem, and the equality theorem

FpUx - Urxy = --- - Ux,, — Thm Sub Sub B u(x"}(x) <> B;. (7)
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Since pHk, FpUix; - -+ - Ujx, — ClSub’A’u, and FpFuncx0 — Uj{x), we obtain from (7) that
FpUx; > -+ > Ujx,, > Thm Sub"A'u - Ix(U;x A By), i.e.,

FpUx; » -+ > Ux, > ThmSub'A'u — A;. (8)

The formula B — A is a substitution axiom of T, and so by the formalized substitution rule and the
formalized detachment rule, |pThm Sub'B'('x", 'x;',..., "X, " WX, X1,...,X,) = ThmSub"A'u, whence
by the induction hypothesis, the tautology theorem, and the 3-introduction rule, -pUx; - -+ - Ujx,, >
A; —» Thm Sub"A"u. Together with (8), this completes the proof. O

In the statement of the following theorem, “an extension by definitions of P[Con, Cm, Hk]” means of
course an extension by definitions of P'[Con, Cm, Hk] for some extension by definitions P’ of P in which
Con, Cm, and Hk are defined. We shall commit this abuse of terminology several times before the end of
this chapter.

THEOREM. If |p3x Func x0, then I is an interpretation of T in an extension by definitions of P[Con,
Cm, HKk].

Proof. We prove directly that |- p[Con’Cm’Hk]AI for every theorem A of T. Let xq, ..., X, be the variables
free in A in reverse alphabetical order. Since P[Con, Cm, HK] is a good extension of PA satisfying the
hypothesis of lemma 4, we have

Fpicon,cm,uk Urxt = -+ = Urx, — Ar <> Thm Sub"A'('x; ", ..., "X, X1, .. ., Xa).

Since ¥ describes T, FpUrx; - -+ - Uix,, » ThmSub'A'('x;, ..., "X, ' XX1, ..., X,) by the formalized
substitution rule. By the tautology theorem, | p(con,cm,Hk] AL O

5.2 The arithmetical completeness theorem. As in the proof of the completeness theorem, it remains to
build an extension T’ of ¥ for which |pCon — Con’ A Cm’ A Hk'. Here we only state the relevant results
without complete proofs.

ARITHMETICAL HENKIN’S LEMMA. Let P be a good extension of PA in which there is an arithmetical
theory ¥. Then in some recursive extension by definitions P’ of P there are arithmetical theories T*
and T, such that T differs from ¥ by a change of numerotation, ¥ is an extension of T, }-p/Hk,,
and }p/Fm* x - Thm, x - Thm* x.

Define a unary function symbol f by fx = x-2. Then |-pfx = fy — x = y. Welet T* be the arithmetical
theory Ty, so that f is a change of numerotation from ¥ to T*. Define £(%.) as follows: Vrex = vr* X3
Func.xy <> Func* xy v y = 0 A 3z(x = S(z - 2)); Pred. xy < Pred” xy; for eamong v, 1, 3, =, 0, and S,
e. =e*. Set

Nlax, x < Nlax* x v 3y(y < x A x = Imp. gy Sub.(gy)2((gy)1 }{(S(y - )

where g is defined by recursion so that Fpgx = uy(Cle y A y = Instc(y)1(y)2 A Vz(z < y = y # 82)).
It is then easy to prove that |-pHk.. The proof of the last assertion, however, is not as easy. It mainly
requires to derive in P a formalized version of the theorem on constants. Obviously the last assertion
implies -pCon* — Con,, and by the proposition of §2.5, we have in fact -pCon — Con,.

Of course, T, also describes a suitably arithmetized Henkin extension T¢ of T, but this is of no interest
here.

Remark. The construction of the arithmetical Henkin extension ¥ and the derivation of its conservativity
over T are the first step towards an arithmetical Herbrand’s theorem. As Herbrand’s theorem is a basis
for many finitary proofs of consistency, this can be used to formalize those proofs within PA. We can
prove, for instance, that |-py Cony for an appropriate arithmetical theory Ty describing N in PA. This
is an argument in favour of the informal thesis that all finitary reasonings can be formalized in PA, or at
least those used in consistency proofs; if one believes this thesis, then the theorem on consistency proofs
acquires a new meaning, namely: we cannot hope to prove the consistency of a first-order theory satistying
the hypotheses of the theorem by finitary methods.



V6.1 APPLICATION TO THE FIRST-ORDER THEORY ZF 91

ARITHMETICAL LINDENBAUM’S LEMMA. Let P be a good extension of PA in which there is an arith-
metical theory ¥. Then in some extension by definitions P’ of P there is an extension T’ of ¥ with the
same language as ¥ such that |- Cm’ and |-p:Con — Con’.

Define g by

y=gx < (Con AQ[x]Ay=uz(Fmz A Clz A 7(z € x) A 1 Thm[x] Negz))
v (1Con A Q[x] Ay =uz(FmzAClzA(z€x)) v(IQ[x] Ay =0).

The necessary existence conditions for this definition follow from |-pFma A Cla A 1(a € x) A 1(Nega €
x) where a is Inst(Vr x)(=, (Vr x), (Vr x)). Then define h by recursion so that }-ph0 = (g0) and }px *
0 — hx = (gh(x — 1)) » h(x - 1), and finally let Nlax’ x <> 3y(x = (hy),). The proof that }-pCm’ is a
straightforward inspection of the definitions. The proof that |-pCon — Con’ uses (iii) of §2.4. That we
cannot expect P’ to be a recursive extension of P reflects the nonconstructivity of the classical lemma.

It is clear from the definition of Hk that if ¥’ is an extension of ¥ with the same language as T, then
L pHk - HK'.

ARITHMETICAL COMPLETENESS THEOREM. Let T be a first-order theory arithmetized from a numero-
tation. Let P be a good extension of PA and ‘T an arithmetical theory in P which describes T. Then
there is an interpretation of T in an extension by definitions of P[Con].

Proof. Let T be constructed from ¥ as in Henkin's lemma, so that |-pCon — Con,. Let T’ be constructed
from ¥, as in Lindenbaum’s lemma, so that }-pCm’ and }-pCon, — Con’. Then |-pconCon’ A Cm’ A HK'
and |p3x Func’ x0. Since T’ is an extension of T, T’ describes T. By the theorem of §5.1, we find an
interpretation I of T in an extension by definitions of P[Con]. O

§6 Application to the first-order theory ZF

6.1 Describing PA. In this section we choose our fixed coding function symbol B in a recursive extension
by definitions of PA. We begin by defining an arithmetical theory 13 in a recursive extension by definitions
of PA. The symbols associated with B will be written with the index “PA”. The arithmetical language £(3)
is given by the defining axioms: Vrps x = x + 9, Funcpa xy <> (y = 0Ax = 4) Viy=1arx=5)v(y=
2/\x—6\/x—7) Predpry<—>(y 2/\X_3\/x—8) \/pA—O —lpA—lapA—Z A—3 OPA—4
Spa = 5. It is obvious that £(B) is an arithmetical language in (an extension by definitions of) PA. We let
opa be the numerotation L(N) defined by: apa (V) = 0, opa(7) = 1, 0pa(3) = 2, opa(=) = 3, opa(0) = 4,
0pA(S) =5, opa(+) = 6, 0pa(-) = 7, opa(<) = 8, and if x is the (n + 1)th variable in the alphabetical order,
set opa(x) = n + 9; we endow L(N) with the arithmetization obtained from ops by f. It is then equally
obvious that £(13) represents L(N). We let #y, ..., ng be the expression numbers of the axioms N1-N8 and
we define

Nlaxpy x < x =m V- vx =ngVvIydz(y <x Az <x AFmpy y A Vbleps z

A x = Imppa Subpy y(z)(0pa) Impps Genpa zImppa y Subpa ¥(2){(Spa, 2))y).

Observe that Nlaxp, is recursive on L(N). By the results of this chapter, it is clear that |-ps Nlaxps x —
Fmpa x, so that *J is an arithmetical theory in PA, and that *J3 represents PA. Since all the hypotheses
of the first theorem on consistency proofs are satisfied when Py and T are PA and P is the extension by
definitions of PA just defined, it follows that if |-ps Conpy, then PA is inconsistent.

In this case the arithmetical completeness theorem yields an interpretation of PA in an extension by
definitions of PA[Conp, ].

6.2 Describing ZF. The language of ZF has a single nonlogical symbol € which is a binary predicate symbol.
The axioms of ZF are
(i) Vz(z € x < z € y) > x = y (extensionality axiom);
(if) Iy(y e x) = Iy(y € x A 132(z € x A z € y)) (regularity axiom);
(iii) IWVy(Vz(z e y > z € x) = y € w) (power set axiom);
(iv) Ix(FAy(yexAVzu(ze y))AVy(y e x - Fz(z e x AVW(W € 2 <> w € yvw = ¥)))) (infinity axiom);
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(v) JzVx(x €z <> x € yAA) where X, y, and z are distinct and y and z do not occur in A (subset axioms);

(vi) Vx3zVy(A <y ez) > FzVy(Ix(x € w A A) > y € z) where X, y, z, and w are distinct and z and w
do not occur in A (replacement axioms).

In elementary developments of ZF, one proves that there is an extension by definitions ZF' obtained from
ZF by the adjunction of the five symbols 0, S, Nn, @, and ® such that the following interpretation I is an
interpretation of PA in ZF': Uy is Nn, = is =, 07 is 0, S is S, +; is @, -1 is ®, and <; is €. We define an
arithmetical language £ as follows: Vrx = x + S9, Funcxy < (y =0Ax =5 v(y=1lax=6) v (y =
2/\x:7vx:8),Predxy<—>(y:i/\x:('))v(yzi/\x:ilvx:Q),\'/:i,*l:i,él:3,£:4,6:5,
S = 6. Set 6zp(Nn) = 0, 07p(V) = 1, 07¢(7) = 2, 078(3) = 3, 0z8(=) = 4, 028(0) = 5, 078(S) = 6, ozr(®) = 7,
075(®) = 8, ozp(€) = 9, and if x is the (n + 1)th variable in the alphabetical order, set ozr(x) = n + 10.
We now arithmetize L(ZF') from the numerotation oz, so that £ represents L(ZF'). Let my, ..., m4 be
the expression numbers of the formulae (i)-(iv), and ms, ..., mgy the expression numbers of the defining
axioms of 0, S, Nn, ®, and ®. We now define an arithmetical theory 3 in a recursive extension by definitions
of PA. Its language is £ and the other symbols associated with 3 will be written with the index “ZF”. We
define Nlaxzr by
Nlaxzpx <> x=m;Vv---vx=mgVAVB

where A is

JyIzIwdx'(y<xAz<xAaw<xax'<x
AVbley AVblez A Vblew AFmx"Ay+zAz#wAy+wA10ccx'z A 10ccx'w

A x = Instw Gen y Eqv{ozg(€), y, w) Cnj{ozr(€), y, 2)x")

and B is

JyIzIwIx'Iy' (y<xnz<xArw<xAax'<xAy <xAVbleyaVblez
AVblew AVblex' AFmy' Ay#zAayswAy#x' Azewaz+x Aw+x
A10ccy'w A10cc y'x" A x = Imp Gen y Instw Gen z Eqv ' (75 (€), z, w)
Inst w Gen z Imp Inst y Cnj{dzg(€), y, x")y' (678 (€), z, w)).

It is clear that 3 represents ZF'. By the arithmetical completeness theorem, there is an interpretation of ZF
in an extension by definitions of PA[Congzg].

6.3 Conclusion. We let ZF', I, I3, and 3 be as in the previous paragraphs. We introduce an arithmeti-
cal interpretation J of £() in £(3) by Y5 = dzg(Nn) and (x)5 = Sx so that J describes I. Since I is
an interpretation of L(N) in ZF’, we have |, 3x Nn x, and for every n-ary function symbol f of L(N),
FzeNnx; - --- > Nnx, - Nnfrx; ...x,, wherex, ..., X, are the n first variables in the reverse alphabet-
ical order. By the definition of Funcps and the fact that 3 describes ZF', we obtain that J is an arithmetical
interpretation of £(3) in 3, and hence is an arithmetical interpretation of 35 in 3. All the defined sym-
bols of PA introduced so far are recursive on L(N), so B35 is certainly recursively enumerable. Moreover,
B describes (in fact represents) PA by the proposition of §3.5. Thus the hypotheses of the second theorem
on consistency proofs are satisfied when Py and T are PA, T is ZF', I 'is I, T is Py, T is 3, Tis J, P is
an extension by definitions of PA in which B3, 3, and J are defined, and C is a translation of Conzg into
PA. Instead of translating Conzg, it is also possible, by the interpretation extension theorem, to extend I
to an interpretation of P in an extension by definitions of ZF. Thus by the second theorem on consistency
proofs, if I,p(Conzg)’, then ZF is inconsistent.

Finally, we mention, without proof and without having seen one, that (PA,*}3) is reflexive and that
(ZF, 3) is reflexive with respect to I. By the theorem of §4.3, there exist arithmetical theories 3" and 3’ in
an extension by definitions of PA, representing respectively PA and ZF', the latter with respect to I, and
satisfying |-py Conp, and Fzp(Conlyp)’.



Chapter Six
First-Order Set Theory

§1  The first-order theory ZF

1.1 The language and the axioms. We define a first-order theory called Zermelo-Fraenkel set theory and
denoted by ZF whose only nonlogical symbol is the binary predicate symbol € (recall that, according to ch. 1
§2.5 (viii), we abbreviate cab by (a € b), dropping parentheses when possible) and whose nonlogical axioms
are the following:

(i) Vz(z € x <> z € y) = x = y (extensionality axiom);
(if) Jy(y e x) = y(y € x A13z(z € x A z € y)) (regularity axiom);
(iii) IwVy(Vz(z € y > z € x) = y € w) (power set axiom);
(iv) Ix(TAy(yexAVzu(ze y))AVy(y e x - Fz(z e x AVW(W € 2 <> w € yvw = ¥)))) (infinity axiom);
(v) JzVx(x €z <> x € yAA) where X, y, and z are distinct and y and z do not occur in A (subset axioms);

(vi) Vx3zVy(A <y ez) - FzVy(Ix(x € w A A) — y € z) where X, y, z, and w are distinct and z and w
do not occur in A (replacement axioms).

The first-order theory obtained by omitting (ii) (resp. (iv)) is denoted by ZF_ (resp. ZF,). We abbreviate
(aeb)to(aé¢b).

We should note that the first-order theory ZF is often defined with the following axioms in place of (v)
and (vi):

(V') IwVx(Iz(x € z Az € y) = x € w) (union axiom);

(vi") Vx3zVy(A < y =2z) > FzVy(y € z < Ix(x € w A A)) where x, y, z, and w are distinct and z and w
do not occur in A (replacement axioms).

It turns out that the theory defined in this way is equivalent to ZF. We shall only use the axioms (i)-(vi)
above.

1.2 Good extensions. An extension T of ZF is called a good extension if (v) and (vi) are theorems of T
for any formula A of T. Those theorems are then also called subset axioms and replacement axioms of T.
This is certainly the case if T is obtained from ZF by the adjunction of new axioms and new constants (by
the substitution rule). Note also that if T” is an extension by definitions of a good extension T, then T’ is
a good extension as well. For a translation of (v) or (vi) into T is obtained by replacing A by a translation
A" of A into T, so it is a subset or replacement axiom of T.

The individuals whose behaviour ZF is meant to formalize are called sets. The formula a € b means
that a is a member of b, or an element of b, or that a belongs to b. A set a is then viewed as the collection
of all the sets which belong to a.

§2 Definitions in ZF

2.1 Separation 1. In this section we shall give general methods to build extensions by definitions of ZF, as
well as introduce such extensions. We let T be a good extension of ZF, D a formula of T, and X, yi, ..., Y,
y, and y’ distinct variables such that x, yy, ..., y, include the variables free in D. Denote by D’ the formula
Vx(x €y <> D).

LEemMMA L D' > D'[yly'] - y=Y'.

Proof. Note that D’[y]y’] is Vx(x € y' <> D). The formula (x ey <> D) A (x €y < D) > (xey < x€y’)
is a tautology. By the distribution rule, ch. 1 §4.1 (vii), and the equivalence theorem, }-;Vx(x € y <
D)AVx(xey < D) » Vx(x ey < x ey'), thatis, FrD’ AD'[yly'] = Vx(x € y <> x € y'). Finally, we get
FrD’ — D'[yly’] -y =y’ as a tautological consequence of the latter and a version of the extensionality
axiom, as was to be shown. O
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LEMMA 2. Suppose that
Fr3zvx(D - x € z) (1)

for some z distinct from x and y and not occurring in D. Then | 3yD’.

Proof. By the subset axioms, 73yVx(x € y <> x € z A D), whence F7Yx(D — x € z) - Vx(D -
x € z) A JyVx(x € y < x € z A D) by the tautology theorem. From this by the distribution rule, the
hypothesis, and the detachment rule, we obtain 73z(Vx(D — x € z) A JyVx(x € y <> x € zA D)), whence
Fr3z3yVx((D » x € z) A (x € y <> X € Z A D)) by prenex operations, ch. 1 §4.1 (vii), and the equivalence
theorem. From this and the tautology (D - x € Z) A(x € y <& x € ZAD) - (x € y « D), we infer
Fr3yVYx(x € y <> D) by the distribution rule, the 3-introduction rule, and the detachment rule, as was to
be shown. O

THEOREM ON SET DEFINITIONS 1. If 13zVx(D — x € z) is verified for some z distinct from x and not
occurring in D, then existence and uniqueness conditions for y in D’ are theorems of T.

Proof. Note that if z is y, we may replace z by a suitable variable by the variant theorem. Hence, the
hypothesis of Lemma 2 is satisfied. O

A formula of the form of (1) with z distinct from x and not occurring in D will be called an existence
condition for the set of all x such that D.

By the theorem on functional definitions, if some existence condition for the set of all x such that
D is a theorem of T, the first-order theory obtained from T by the adjunction of a new n-ary function
symbol f and the new axiom y = fy; ...y, < Vx(x € y < D) is an extension by definitions of T. We
often abbreviate by fy; ...y, = {x| D} the defining axiom of f. This is not a strictly legit abbreviation
since the variable y appearing in the defining axiom cannot be recovered from it, but different choice of
the variable (as long as it is distinct from X, y3, ..., y,) yield equivalent theories by the substitution rule.
Sometimes we also abbreviate the term fa; ...a, by {x| D[y1,...yxas,...,a,]} if the a; are substitutible
for the y;. Again, this abbreviation is not really legit, for it does not contain enough information to recover
what it abbreviates. However, this will not lead to any confusion; for if the symbols f and f’ happen to be
defined so that fa; ...a, and f'b; ... b, yield the same abbreviation as above, then it is easily seen using
the extensionality axiom that |- fa; .. .a, = f'b; ... b,,; so by the equality theorem, the explicit definition
of f does not matter.

The following criterion is useful to prove existence conditions; it follows at once from the generaliza-
tion rule and the substitution theorem.

ProrosITION. If D as in this paragraph is such that |-7D — x € a for some a (in particular if D is of
the form x € a A C), then an existence condition for the set of all x such that D is a theorem of T.

2.2 Separation 2. Let T be a good extension of ZF, D a formula of T, X, y1, ..., Y», ¥, and w distinct
variables such that X, y;, ..., y, include the variables free in D, and yj, ..., y;, variables among y;, ..., yn.
Let f be a (k +1)-ary function symbol of T. Denote by D’ the formula 3x(D Ay = fxy; ...y;). An existence
condition for the set of all y such that D’ is given by 3zVy(3x(D Ay = fxy]...y;) — y € z) for some z
distinct from y and not occurring in D’

THEOREM ON SET DEFINITIONS 2. Suppose that some existence condition for the set of all x such that
D is a theorem of T. Then an existence condition for the set of all y such that D’ is a theorem of T.

Proof. Choose z distinct from y, x, xj, ..., X, and not occurring in D’. By the substitution theorem,
FrVy(Vz(z e y > z e x) > y e w) > Vz(z € x - z € x) - x € w. From this using 7Vz(z €
X — z € x), the tautology theorem, and the distribution rule, we obtain |73wVy(Vz(z € y - z € x) —»
y € w) — Iw(x € w). By the power set axiom and the detachment rule, we find }-r3w(x € w), whence
Fr3zVy(y = fxy] ...y}, — ¥ € z) by the version theorem, the replacement theorem, and the equivalence
theorem. This last formula is an existence condition for the set of all y such that y = fxy]...y;. Hence
by Lemma 2 of §2.1, -73zVy(y € z <> y = fxy;...y;). From this by the generalization rule, the replace-
ment axioms, and the detachment rule we get 73zVy(3x(x € wAy = fxy[...y;) = vy € z). Let U
be the first-order theory obtained from T by the adjunction of a new n-ary predicate symbol g and the
new nonlogical axiom y = gy; ...y, < Vx(x € y < D); we know that U is an extension by definitions
of T. Then |y3zVy(3x(x € gy1...y» Ay = fXy[...y;) — y € z) by the substitution rule, and since
FuX € gyi...yn < D, we obtain |-73zVy(3x(D Ay = fxy;...y};) — ¥ € z) by the equivalence theorem.
This is a desired existence condition, for z is distinct from y and does not occur in D'. O
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Thus if some existence condition for the set of all x such that D is a theorem of T, then the first-order
theory obtained from T by the adjunction of a new n-ary function symbol g and the new nonlogical axiom
W=gyi...Vn < Vy(y e w < Ix(D Ay = fxy]...y,)) is an extension by definitions of T. The defining
axiom for g is often abbreviated to gy; ...y, = {fxy]...y; | D}. We sometimes abbreviate gy; ...y, by
{fxy] ...y, | D}, and similarly if the variables y; are replaced by terms a; substitutible for the y; in D. Even
though those abbreviations are not legit, they are harmless for the same reason as in §2.1.

2.3 Defined symbols. Here is a list of defining axioms for new symbols.

() x=0-Vy(yex o y+y)

(ii) xSy« Vz(zex > zey);
(iii) x =Py <> Vwwex < Vz(zew - z€y));
(iv) z=fxy o Vwwezow=xvw=y)
() $ix = faxx;

(vi) Qaxy = {athixfaxy;

(vii) Q1% = x;

(viii) forn >3, 0,x1...%0 = 02X100_1%2 . . . X3

(ix) z=Unw < Vy(yez < x(x ew A y e x));

(x) forn >3, §.x1...x, = Unfofhixifcixa ... x0s

(xi) uxy = Unfhxy;

(xii) z=nxy o Vwwez > wexAwey);

(xiii) z=-xy < Vwwezowex AW e y);

(xiv) Sx = ux{hx;

(xv) 1=50,2=51,3=52,4=53,5=54,6=55,7=56,8=57,9=S8;
(xvi) z=xxy o Vwwez < Ix'Fy (w=02x"y Ax" exny €y));
(xvii) for 7 >3, X, X1 ... Xp = X2 X1 Xp_1X2 .. . X}

(xviii) forn >1and forI.S i<nmy=mnlx < (3x...x,(x = Qpx1... Xp Ay =2x;)) vV (3xy ... Ixu(x =
Onx1...x0) Ay =0);
(i) {ay,...,a,} abbreviates {},,a;...a,;
(ii') (ai,...,a,) abbreviates {,a;...a,;
(iii’) (a; x -+ x a,) abbreviates x,a; ...a,;

(iv') (aub), (anb), (a—b) abbreviate respectively Uab, nab, —ab.

We now prove that all of them are defined symbols. For (v)-(viii), (x)-(xi), (xiv)-(xv), and (xvii), this
follows from the Proposition 1 of ch. 11 §2.2; for (xii)-(xiii), this follows from the proposition of §2.1 and the
first theorem on set definitions. We settle the remaining cases, namely (i), (iii), (iv), (ix), (xvi), and (xviii).

As a tautological consequence of the identity axiom y = y and by the generalization rule and the
substitution theorem, we have |-zz3xVy(y # y - y € x). This is an existence condition for the set of all
y such that y + y. So (i) is a valid definition by the first theorem on set definitions.

An existence condition for the set of all w such that Vz(z € w — z € y) is just a version of the power
set axiom, and hence is a theorem of ZF. This proves that (iii) is a valid definition.

For (iv), we must prove fzp3x'Vw(w = x vw = y > w € x’). We define two new function symbols f
andgbyw = fzxy <> A, where Ais(z=0Ax=w)v(z=0Ay=w),andz = gxy < Vx'(x' € z
Iw(w € PPO A x' = fwx y)). It is easy to derive uniqueness and existence conditions for w in A using the
proposition 2 of ch. 11 §2.2, so by the second theorem on set definitions f and g are defined symbols. By the
substitution axioms, it remains to prove that zpVw(w = x vw = y - w € gxy), which is inferrable from
x egxyand y € gxy. Now |50 € PPO A x = fOxy, s0 | Iw(w € PPO A x = fwxy) whence },px € gxy.
Using },zP0 € PP0 and -,z 71P0 = 0, we find similarly |-,y € gxy.

The formula Vx3zVy(y € x <> y € 2) — FzVy(Ix(x e w A y € x) - y € z) is a replacement axiom
of ZF. Since Vx3zVy(y € x <> y € z) is inferred from the tautology y € x <> y € x by the substitution
theorem and the generalization rule, we have 732V y(3x(x € w A y € x) - y € z) by the detachment
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rule. This is an existence condition for the set of all y such that 3x(x € w A y € x). Thus the definition (ix)
is legit by the first theorem on set definitions.

To prove that (xvi) is a valid definition, it will suffice to prove Fzp3x'3y' (w = (x", Y'Y Ax" exny' €
y) = w € PP(x U y), for then a desired existence condition is obtained by the substitution axioms and the
detachment rule. We shall use the following easily derived results:

FzpxUy=yux,
Fzrxey—>xeyuz, and
Fzrxeznyez - {x,y} e Pz

From these we find }zpx’ e x Ay e y > x" e xUy Ay e xU y whence Fzpx’ exny ey - {x'} €
P(x U y) A{x’, y'} € P(x U y), and finally }zpzx" € x Ay’ € y > (x', ') € PP(x U y). The desired result
follows from the equality theorem and the 3-introduction rule.

The existence condition for (xviii) is easily derived, and the uniqueness condition will follow from
FzelX1 o X0) = V15> Yn) = X1 = Y1 A+ A Xy = Yy, for n > 1. This is obvious when n = 1. Suppose
that n = 2, and form T by the adjunction of four new constants ey, e, €], €, and the axiom (,e;e, = (, ;€.
In view of the deduction theorem, it will suffice to prove |-re; = €] A e; = €5. From the definition of {},
and the extensionality axiom, we find

Fzeia, b} ={c,d} > (a=cab=d)va=dab=c
Using this, the definition of {,, and the tautology theorem, we find

Frei=e V(e =€ Ae =e)),
Frler=e ne;=¢€) V(e =e Ae;=¢))V(e;=¢) e, =e), and

Fr(el=eney,=e)Vviei=e ne,=e)V(ej=ene,=e),

whence respectively |-re; = e}, Fre, + €, > e, = e}, and 7€, + e, > €, = e by the tautology
theorem. From these, using the equality axioms, the symmetry theorem, and the tautology theorem, we
obtain |-re; # €;, — e; = €}, whence |-re; = €} by the tautology theorem. The general case follows easily
by induction using the definition of {),,.

We give some English terminology which will be used in the informal exposition. A set is empty if it is
equal to 0. We say that a is a subset of b, or is included in b, if a € b. A set of the form {,a; .. .a, is called
an n-tuple, or an ordered pair if n = 2.

2.4 Separation 3. Let T be a good extension of ZF, D a formulaof T, Xy, ..., X, Y1, - - Yn, ¥> and w distinct
variables such that Xy, ..., X, Y1, ..., ¥, include the variables free in D, and yj, ..., y} variables among y;,
...»Yn. Let £ be a (k + m)-ary function symbol of T. If zy, ..., z,, are m variables distinct from xy, ..., X,
and not occurring in D, the formula

Jzy...32,Vx1... VX, (D > X] €Z1 A - A Xy € Zyy)
is called a joint existence condition for the set of all x,, ..., X,y such that D.

THEOREM ON SET DEFINITIONS 3. Suppose that some joint existence condition for the set of all x;,
...» X such that D is a theorem of T. Then an existence condition for the set of all y such that
% ... 33X, (DAY =X ... XpY] ... ;) is a theorem of T.

Proof. By the first theorem on set definitions, it will suffice to prove
Fr3zVy(3x; ... 3x, (DAY =X ... Xpy; ... V) > Y €2) (2)

for a suitable variable z. We may suppose that sufficiently many symbols are defined in T}, in particular sym-
bols f' and h defined by f'xy; ...y, = fa"x...afxy1...ypand y = hxy .. . xpy1... yx < Vz(z € y <
Iw(w € (x1x--xx)Az = f'wyy ... y,)), the latter being valid by the second theorem on set definitions and
the Proposition of §2.1. We then derive Frfx; ... % ¥1... 0 = {x1,..., Xm)¥1 ... yu. Let T" be obtained
from T by the adjunction of m new constants ey, ..., e,,, and let Abe Vx; ... VXx,,(D > X; €€ A= AXyy, €
e,). Using the definitions, we find F7/(4;3%; ... 3x,,(D Ay = fX; ... XpYyi...y;) > Veher .. eny] ...V}
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whence |74 32Vy(3x; ... 3x, (DAY = fX;...X,,y] ... ¥;) = ¥ € z) by the generalization rule and the
substitution axioms. By the deduction theorem,

FrVxi... VXu(D = X1 €Z) A AXpy €Z,y) > F2Vy(3xg ... IX (DAY = X1 ... XYy ... V)) > Y €2),
whence (2) by the 3-introduction rule and the joint existence condition. O

Thus if some joint existence condition for the set of all xy, ..., X, such that D is a theorem of T, then
the first-order theory obtained from T by the adjunction of a new n-ary function symbol g and the new
nonlogical axiomw = gy; ...y, < Vy(y e w < 3x;...3x,,(DAYy = fX; ... X,,,y] .. . 7})) is an extension by
definitions of T. As for the first two theorems on set definitions (see the remarks following those theorems),
we usually write gy; ...y, = {fx;...XuY] ...y} | D} for the defining axiom of g, and we sometimes use the
abbreviation {fx; ...X,,y] ...y} | D} for gy ...yn, and similarly if the variables y; are replaced by terms a;
substitutible for them in D.

2.5 More defined symbols. We introduce some more definitions.

() z=xxy o Vwwez < 'Y Z'(Y exn(x',Z) e yaw=(x',y,2));
(i) z=x*xy < Vwwez o Ix'IY'IZ(Z exn(x,yYeyaw=(x",y,2));
(iii) y =Domx < Vz(z € y <> Iw(w € x Az = m3w));
(iv) y=Imx < Vz(ze y < Iw(w e x Az = mPw));
(v) y=Cnvx < Vz(zey < Ix'TY'((y, x Y ex nz =(x", y));
(vi) Funcx <> x CImx x Domx AVyVy'Vz({y,z) ex > (y',z) e x = y = y');
(vil) TFuncx <> Funcx AVyVzVZ'((y,z) e x = (y,2 Y ex > z=2");
(vill) z = txy < Vw(w ez < Ix'Ix"(w = (&', x"Y A x" € y) Aw € x);
(ix) z=‘xy <> ((Funcx A y € Domx) A(z, y) € x) v (7(Funcx A 1y € Dom x) A z = 0);
(x) z=oxy e Vw(wez < Ix'IY (3 (x,2)ex n{Z,yYey) Aw = (x', y));
(i') (a x'b) abbreviates x’ab;
(ii’) (a | b) abbreviates fab;
(iii") (a‘b) abbreviates ‘ab;
(iv') (a o b) abbreviates oab.

We have Fypy' e x A{x,2') ey - x' entyny ex nz emsy, so (i) is a valid definition by the third
theorem on set definitions. The validity of (ii), (iii), (iv), (v), (viii), and (x) is proved in a similar way using
the theorems on set definitions. For (ix), it suffices to check that |-zzFuncx A y € Domx — 3z({(z, y) € x)
and |zgFuncx — (z, y) € x - (z/, y) € x - z = Z’. Both are derived at once from the definitions.

In the informal exposition, Dom a is called the domain of a, Im a the image or range of a; Funca means

that a is a function, and IFunca that a is an injective function. A function with domain a is also called a
function on a. The set a‘b is called the value of a at b.

§3 Ordinals and cardinals

3.1 Results on ordinals 1. We define the unary predicate symbols Tr and Ord by Trx < VyVz(y € x —
zey—>zex)and Ordx < Trx A Vy(y € x — Tr y). In English, Tra means that a is transitive, and Ord a
that a is an ordinal. An n-ary function symbol f of an extension T of ZF is an ordinal function symbol if
F7Ordfx; . ..x,. We often abbreviate € by < and € by < when concerned with ordinals, for reasons that
will appear shortly. We now derive some theorems involving Ord:

(i
(ii

) FzgOrdx - y e x - Ord y;
)
(iil) Fzpx € x3
iv)
)

FzrOrdx - Ordy - Ordz - x ey > yez > x€z;
(iv) Fzr(xeyAyex);

(v) if A is a formula of a good extension T of ZF and if y is distinct from x and not free in A,
F7r3x(Ordx A A) - 3x(Ordx A A A Vy(y € x — TA[x]y]));
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(vi) FzgOrdx - Ordy > xecyvx=yv yex;
(vil) FzgOrdx > Ordy > xCy < xeyvx=y.

Let x be an ordinal, y a member of x. Then by definition y is transitive, so any member of y is a member
of x, and hence is transitive. Thus y is an ordinal, and (i) holds; (ii) is obvious from the transitivity of z. By
the regularity axiom, {x} has a member y such that 73z(z € {x} Az € y); but y = x,s0 13z(z = x Az € X),
and hence x ¢ x. This proves (iii). By the regularity axiom, either x or y has no member in common with
{x, y}. In particular, either y ¢ x or x ¢ y, which proves (iv).

We derive (v) when x is x and y is y. Assume A for some ordinal x. If Vy(y € x - 1A[x|y]), then x
satisfies the conclusion. Otherwise, {y | y € x A A[x|y]} has a member, so by the regularity axiom it has a
member z which has no member in common with itself. Then z € x, so z is an ordinal by (i), and A[x|z].
Suppose that y € z; then y ¢ {y | y € x A A[x|y]} and by (ii), y € x. So 1A [x|y]. Thus z is a desired ordinal.
In the informal exposition, such an ordinal is called a minimal ordinal x such that A (we shall prove in §3.2
that such an ordinal is unique).

To derive (vi), assume that 3x3y(Ordx A Ordy A (x € yvx = y Vv y € x)). By (v), there is a
minimal ordinal x such that 3y(Ordy A (x € y vx = y v y € x)), and a minimal ordinal y such that
A(x e yvx=yvyex). Letz € y,and let us prove that z € x. By (i), zisan ordinal,sox e zvx =zvz e x
by minimality of y. Butif x € z v x = z, then x € y by (ii), which contradicts I(x e yvx = yv y € x).
So z € x, and hence y C x. Since x # y, there exists w in x — y, and w is an ordinal by (i). By minimality
ofx,weyvw=yVyew,and by choice of w, w = y v y € w. Hence by (ii), y € x, which contradicts
Ix3y(Ordx AOrdy A A(x e yvx =y VvV y€x)).

The implication from right to left in (vii) is a consequence of the transitivity of ordinals. To prove the
converse, let x and y be ordinals, and assume that 71(x € y vx = y). Then by (vi), y € x. Since y ¢ y by (iii),
we have y € x — y,50 I(x € y).

PRINCIPLE OF TRANSFINITE INDUCTION. Let T be a good extension of ZF and A a formula of T. If y is
not free in A, then

FrVx(Ordx — Vy(y € x — A[x]y]) > A) - Vx(Ordx — A).

Proof. This follows by the tautology theorem and the equivalence theorem from (v) where A is replaced
by TA. O

CoRrOLLARY. Let T be a good extension of ZF, f an n-ary ordinal function symbol of T, and A a formula
of T.Ifyy, ..., y, are not free in A, then

Frvxg...Vx,(Vy1.. . Vy (fyr ...y, X1 X, = AlXq, . X[V, -2, Y0 ) = A) = Vxg ... VXA

Proof. Let z and w be distinct from Xy, ..., Xy, Y1, ..., ¥» and not free in A, and let B be Vx; ... Vx,(z =
fx;...x, — A). Using prenex operations, the replacement theorem, and the fact that f is an ordinal
function symbol, we find

Frvx.. . Vx,(Vyr... Yy (fyr . ys € X0 X = AKXy, .o Xp|Y1s .25 Yal) = A)
< ¥z(Ordz — Yw(w € z —> B[z|w]) > B),

and similarly 7VYz(Ordz — B) — Vx;... Vx,A. By the principle of transfinite induction, }-Vz(Ordz —
Vw(w € z — B[zlw]) > B) - Vz(Ordz — B). Combining those three formulae with the tautology
theorem, we obtain the desired result. O

Informally, the principle of transfinite induction means that in order to prove that A holds for any
ordinal x, it suffices to prove it under the hypothesis that Vy(y € x > A[x|y]). Such a proof is called a proof
by transfinite induction on x (or by transfinite induction on fx; . . . x, if we use intead the corollary). The
formula Vy(y € x - A[x|y]) is called the induction hypothesis. Even though there is a clash in terminology,
the reader should realize that proofs by transfinite induction are completely unrelated to usual proofs
by induction that we have already used and shall yet use. The context will always prevent any possible
confusion.
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Remark. The derivations of the above theorems show our first use of the regularity axiom. In general,
many theorems that do not involve ordinals are derivable in ZF_. We did not insist on this earlier, because
the regularity axiom is true for the meaning we have in mind for sets. However, omitting the regularity
axiom yields the theory ZF_ which may be viewed as formalizing a more complex notion of set. Since ZF_
is weaker than ZF but sufficiently strong for most developments of set theory, it is common to investigate
first ZF_ and mention the regularity axiom as a possible new axiom that puts a restriction on the kind of
sets we wish to study. In that setting, it is possible to refine the definition of Ord so that the above theorems
remain derivable in ZF_. To do this first define Reg in ZF_ by Regx <> Vy(y € x — Jz(z € y) - Jz(z €
yAT3w(w € y Aw € z))); note that the closure of the regularity axiom is equivalent in ZF_ to Vx Reg x.
Then the definition of Ordis Ord x <> TrxAV y(y € x — Tr y) AReg x. As can be seen, the regularity axiom
is just “included” in the definition, so that |-z Ordx — x ¢ x and }-zp Ordx - Ordy — 7(x € yAy € x).
These theorems can then replace (iii) and (iv) in most of our future applications.

3.2. Let D be a formula of some good extension T of ZF, and let xy, ..., X,,, y, ¥', and z be distinct variables
such that xy, ..., X,,, and y include the variables free in D and such that z is substitutible for y in D. Denote
by D’ the formula Ordy A D A Vz(z € y — D[ylz]). This formula means that y is the first ordinal such
that D.

THEOREM ON ORDINAL DEFINITIONS. Suppose that |-73y(Ordy A D). Then existence and uniqueness
conditions for y in D’ are theorems of T.

Proof. Clearly |1y € yY — D — 1D’[y|y’] by the tautology theorem and the substitution theorem, and
symmetrically -7y’ € y - D[yl]y’] — D'. By (vi) of §3.1,  tOrdy - Ordy’ - y+y —>yey vy ey.
From these we obtain D’ — D’[yly’] - y = y/, which is a uniqueness condition for y in D’. The
existence condition follows directly from the hypothesis and (v) §3.1. O

Thus if F73y(Ordy A D), the first-order theory obtained from T by the adjunction of a new n-ary
function symbol f and the axiomy = fx;...x, < Ordy A D A Vz(z € y — DJylz]) is an extension
by definitions of T. We often abbreviate the defining axiom of f by fx;...x, = pyD. As always, some
information is lost in this abbreviation (namely z), but different choices yield equivalent theories. We may
even use pyD as abbreviating a term; as before, this abuse is possible by the equality theorem. Note that
we may always define f by y = fx; ... x, <> (Ordy AD A Vz(z € y - D[y|z])) v (13y(Ordy AD) Ay = 0).
In both cases, the symbol so defined is an ordinal function symbol.

3.3 Results on ordinals 2. We derive some further results on ordinals.

(D) FzeSx =Sy < x=y;
(i) FzpOrd x — Ord Sx;
(iii) FzpVy(y € x - Ordy) - Ord Un x;
(iv) Fzpdy(Ordy AVz(zex - Ordz — z € »));

(V) FzeIy(Ordy Ay ¢ x);
(vi) forany (n+1)-ary function symbol f in a good extension T of ZF, }-13zV y(Ix(Ordx Ay = fxy") —
yez) > IxIy(Ordx AOrdy Ax < y Afxy™ =fyy").

To prove (i), assume that x U {x} = yu {y}. Then(x € yvx = y) A(y € x Vvx = y), but since
Axeynyex),x¢x, and y ¢ y, we are left with x = y A x = y. The other implication is an equality
axiom.

Let x be an ordinal. If y € Sx, then y € x or y = x. In both cases, y is transitive and y C Sx, so Sx is an
ordinal, proving (ii). If all the member of x are ordinals and if y € Un x, then y € z for some ordinal z € x.
So y is transitive and y € z, whence y € Unx. This proves (iv). Let x be a set and let y € x be an ordinal.
Then y € Un{z|z € x AOrdz}. But Un{z| z € x A Ord z} is an ordinal by (iv), so y € SUn{z|z € x A Ord z}.
This proves (v), and (vi) follows from (v) and y ¢ y.

To prove (vii), we define an (# +1)-ary function symbol gby z = gyy" <> (Ordz A y = fzy" AVw(w €
z— y#fwy")v(13x(OrdxAy = fxy")Az = 0), i.e., gyy" is the first ordinal x such that y = fxy" if such
an ordinal exists and 0 otherwise. Assume that there is a set z such that ¥ y(Ix(Ord x A y = fxy") — y € z).
By (v), there exist an ordinal w such that every ordinal in {gyy” | y € z} is a member of w. Then since



100 FIRST-ORDER SET THEORY VI3.4

fwy" € z,a € {gyy" | y € z} where a is gfwy"y". Hence a < w by choice of w. But fay” = fwy" by
definition of g, whence (vii).

3.4 Transfinite recursion. In this paragraph we consider how the principle of transfinite induction may
be used to define function symbols and predicate symbols. We let T be a good extension of ZF.

PRINCIPLE OF TRANSFINITE RECURSION 1. Let g be an (n + 2)-ary function symbol of T. There is a
defined (n + 1)-ary function symbol f such that |- rOrdx — fxy” = g{(fwy", w) | w < x}xy".

Proof. Define a new function symbol h by y = hzxy" < y = g(z | x)xy" and a new predicate symbol r
by rzxy" <> Funcz A x S Domz A Vw(w € x - z'w = hzwy"). The actual definition of f is then

y =fxy" < (Ordx A 3z(rzxy" A y = hzxy™)) v (((Ord x A Izrzxy™) A y = 0).

We have to prove first that this definition is valid. The existence condition for y in the above is obvious.
From the definition of r,
FrTrx - rzxy” > wex > rzwy”. (1)

We now derive
Ordx - rzxy" - rz'xy" — hzxy" =hz'xy" (2)

using the principle of transfinite induction on the ordinal x. If w < x, then by (1), rzwy” and rz’'wy".
By induction hypothesis, hzwy" = hz'wy"; since z'w = hzwy” and z"‘w = hz'wy”", we find z'w = z"‘w.
From this it follows that z | x = z’ | x, whence hzxy" = hz'xy", which proves (2). This gives the required
uniqueness condition.

We now prove that f has the desired properties. We claim that

FrOrdx — Jz(rzxy") — fxy” = g{{fwy”, w) | w < x}xy". (3)

To prove this, let x be an ordinal, and let z be such that rzxy". For all w < x, rzwy” by (1). So fwy" =
hzwy" = z'w. Hence z | x = {{fwy", w) | w < x}, so fxy" = hzxy" = g(z | x)xy" = g{{(fwy", w) | w <
x}xy", as claimed.

In view of (3), it will suffice to prove |-rOrdx — 3Jz(rzxy") to conclude the proof. We prove this
by transfinite induction on x. Let a be {{fwy”,w) | w < x}, and let us verify that raxy”. Note that for
any w < x, a‘w = fwy". We have Funca and x = Doma, so in particular x ¢ Doma. Let w < x.
Applying the induction hypothesis to w and using (3), we have fwy" = g{{fw’y", w’) | w' < wlwy". So
a'w = fwy" = g{{fw'y", w') | w' < wlwy™ = g(a | w)wy" = hawy". This shows that raxy”, whence
Jz(rzxy") by the substitution axioms. O

COROLLARY. Let g be an (m + n + 1)-ary function symbol of T, and let h be an m-ary ordinal function
symbol of T such that |-rOrdx — 3z;...32, Va1 ... Vau(hx™ < x > x1 € Z1 A - A Xy € Ziy). Then
there is a defined (m + n)-ary function symbol f such that

Frfx™y" = gl mafw™ y"w™ |hw™ <hx™}x™ y".

Proof. We shall first use the principle of transfinite recursion to define an (n+1)-ary function symbol f. For
this we must define an (n +2)-ary function symbol g'. Its definition is g'zxy" = {{+1g UnIm zw™ y"w™ |

hw™ = x}, which is valid by the hypothesis on h, the fact that -thw™ = x - hw™ < x, and the third theo-
rem on set definitions. We then let f' be defined using g’ as in the principle of transfinite recursion, and we
define f by fx"y" = (f'hx™ y")(,,x™. It remains to prove that f is as claimed. We know that |- Ord x —

f'xy" = g {{f'wy", w) | w < x}xy", so that rfx™y" = (g'{{f'wy", w) | w < hx™}hx™y")),,x™. Thus
by definition of g', Frfx™y" = a where a is ({§ 1g UnIm{{(f'wy", w) | w < hx™}w™y"w™ | hw™ =
hx™})*0,x™. But clearly |-ra = gUn{f'wy" | w < hx™}x™y", so it will suffice to prove

FriQmafw™y"w™ |hw™ < hx™} = Un{f'wy” |w < hx™}.

We proceed in English. Since f'wy" is a function with domain {,,w™ | hw™ = w} if w is an ordinal, the
function on the right has domain {,,w” | hw™ < hx™}; this is also the domain of the function on the
left. Moreover, the two functions have the same values on their domain by definition of f, so they are
equal. O
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A definition in the form of the corollary is called a definition by transfinite recursion on hx™. In
practice, definitions by transfinite recursion may have various forms, and we now review some of the
most common and justify them.

(i) Ifgis(n+1)-ary, then we may define an (n+1)-ary f such that |-Ord x — fxy" = g{fwy" |w < x}y".

To prove this, define g’ by g’'zxy" = gImzy", and let f be obtained using g’ by the principle of transfinite
recursion. Then |7Ordx — fxy" = g'{{fwy", w) | w < x}xy", whence (i) by definition of g". In the more
general context of the corollary, this becomes:

(ii) Ifhis m-ary as in the corollary and if g is (n + 1)-ary, then we may define an (m + n)-ary f such that
Frfx™y" = g{fw™y" |hw™ < hx™}y".

It suffices to define g’ by g'zx™ y" = gIm zy".

(iii) Let g and h be as in the corollary and let A be a formula with free variables among x;, ..., X, w1,
...» W such that -rA — hw™ < hx™. Then we may define an (m + n)-ary f such that |-pfx™y" =
{0 mafw™y"w™ | Alx™ y".

This is a generalization of the corollary, but it can be seen to be a particular case by setting g'zx™" y" =
g(z | {0mw™| A}x™y" and letting f be defined by g’ as in the corollary. Clearly f is as required. Another
frequently encountered form of the principle of transfinite recursion is the following:

(iv) Ifgis (n+2)-aryand his n-ary, we may define an (n +1)-ary f such that I—Tf()y” =hy", FrOrdx —

x=Sx" > fxy" = gfx'y"x'y", and FrLimx — fxy" = Un{fx'y" | x" < x}.

This is done by defining y = g'zxy™ < (x = 0 A y = hy") v (Ordx A 3x/(x = Sx’ A y = g(z'x")x'y")) v
(Limx Ay = Un{z'x"|x” < x}) v(1Ord x A y = 0) and obtaining f using g’ as in the principle of transfinite
recursion.

We now turn to the problem of defining predicate symbols by transfinite induction. This will be a
simple application of the principle of transfinite recursion once we note that a predicate symbol may be
characterized by a function symbol of same index taking two distinct constants as values.

PRINCIPLE OF TRANSFINITE RECURSION 2. Let q be an (1 + n + 1)-ary predicate symbol of T, and let
h be an m-ary ordinal function symbol of T such that FrOrdx — 3z;...32,Vx;... Vx,, (hx™ <
X > X] € Z1 A+ AXp € Zy). Then there is a defined (m + n)-ary predicate symbol p such that
Frpx™y" < q{0mw™ | hw™ <hx™ A pw™ y"}x™ y".

Proof. Define by cases w = f'zx™y" < (qzx™y" Aw = 1) v (7qzx™y" Aw = 0). Then define an
(m + n +1)-ary function symbol g by gzx™y" = f'{{,,w™ | hw™ < hx™ A z°),,w™ = 1}x™y". Using the
principle of transfinite recursion, there is a defined (m + n)-ary function symbol f such that }-rfx™ y" =
g{0mafw™y"w™ | hw™ < hx™}x™y". We then define p by px™y" < fx™y" = 1. Going backwards
through the definitions, we see that |-;px™y" <> qax™y" where a is {{,,w™ |hw™ < hx™ A fw™y" = 1},
but by definition of p, Fra = {{,,w™ |hw™ < hx™ A pw™ y"}. O

As in (iii) above, we can also replace hw™ < hx™ by any formula A with free variables among x;, ...,
Xms Wi, +.., Wy such that F7A - hw™ < hx™.

3.5. We define Max x = 7?x U n2x, so that ,zOrdx — Ordy — x € y <> Max(x, y) = y. Our goal is to
define a one to one correspondence O” between ordinals and #-tuples of ordinals, for n > 2. We shall do
this by listing ordered pairs of ordinals in this way: (0, 0), (0, 1), (i, 0), (1,1), (0,2), (1, 2), (2, 0), (2,1), (2,2),
(0,3), (1, 3), etc. We now show how this can be accomplished formally. From }-7:3y(Ord y A y ¢ PImx)
we derive zp3y(Ord y A (y x y € x)). Thus we may define MPox = puyi(y x y € x). We then have
Fzr3y(Ord y A 3z(z € MPox A (y,2) ¢ x)), so we may define MP1x = py3z(z € MPox A (y,z) ¢ x), and
then MP,x = puy((MP1x, y) ¢ x). Finally, we set MP x = (MP;x, MP,x), and we define a unary function
symbol O? by transfinite recursion so that }-zOrd x - O%*x = MP{O?y| y < x}. From the definitions, we
derive }-7zp3y32z(Ord yAOrd zAMP x = (y, z)) and FzgMP x ¢ x. Intuitively, MP x is the first ordered pair
of ordinals in the list above that does not belong to x. For n > 3, we define O"x = (nf 0%x, O”’lﬂg 0%x). To
prove that O" is a one to one correspondence between ordinals and n-tuples of ordinals, it will obviously
suffice to treat the case n = 2; so we shall prove



102 FIRST-ORDER SET THEORY VI 3.6

(i) FzgOrdx — 3y3z(Ord y A Ordz A O%x = (y, 2));
(ii) FzpOrdx - Ordy —» x # y > O*x = O%y;
(iii) FzgOrdx — Ord y —» 3z(Ordz A O%z = (x, y)).

The first assertion is obvious. Assume that x and y are ordinals such that x # y, and say x < y. Then since
0%y ¢ {O%x | x < y}, we have O%x = O?y, which proves (ii). To prove (iii), we shall need

(iv) FzpMaxMP x < MPyx;
(v) FzpMaxMP x x Max MP x ¢ x.

Since MP;x < MPox and MP,x < MPx, we have (iv), whence (v) by definition of MPy. Let x and y be
ordinals. By (ii) above and (vii) of §3.3, we have 713zV y(3x(Ord x A y = O%x). So in particular, there exist
an ordinal z such that O%z does not belong to S Max(x, y) x S Max(x, y), and then both x and y belong to
Max O%z. So by (v), (x, y) € {O*w | w < z}, and this concludes the proof of (iii).

We prove the following additional results on O*:

(vi) Fzp0 < MP;x — (0, Max MP x) € x;

(vii) FzpOrdx — Ord y — Max O%*x < Max 0%y — x < y;
(viii) FzpOrdx - MaxO%x < x;

(ix) FzpOrdx — 0 < 720%*x - MaxO%x < x.

Assume 0 < MP;x. Then by definition of MPy, (0, y) € x for any y < MPyx, so using (iv) we find
(0, Max MP x) € x, as in (vi). Let x and y be ordinals. If Max O%x < Max O?y, then by (v) and the defini-
tion of O%, we have O%x € {O%z|z < y}, whence x < y by (ii). This proves (vii). We prove (viii) by transfinite
induction on x. We assume that x is an ordinal such that x < Max O%x and derive a contradiction. By (iii),
there exists an ordinal y such that Oy = (0, x), so that Max 0%y = x and hence Max 0%y < Max O%x.
Thus by (vii), y < x, so MaxO?y < y by induction hypothesis. Hence x < y, but this contradicts
y < x. Finally, assume that x is an ordinal such that 0 < 720%x, i.e., 0 < MP,{O%y | y < x}. By (vi),
(0, Max O%x) € {O%y| y < x}, so there exists y < x such that 0%y = (0, Max O%x). So Max O%x = Max Oy,
but by (viii), Max 0%y < y, so Max O%x < x.

Remark. This is the appropriate place to note that all the theorems we have derived in ZF until now did not
use the infinity axiom, i.e., we could have replaced ZF by ZF, everywhere. We shall use this observation
in ch. VII §2.4.

3.6 Infinity. We define the unary predicate symbol Lim by Lim x <> Ordx A 3Jy(y € x) A73y(Ord yAx =
Sy). In English, we say that x is a limit ordinal.

We now prove |-z 3x Lim x. This will follow from the infinity axiom, the substitution axioms, and the
J-introduction rule if we can prove

Fzedy(yexnVz(zey))AVy(yex > Jz(zex AVw(wez <> weyvw=y))) > Lima
where ais Un{z | z € x A Ord z}. Assume that x is a set such that

Jy(y e x AVz(z € ), and (4)
Vy(yex - Jz(zexnVwwez o weyvw=y))). (5)

Then 0 € x by (4), and SO € x by (5), so 0 € a and in particular 3y(y € a). From (iv) of §3.3, a is an ordinal.
It remains to prove that 713y(Ord y Aa = Sy). Assume thata = Sy for some ordinal y. Then y €a,so y € z
for some ordinal z in x. Now by (5), Sz € x, so Sz C a. Since Sy € Sz, Sy € a, whence a € a. This contradicts
the assumption that 3y(Ord y A a = Sy). Thus, a is a limit ordinal.

By the theorem on ordinal definitions, we can define a constant w with the defining axiom y = w <~
Lim y A Vz(z € y > 1Limz), or in abbreviated form w = yyLim y. Thus w is the first limit ordinal.

3.7 The von Neumann hierarchy. We define the symbol Stg by transfinite recursion so that |-zzOrd x —
Stgx = PUn{Stgy|ly < x}. Define also Rk by y = Rkx < (Ordy A x € Stgy AVz(z < y — x ¢
Stgy)) v (13z(Ordz A x € Stgz) A y = 0), i.e., Rkx is the first ordinal y such that x € Stg y if such an
ordinal exists. We shall prove that, in fact, such an ordinal always exists, that is,
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(i) Fzp3x(Ordx A y € Stgx).
We first prove

(ii) FzgOrdx — TrStgx;
(iii) FzpOrdx — y <x — Stgy < Stgx;
(iv) FzpIx(Trx A yex).

Now (ii) is proved by transfinite induction on x, noting that FzzVy(y € x - Try) - TrUnx and
FzeTrx — TrPx, and (iii) follows at once from (ii) and the definition of Stg. To prove (iv), define
f by transfinite recursion so that |;zOrdx — fxy = Un{Unfzy u {y} | z < x}. We shall prove that
FeTrfwy A y € foy. Now F,pOrdx — 0 < x — y € fxy is clear from the definition, so we need only
prove that fwy is transitive. Let z be a member of fwy. Then z is a member of Un fxyu{y} for some x < w,
so z € fSxy, and hence z € UnfSxy. Since Sx < w, we get z C fwy as desired.

We now prove (i). Let y be any set, and using (iv) let z be a transitive set such that y € z. Let a be
{w|w e zA3x(Ordx A w € Stgx)}. It will suffice to show that a = 0. Assume the contrary, and using
the regularity axiom' let x be a member of a which has no member in common with a. By transitivity of
z, any member of x” is a member of z, and by choice of x’ such a member does not belong to a. Hence if
w € x’, then w € Stg x for some ordinal x; in particular, w € StgRk w. By (v) of §3.3, there exists an ordinal
y' such that {Rkw | w € x'} € y'. If w € x', then Rkw < y', so by (iii), w € Stg y’. Thus x" ¢ Stgy’, and by
definition of Stg we find x’ € StgSy’, in contradiction with x’ € a.

In English, Rk a is the rank of a. We now derive some more results on Stg and Rk.

(V) FzpOrdx — y e Stgx <> Rky < x;

(vi) FzgOrdx - 3zVy(Rky <x - y e z);

(vii) Fzpx € y > Rkx <Rky;
(viii) FzpRkx =Un{SRky|y € x};

(ix) FzpOrdx — Rkx = x;
The implication from left to right in (v) is obvious, and the other implication follows at once from (iii).
From (v) we get (vi). Let y be any set. We have y € StgRk y, and StgRk y = PUn{Stgz | z < Rk y}. Thus
if x € y, then x € Stgz for some z < Rk y, and hence by (v), Rkx < z < Rk y, thereby proving (vii). Let x
be a set, and let a be Un{SRk y | y € x}. From (vii), SRk y < Rk x for any y € x, so a < Rkx. Now if y € x,
since Rk y < SRk y, we have Rk y < a, whence y € Un{Stgz| z < a} by (v). From this and the definition of

Stg, we find x € Stga, whence Rk x < a by (v). This proves (viii). We prove (ix) by transfinite induction on
x. By (viii), Rkx = Un{SRk y | y € x}, so by induction hypothesis Rk x = Un{Sy | y € x} = x.

3.8 Similarity. We define the binary predicate symbol ~ by x ~ y <> 3z(IFuncz Ax = Domz A y = Im2),
and we prove
@) Fzpx ~x;

(i) Fzpx~y < y~x;

(ifi) Fzpx~y—>y~z-x~2

(iv) FzpSx ~Sy < x~y;

(v) bFzex € 0 - (x ~ Sx);

(vi) Fzgx ~y — Px ~Py.
Letabe {(y, y) | y € x}. Then }zgIFunca A x = Doma A x = Ima, whence (i). Note that

FzelFuncz Ax = Domz A y =Imz — [FuncCnvz A y = DomCnvz A x = ImCnv z,

$0 Fzpx ~ y = ¥ ~ x. The other implication in (ii) is similar; (iii) follows from

FzelFuncx’ A x = Domx’ A y =Imx’ — [Funcy’ A y = Dom y’ Az = Im )

— IFunc(y’ o x") Ax = Dom(y' o x") Az =Im(y o x").

TThis is our first real use of the regularity axiom (see the remark in §3.1). It is in fact possible to derive in ZF_ the equivalence
of the closure of the regularity axiom and the closure of (i). Thus the regularity axiom can be taken to mean that all sets can be
obtained from the empty set by transfinite applications of P and Un.
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Assume that z is an injective funtion with domain x and range y. Then z U {{y, x)} is an injective function
with domain Sx and range Sy. Conversely, let z be an injective function with domain Sx and range Sy.
If zx = y, then z | x is an injective function on x with range y. Otherwise, it is easy to check that
Cnv(Cnv(z | x) | y) u{(zx, (Cnvz)‘y)} is an injective function with domain x and range y. To prove (v),
we use transfinite induction on x. Let x be an ordinal. If x = 0, then SO = 1, and 0 # 1 because 0 € 1. If
0 < x and x < w, then x = Sy for some ordinal y, because w is the first limit ordinal. Then y < x and
by induction hypothesis 7(y ~ Sy). Hence by (iv), (Sy ~ SSy), that is, 7(x ~ Sx), as was to be shown.
Finally, if w < x, the result is tautologically verified. To prove (vi), note that if z is an injective function on
x with range y, then {{{z'w’ | w € w}, w) | w € Px} is an injective function on Px whose range is Py.

3.9 The axiom of choice. We introduce the unary function symbol # with the axiom y = #x <> Ord yAx ~
yAVz(z € y - (x ~ z)). Thus #x is the first ordinal y such that x ~ y. It turns out that we are unable to
derive an existence condition for y in Ord y Ax ~ yAVz(z € y = (x ~ 2)), so we introduce a new axiom.

We define the binary predicate symbol Ch by Ch xy <> Funcx ADom x = Py — {0} A Vz(z € Dom x —
x‘z € z); Chab means that a is a choice function on b. The axiom of choice is a translation of the formula
Vx3y Ch yx into ZF. For definiteness, we should now choose explicitely such a translation, but different
choices yield equivalent theories by the theorem of ch. 11 §2.3, so the choice is irrelevant. We denote by
ZFC the first-order theory obtained from ZF by the adjunction of the axiom of choice as an axiom. In
ZFC, the existence condition for the symbol # follows from this theorem, also known as the well-ordering
theorem:

ZERMELO’S THEOREM. }-7rc3y(IFunc y A Ord Dom y A Im y = x). More precisely,

FzrChzx - 3y(IFunc y AOrdDom y Alm y = x

AVw(weDomy — x — {y'w |w <w}£0Ayw=2z(x-{yw|w <w}))

Proof. By transfinite recursion, we define a new ternary function symbol f such that |-;zrOrd w - fwxz =
z'(x — {fw'xz|w’ < w}). Let x be a set, and let z be a choice function on x. Then for any ordinal w, fwxz €
Im zu{0}. Hence by (vii) of §3.3, there exist ordinals w and w’ such that w’ < w and fwxz = fw’xz. Suppose
that x — {fw'xz | w’ < w} is not empty. Then fwxz € x — {fw’'xz |w’ < w}, and in particular fwxy # fw'xy,
contradicting fwxz = fw'xz. So x — {fw'xz | w’ < w} must be empty, and hence x ¢ {fw'xz | w’ < w}. Let
y be the first ordinal such that x € {fw'xz | w’ < y}, and let a be {(fw'xz, w') | w’' < y}. We now derive
that a is an injective function on y such that Ima = x. Clearly x € Ima by the choice of y. If ¥’ < y, then
x —{fw'xz | w’ < y'} is not empty by minimality of y, so fy'xz € x — {fw’xz | w’ < y’}. This shows that
Ima C x, and hence Ima = x. Finally, a is injective by minimality of y, for if w’ < w and w < y, then
fwxz + fw'xz, soa'w = a'w'. O

Thus in particular, |zpc3y(Ord y A y ~ x), so by the theorem on ordinal definitions, # is a defined
symbol of ZFC. In ZFC, we define the unary predicate symbols Card and ICard by Card x < Jy(x = #y)
and ICard x <> Cardx A w < x. The formula Carda (resp. ICard a) means that a is a cardinal (resp. an
infinite cardinal). We also say that #a is the cardinal of a.

3.10 Results on cardinals 1. We now derive basic results on cardinals.

() Fzpcx ~ #x;
(ii) Fzrcx ~y < #x = #y;
(iii) FzpcOrdx — #x < x;
(iv) FzpcCardx — #x = x;
(V) FzpcOrdx - yCx - 3z(OrdzAz<x Az ~ y);
(Vi) Fzpcx Sy — #x < #y;
(vii) FzpcFuncx — #Imx < #Dom x;
(viil) Fzpcx € w — Card x;
(ix) FzpcCard w;
(x) Fzpc#x =y - #Px = #Py.
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From the definition of # we have (i), whence (ii) by symmetry and transitivity of ~. Since #x is the first
ordinal similar to x and since x ~ x, (iii) holds. Now assume that x is a cardinal, i.e., that x = #y for
some y. Then x ~ y, so #x = #y by (ii), and hence #x = x. The other implication in (iv) is obvious. We
now prove (v). Let x be an ordinal and y < x. Let a be {{uw(w € z),2) | z € Py — {0}}. Clearly Chay. By
Zermelo’s theorem, there exists w such that [Funcw A Ord Domw A Imw = y and for any x" € Domw,
y—{wx" | x" <x'} £ 0and wx’ = a‘(y — {wx" | x” < x'}), that is,

wx' = pz(ze y — {wx" | x" < x'}). (6)

In particular, Domw ~ y, so it will suffice to prove that Domw < x. Assume that x < Domw. Then
w'x € ¥,80 wx < x. Let b be yz(w'z < z). Then b < Domw, wb < Dom w, and since IFuncw, wb ¢
y—{wx" | x"" < wb}. By (6), wwb is the first ordinal in y — {w'x” | x”" < w'b}, so w'w'b < w'b, whence
w'wD < wb because w is injective and w'b < b. This contradicts the fact that b is the first ordinal such
that w'b < b, and proves (v).

Assume x C y. By (i) there exists an injective function z on y whose image is #y. Then z | x is an
injective function on x whose image is a subset of #y. By (v) and the transitivity of ~, x ~ w for some
ordinal w < #y. Then #x < w, so #x < #y. This proves (vi). Let x be a function and let z be a choice
function on Dom x. Then {(z'{w | w € Domx A x‘w = y}, )| y € Imx} is an injective function on Im x
whose image is a subset of Dom x. So (vii) follows from (vi). We prove (viii) by transfinite induction on x.
By (iii), #0 < 0, so #0 = 0 and hence Card 0. Assume that 0 < x and x < . Then x = Sy for some ordinal y,
by definition of w. By induction hypothesis, Card y, so by (iv), #y = y. By (vi), #y < #x, so y < #x. By (v)
of §3.8 and by (ii), we have #x # #y. Thus y < #x, and hence x < #x. By (iii), we obtain x = #x, whence
Cardx. If w < x, there is nothing to prove. To prove (ix), assume that 7Card w. Then by (iii), #w < w.
Because w is a limit ordinal, S#w < w, so #S#w = S#w by (viii) and (iv). Thus by (vi), S#w < #w, which
contradicts (v) of §3.8. From (vi) of §3.8, we obtain at once (x).

3.1 Results on cardinals 2. We define in ZFC @xy = #((x x {OHu (yx {i})) and ®xy = #(x x y), with the
usual abbreviations (a @ b) and (a ® b). Then:

() Fzecxny=0—#(xuUy) =#x @ #y;
(i) Fzrc#(x x y) =#x @ #y;
(iil) Fzpc#t(xUy) <#x D #y;
(iv) bFzrexSx’' > ycy sxdy<x' @y Anx®@y<x’' ®y;
(V) FzpcCardx — x < x @ x;
(vi) }zpcCardx »2<x > x®x <x ® X;
(vii) FzpcCardx - Vy(yez - #y<x) > #Unz<#zQx;
(viii) FzpcX €W > Y ew > X B YEWAXQ Y € w;
(ix) Fzrcxew > yew—>x8Sy=S(x®y)Ax®Sy=(x®y) dx;
(x) FzpclCard x - Max O%x = x;
(xi) FzpclCardx > x®x=xAX®x = x;
(xii) FzpcICardx — ICardy — x @ y = Max(x, y) A x ® y = Max(x, y);
(xiii) for any (m + n)-ary function symbol f of a good extension T of ZFC, |-rICardx — #y < x —
#{fx"y" | x1 € y A Axy € ¥} < x.

Let x’ be an injective function on x with range #x x {0} and let y’ be an injective function on y with range
#y x {1}. If (z, w) and (z’, w) belong to x" U y’ with z # Z/, then one of them must belong to x’ and the
other to y’. This implies w € x N y. Thus if x N y = 0, then x" U ' is a function on x U y, which is clearly
injective and with range (#x x {O0H u (#y x {i}), as required to prove (i). To prove (ii), it suffices to note
that if x ~ x" and y ~ ', then x x y ~ x” x y'. From (i) we obtain (iii) by noting that x U y = x U (y — x)
and x N (y — x) = 0. Assume that x € x” and y € y'. Then (x x {0}) U (y x {1}) € (x" x {0}) U (¥’ x {1})
and x x y € x" x y', whence (iv). The set {{w,w,0) | w € x} is an injective function on x whose range is
included in x @ x, whence (v). Noting that x ® x = x ® 2, (vi) follows from (iv).

We now prove (vii). Assume that x is a cardinal and z a set all of whose members have cardinal at
most x, and let w be a choice function on P(Unz x x). Leta be {y’ € P(Unz x x) | Func y’ A Dom y’ =
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#y Alm y' = y}. Note that for all y € z, a is not empty. Thus for y € z, w'a is an injective function on #y

with range y. Let b be {(y,x") | y € z A x" < #y}, and let ¢ be {{(w'a)'x’, y,x") | (y,x") € b}. Thencisa

function on b whose range is Un z. Thus # Un z < #b. Since b € zx x and using (ii), we find # Un z < #z®x.
Let a be (x x {0}) U (y x {1}). We shall first prove

Fzrcxew > yew >x®Sy~S(x® y)and (7)
Fzrcxew > yew>x®Sy~(x®y)®x. (8)

Assume that x € w and y € w. Then {{(w,w) | w € a} U {(a, y,1)} is an injective function on Sa with range
(x x {0}) U (Sy x {1}), which proves (7). The set {{w, w, 0) | w € x x y} U {{{w, y), w,1) | w € x} is an injective
function on x x Sy whose range is ((x x y) x {0}) U (x x {i}), whence (8). We now prove (viii) by transfinite
induction on y. If y = 0, then x ® y = x and x ® y = 0, so the result holds. Assume that y < w and y = Sy’
for some ordinal y’. Then by (7), x® y ~ S(x @ y'), and by induction hypothesis x ® y’, and hence S(x @ y*),
belongs to w, s0 x @ y < w. Thus the first part of (viii) is proved. By (8), we have x ® y ~ (x ® y') ® x, and
using the induction hypothesis and the first part, this implies x ® y < w. Now (ix) follows from (viii), (7)
and (8).

Let x be an infinite cardinal. By (v) and (vi), x < x ® x. Assume that Max O%x = x. Then by (v) of §3.5
and the definition of O?, we have x x x € {O%y | y < x}. Now {(O%y, y)| y < x} is an injective function on
x whose range is {O?y | y < x}. Hence we find x ® x < x. In summary, we have proved

FzrclCardx - MaxO%*x = x > x ® x = x. (9)

We now prove (x) by tranfinite induction on x. We assume that Max O%*x # x and derive a contradiction.
By (viii) of §3.5, this implies Max O%x < x. Set a to be MaxO?x. Let y < x. Using (vi) of §3.5, we find
Max O?y < a, so Max Oy < Sa. From this we deduce that O%y € Sa x Sa. Since x = #x = #{O?y | y < x},
we find

x < Sa® Sa. (10)

Now suppose that a < w. Then by (viii), Sa ® Sa < w, and since w < x, this contradicts (10). So we must
have w < a, whence w < #a. Using a < x, we also have #a < x. Thus we may apply the induction hypothesis
to #a, and this yields Max O%#a = #a. By (9), we obtain #a = #a ® #a. By (i), #Sa = #a @ 1 and by (iv)
and (vi), #a @ 1 < #a ® #a = #a, so #Sa = #a. Hence Sa ® Sa = #a ® #a = #a < a < x. This contradicts (10).

The second part of (xi) follows from (x) and (9). The first part follows from the second one with (v)
and (vi). Let x and y be infinite cardinals. Using (iv) and (xi), we find Max(x, y) = Max(x @ 0,0 & y) <
x ® y < Max(x, y) ® Max(x, y) = Max(x, y) and Max(x, y) = Max(x ® 1,1 ® x) < x ® y < Max(x, y) ®
Max(x, y) = Max(x, y). These prove (xii).

To prove (xiii), define f’ by f'xy" = fa]"x...77xy". Let x be an infinite cardinal and y a set of
cardinal at most x. Then {fx"y" | x; € y A - Axpy € y} = {f'wy" | w € xp, ... y}. But this set is the range
of the function {(f'wy", w) | w € X,y ...y} whose domain is x,,y ... y. By (vii) of §3.10, #{fx" y" | x; €
YA AXp € y} < #Xpy...y. On the other hand, #x,,y...y < x by (xi) and induction on m, so we
find (xiii).

3.12 Alephs. We define

y=gx'x < (Ordx AlCard y AVz(z < x = y # x"2)
AVz(z <y - (ICardz A Yw(w < x — z # x"‘w)))) v (7 Ord x A y = 0).

Thus for x an ordinal, gx’x is the first ordinal which is a cardinal greater than w and not equal to a mem-
ber of Im(x"  x). To prove that this is a valid definition in ZFC, we must check that |;zcOrdx —
JFy(ICard y Ay ¢ Im(x" | x)). We know that |,zc3y(Ord y A y ¢ Im(x” | x)), so by transitivity of ordinals
it will suffice to prove that any ordinal belongs to a cardinal, i.e., }-zpcOrdx — Jy(Card y A x < y). This
follows from the following theorem.

CANTOR’S THEOREM. |7pcOrd x — x < #Px.

Proof. We first prove |-zpcCardx — x < #Px. Let x be a cardinal. The set {{{y}, ) | y € x} is an injective
function on x whose image is included in Px, so x < #Px. Assume x = #Px. Then there exist an injective
mapping z on x whose image is Px. Letabe {y | y < x A y ¢ z'y}. Clearly a € Px, and hence there exists
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y < x such that z'y = a. Then y € a <> y ¢ a, which is a contradiction. Assume now that x is any ordinal,
and that #Px < x. By (vi) of §3.8 and (iv) of §3.10, #P#x = #Px = ##Px, and since ##Px < #x by the
hypothesis and (vi) of §3.10, we obtain #P#x < #x, which contradicts the first part. O

We define the unary function symbol R by transfinite recursion so that }zpcOrdx — Rx =
g{(Ry,y) | y < x}x. We now prove that R is in fact a one to one correspondence between ordinals
and infinite cardinals.

(1) FzpcOrdx - y <x - Ry < Rx;

(ii) FzpcICardx <> y(Ord y A x = Ry);
(iii) FzpcR0 = w;
(iv) FzpcOrdx — RSx < #PRx.

Let x be an ordinal and x < y. By definition of X, Rx is not equal to Ry and does not belong to {Xz | z <
y}. Since Ry is the first infinite cardinal which does not belong to {RXz | z < y}, we obtain Ry < Xx,
whence (i). The implication from right to left in (ii) is immediate from the definition of X. Let x be an
infinite cardinal. By (i) above and (vii) of §3.3, we have 713zV y(Iw(Ord wA y = Rw) — y € z). In particular,
AVy(Iw(Ordw A y = Rw) — y € x), thatis, ®w ¢ x for some ordinal w. Then x < Rw. Hence either
x = Rw or x < Bw. In the latter case, x € {Rw’ | w’ < w} by definition of ®. Thus in both cases x = Ry
for some ordinal y. For (iii), recall that w is a cardinal, so it is the first infinite cardinal by definition of an
infinite cardinal; (iv) is obvious from Cantor’s theorem and the definition of X.

3.13 The functional closure theorem. In this paragraph, we prove that we may form the “closure” of any
set under given function symbols. In ZFC this can be done so that the cardinal of the closure of x is at
most Max(#x, R0). Moreover, the closure is “minimal” in the sense that any set which includes x and is
closed under those function symbols includes the closure of x.

FuncrioNaL CLOSURE THEOREM. Let T be a good extension of ZFC in which there are an n-ary func-
tion symbol h and function symbols f;, ..., fi, each f; of index m; + n. Then there is a defined n-ary
function symbol h' of T such that

(i) Frhy" chy™;
(i) F7rOrdx — #hy" < Rx — #h'y" < Ryx;
(iii) for eachi, Frx; €eh’y" - - > x,,, € h'y" - f;x™iy" e h'y";
(iv) Frhy" € x - {fix™y" |x; € X A s AXpy, € X} S X > o > {fx™* Y [ X1 € XA A Xy, € X} C
x—>h'y" cx.

Proof. Define f by
fxy" = Un{x, {fix™y" | X1 € x Ao Axpy € xhy o kXY™ | X1 €X Ao Ay, € X3},

and define a function symbol g by transfinite recursion so that |-7g0y" = hy", F;Ordy » y = Sy’ —
gyy" = fgy'y"y", and FrLimy — gyy" = Un{gy’'y" | ¥’ < y}. Since x € fxy", wehave y < w - y' <
y — gy'y" < gyy". Let us prove that the h’ defined by h’y" = gwy" has the desired properties. Since
hy" = g0y", hy" c giy", and so hy" ¢ h’y". Let z be an ordinal such that #hy" < Rz. By (iii), (xi),
and (xiii) of §3.11, we have

Fzec#w < Rz — #fwy” < Rz. (11)

We prove by transfinite induction that y < w — #gyy" < Rz. This holds if y is 0 because #hy" < Rz.
If y = Sy’ and y' < w, then #gy'y" < Rz by induction hypothesis, so #gyy" < Rz by (11). f w < y,
the result is tautologically satisfied. By (vii) of §3.11, we find #h’y" < Rz ® w < Rz ® Rz = Rz. This
proves (ii). Suppose that xi, ..., x,,, are members of h’y". Then each x; belongs to gz;y" for some z; <
w. Let y be the greatest ordinal among zi, ..., z,,,. Then xy, ..., X, are members of gyy”, and hence
fix™iy" e fh'yy"y" = h'Syy”. Since Sy < w, we have f;x™y" € h'y". Finally, assume that hy" ¢ x
and that {f;x™y" | x; € X A - A x,y, € x} € x for each i. We prove by transfinite induction on y that
y < w - gyy" € x, from which (iv) follows. If y = 0, this is assumed. So suppose that y = Sy’ for some

y' < w. Since y € x — fyy" C x by the closure conditions on x, using the induction hypothesis we find
/,n,.,n

gyy" =1fgy'y"y" cx. O
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3.14 The continuum hypothesis. The generalized continuum hypothesis is a translation into ZFC of the
formula Vx(Ordx — #PRx < RSx). The continuum hypothesis is a translation into ZFC of the formula
#PR0 < R1. Obviously the continuum hypothesis is inferrable from the generalized continuum hypothesis
in ZFC.



Chapter Seven
The Consistency Proofs

§1  Simple interpretations of ZF

1.1 Mostowski collapsing. In this paragraph, T is a good extension of ZF. Assume that there is a unary
predicate symbol q in T such that |-73xqx. Since L(ZF) has no function symbols, the simple interpretation
I of L(ZF) in L(T) defined by q is an interpretation of L(ZF) in T. We sometimes write A and A9 for A;
and AL, Note that I is also an interpretation of L(ZF) in any extension of T.

A particular case is when |-rqx <> x € e with |-73x(x € e). We then call the simple interpretation
defined by q the simple interpretation e. If only e is given, then we should define qin T by qx <> x c e
before we can speak of the interpretation e. But in practice, it is of course not necessary to pass to an
extension by definitions: we may just replace qa by a € e everywhere. The notations A, and A are used
in that sense.

To simplify, when a formula B clearly satisfies |-B <> A, we also call B the interpretation of A by I.
For example, the variables free in A need not be arranged in reverse alphabetical order when forming A’,
and we may use Vx(Ux — Cj) as the interpretation by I of a closed formula VxC, even though it really is
VX(UIX - _I_ICI).

A simple interpretation I of L(ZF) in T is said to be transitive if x € y is complete in x for I, i.e., if
FrUry - xey— Upx.

MosTowskl COLLAPSING THEOREM. Let I be an interpretation of L(ZF) in T such that = is = and
such that the interpretation by I of the extensionality axiom is a theorem of T. Suppose that there is a
unary function symbol h in T such that

(i) F7Ordhy,ie., hisan ordinal function symbol;
(ii) FrOrdx — 3yVz(hz <x - z € y);
(111) I—TX €1y —> hx < h)/

Then I is isomorphic to a transitive simple interpretation of L(ZF) in an extension by definitions of T.

Proof. In T, define a unary function symbol g by transfinite recursion on hx so that |gx = {gw | Uyw A
w € x}. This is a valid definition by the hypotheses (i)-(iii). Define the unary predicate symbol q by
qx < 3y(Ury Ax = gy). From F73xUpx we derive |-p3xqx. We let ] be the simple interpretation of
L(ZF) defined by q, and we prove that ] is transitive and that g is an isomorphism from I to J. Let x and y
be such that qy and x € y. Then for some z with U;z, y = gz, whence x € gz. By definition of g, it follows
that x = gw for some w such that Uyw and w €; z. In particular, qx. Thus, J is transitive. To prove that g
is an isomorphism from I to J, we must prove (i), (ii), and (iii) of ch. 11 §3.4. But (i) is given, so we need
only prove

FrUx - Uy > x =y < gx =gyand (1)
FrUmx > Uy > x €1 y <> gx e gy. (2)

We prove (1) by transfinite induction on hx. The implication from left to right is just an equality ax-
iom. Suppose that Urx and Uy and that gx = gy. The interpretation by I of the extensionality axiom
is VZ(Urz - z €1 x <> z €1 y) = x = y, which holds by hypothesis. Hence we need only derive that if Uz,
then z €; x <> z €; y. By symmetry, it suffices to prove the implication from left to right. Suppose then
that z €; x for some z such that Ujz. By definition of g, gz € gx. Since gx = gy, and again by definition of
g, gz = gw for some w such that Uyw and w €; y. Since hz < hx, the induction hypothesis yields z = w,
SOZ€r Y.

The implication from left to right in (2) is obvious by the definition of g. Assume that Uyx, Uy, and
gx € gy. By definition of g, gx = gz for some z such that U;z and z €; y. By (1), x = 2,50 x €1 y. O

109
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1.2 Interpretations of ZF. In this paragraph, we let T be a good extension of ZF and I a transitive simple
interpretation of L(ZF) in T. Our goal is to give sufficient conditions for I to be an interpretation of ZF
in T. In fact, we shall give sufficient conditions for the interpretation by I of each axiom of ZF to be a
theorem of T.

LEMMA 1. The interpretations by I of the extensionality axiom and the regularity axiom are theorems
of T.

Proof. From the extensionality axiom and using the transitivity of I, we find 7Urx - Uy - Vz(Uyz —»
z € x « z € y) > x = y, which is the interpretation by I of the extensionality axiom. By the regularity
axiom, the conjunction of Upx and 3y(Ury A y € x) implies 3y(y € x A 132(Ugz Az € x Az € ¥)). Using
the transitivity of I, we obtain F7Ux A Jy(Uiy Ay ex) — Iy(Uy Ay ex A13z(Uiz Az e x Az € y)),
which is the interpretation by I of the regularity axiom. O

LEMMA 2. Suppose that 7 Upx — Iw(Umw A Vy(Ury - y € x - y € w)). Then the interpretation by
I of the power set axiom is a theorem of T.

Proof. The interpretation of the power set axiom is Urx — Iw(Uw AVy(Ury - Vz(Uiz > zey - z €
x) = y € w). By the transitivity of I, this is equivalent to the hypothesis. O

LEMMA 3. Suppose that |-7U;w. Then the interpretation by I of the infinity axiom is a theorem of T.
Proof. By the substitution axioms it will suffice to derive
Uiw A y(Uiy Ay e w AVz(Urz > Tz € y))
AVy(Upy > yew—Fz(UzrzewnVw(Umw »wezoweyvw=y)).

This follows by transitivity of I from |7Urw and Fr3y(y € wAVzIz € Y)AVY(y € w - z(z € wAVw(w €
Zeoweyvw=y))). O

LEMMA 4. Suppose that any defined (n + 1)-ary function symbol f of T with a defining axiom of the
form fyx;...x, = {x|x € y A Aj} is I-invariant. Then the interpretation by I of each subset axiom of
ZF is a theorem of T.

Proof. By the version theorem it will suffice to consider a subset axiom of the form 3zVx(x € z <> x €
y A A), where y and z do not occur in A and where x;, ..., x,, are the variables other than x free in A. Its
interpretation by I is

Ux > Upxy —» - > Upxy > 32(Uiz AVX(Upx — x €z <> x € y A A))). (3)

Let f be defined by fyx; ... x, = {x|x € y A Ar}. Assume that Ury A Upxy A -+ A Upxy,; then Ugfyx ... x,
by I-invariance of f. From the definition of f, we also have

Vx(Uix > xefyx;...xp < x € yANAp), (4)
so (3) holds by the substitution axioms. O

LEMMA 5. Suppose that, for any I-invariant defined (n + 1)-ary function symbol f of T, F7U;y —
Urx; —» -+ > Umx, » 32(Uiz A Vx(x € y - fxx;...x, S z)). Then the interpretation by I of each
replacement axiom of ZF is a theorem of T.

Proof. It suffices to consider a replacement axiom of the form Vx3zVy(A < y € z) - JzVy(Ix(x €
w A A) - y € z) where z and w do not occur in A, and x;, ..., X, are the variables other than x and y free
in A. Its interpretation by I is

Uw—>Upg - - - Ux, = Vx(Upx » 3z2(Uiz AVy(Ury - Ap < y € 2)))
- 32Uz AVy(Uy - Ix(Uix Ax ew AAp) - y €2))
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Define f by

w="fxx...xp < (Fz(UizAVy(y ez > Uy AAp) AW =2))
v (T3z(UizAVy(yez < Uy AAD) Aw = x).

Then f is obviously I-invariant. Assume that Uyw, Uyxy, ..., Urx, and that
Vx(Uix - 3z(Uiz AVy(Ury = A <> y € 2))). (5)

By the hypothesis of the lemma, we have 3z(Urz A Vx(x € w — fxxy...x, C 2z)). Thus it will suffice to
prove that Uz A Vx(x € w — fxx;...x, C z) implies Uiz AVy(Ury — Ix(Uix Ax e w A A) — y € 2).
So assume that Ujz A Vx(x € w — fxx;...x, C z) and let y be such that Uy and Uyx A x € w A A for
some x. We must prove that y € z. By (5) and the transitivity of I, we have 3z(Ujz A Vy(A; < y € 2)),
whence Vy(A; < y € fxx;...x,) by definition of f. Now since A;, we have y € fxx;...x,, and since
xew,fxx...x,Cz.S0yez O

1.3 Absoluteness of defined symbols. We now assume that I is a transitive simple interpretation of ZF in
T, where T is a good extension of ZF. As in most results that we shall prove in this section, the hypothesis
that I be a transitive simple interpretation of ZF is often too strong: sometimes we do not use the transivity
of I or we only need the interpretations of a few axioms of ZF. But we shall have no need of a more precise
analysis than that which is given. Recall that by the interpretation extension theorem, I can be extended
to an interpretation of any extension by definitions of ZF in a suitable extension by definitions of T (since
it is possible to define a constant in T, and we agree to use the constant 0), which we continue to denote
by I as we do not usually distinguish between ZF and its extensions by definitions.

Note that = and ¢ are absolute for I since I is simple. Moreover x = y is complete in x for I, and since
I is transitive, x € y is complete in x for I. We now use the results of ch. 11 §3.5 to prove that some defined
symbols of ZF are absolute for I. In particular, we shall see that the general principles on set formation
proved in Chapter v1 yield absolute symbols when the “input” is absolute. To prove that a function symbol
f is absolute, it will suffice, by Lemma 8 of ch. 11 §3.5, to derive a formula of the form fx; ... x, = a wherea
is absolute for I, or a formula of the form y = fx; ... x, <> A where A is absolute for I. Similarly, to prove
that a predicate symbol p is absolute, it will suffice, by the same Lemma, to derive an equivalence of the
form px; ...x, <> A where A is absolute for I. We shall thus make a list of such formulae, and in all cases
the fact that the formula is a theorem of ZF will be clear given the defining axiom of the symbol. In most
cases the formula will also give at once the desired absoluteness by the general principles of ch. 11 §3.5, the
completeness in x of x € y, and the preceding results in the list. First note that since x € y is complete in x
for I, x e y AB and I(x € y — B) are complete in x for I. So by Lemma 5 of ch. 11 §3.5, 3x(x € y A B) and
Vx(x € y - B) are absolute for I if B is absolute for I. From now on we use these facts and the lemmas
of ch. 11 §3.5 without mention.

LemMA 1. Iff is defined by fy; ...y, = {x|A} asin the first theorem on set definitions and if A is absolute
for I and complete in x for I, then f is absolute for I. If g is defined by gy; ...y, = {fx; ... Xny] ...y} |A}
as in the third theorem on set definitions, if A is absolute for I and complete in xy, ..., X,, for I, and if
f is absolute for I, then g is absolute for I.

Proof. x € y < A is absolute for I, so it will suffice to prove that (x € y <> A) is complete in x for I. The
latter is tautologically equivalent to (x € y A 7A) Vv (x ¢ y A A) which is complete in x by completeness in x
of x € yand of A. If A is absolute and complete in xy, ..., X, then AAy = fx; ... X,,¥7 .. . ¥} is absolute and
complete in Xy, ..., X,;, y by absoluteness of f. Hence we find as above that (y e w < 3x;...3x,,(AAYy =
fx;...X,y] ... y})) is absolute and complete in y. O

@) 0={y|y=*yh

(ii) xSy« Vz(zex >z e y);
(iii) foxy={w|lw=xvw=y}h
(iv) fhx = faxx;

V) Q2xy = fathixfaxy;
(vi) f1x =x;
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(vii) forn >3, 0ux1... x5 = 02x100_1%2 . . . X3
(vili) Unw ={y|Ix(x e wA y e x)}.
For (viii) observe that 3x(x € w A y € x) is complete in y by transitivity of I.
(ix) forn >3, {,x1...x, = Unfhy i fcixz ..o x03
(x) uxy = Unflxy;
(xi) nxy={w|wexarweyk
(xil) —xy={w|wexaw¢yh
(xiii) Sx = ux{ix;
(xiv) 1=80,2=51,3=52,4=53,5=54,6=55,7=56,8=57,9 =S8
(xv) xaxy={w|3Ix'Ty'(w = 0x"y' Ax" ex Ay € )}
For (xv) we must prove that 3x'3y'(w = (,x"y’ Ax’ € x Ay’ € y) is complete in w for I. This follows from
the transitivity of I and the absoluteness of ¢;.
(xvi) forn >3,y = XuX1... Xy < ¥ = X2X1Xy_1X2 . . . X3
(xvii) forn >landforl<i<m, y=mnlx < (Ix;...3Ix,(x = Qpx1... 2, Ay = %)) V(1 3xg... Ix,(x =
OnX1...x) Ay =0).
For (xvii) we must prove that x = {,x; ... x, is complete in xy, ..., x,, for I. This is obvious if n = 1, and if
n = 2 it follows from the transitivity of I since |zpxy € {x1} Ax2 € {x1, 22} and Fzp{x} € Q2x102 A{x1, %2} €
(2x1x>. The general case is proved by induction.
(xviii) Domx = {m3w | w € x};
(xix) Imx = {m2w | w € x};
(xx) txy={{x",x")|x" ey n({x',x") € x};
(xxi) Funcx <> x € Imx x Domx A VyVy'Vz({(y,z) e x > (y/,z2) ex > y=y');
(xxii) TFuncx < Funcx AVyVzVz'((y,z) e x - (y,2') e x > z=2');
(xxiil) z="‘xy < ((Funcx A y e Domx) A(z, y) € x) v (I(Funcx A 1y e Domx) A z = 0);
(xxiv) oxy = {(x', y")| I2'((x", 2"y e x A {2', ¥} € ¥)}.
The absoluteness in (xxiv) follows from the completeness in x’, y', 2’ of (x',z") e x A (2', y') € .
(xxv) Trx < VyVz(yex > zey > zex);
(xxvi) Ordx < Trx AVy(y e x - Try);

LEmMMA 2. If f is defined by fx, ... x,, = yyA where A is absolute for I, then f is absolute for I.

Proof. The actual defining axiom of fisy = fx; . ..x,, <> OrdyAAAVz(z € y - 1A [y|z]) for some suitable
z, and its right-hand side is absolute. OJ

LEMMA 3. Let g be a defined (1 +2)-ary function symbol and let f be defined using g as in the principle
of transfinite recursion. If g is absolute for I, so is f.

Proof. Recall that f is such that F7(Ordx A fxy" = g{(fx'y", x") | x’ < x}xy™) v (1 Ordx A fxy" = 0).
Thus if h is defined by y = hxy"” <> (Ordx AFuncy A x = Domy A Vz(z € x —» y'z = g{(y'2,2') | 2/ <
z}zy™)) v (10rdx Ay = 0), then rfxy” = (hSxy")'x. But Vz(z € x — y'z = gl(y'Z, 2') | 2’ < z}zy") is
absolute. So h is absolute for I, and hence f is absolute for I. O
(xxviii) Maxx = 7?x U m3x;

(xxix) MPx = (uy3z(z € uwi(w x w S x) Ay, 2) € x), py(py'Fz(z € uwA(w x w S x) A (Y, 2) € x), y) ¢

x));

(xxx) O? is defined by transfinite recursion using gzx = MP{z'y | y < x};

(xxxi) Limx <> Ordx Aix =0A3y(Ord y A x = Sy);
(xxxii) w = pyLimy.

Remark. Recall that, by the remark in ch. v1 §3.3, the absoluteness of all the symbols listed above ex-

cept (xxxii) holds not only for transitive simple interpretations of ZF, but more generally for transitive
simple interpretations of ZF,,.
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§2 The predicate of constructibility

2.1 Introduction. We shall define in ZF a unary predicate symbol L, called the predicate of constructibility,
and we shall consider the simple interpretation of L(ZF) defined by L. Intuitively, we would like to define
the constructible sets by transfinite induction as follows. We first define f by transfinite recursion so that
fx = Un{Def y | y < x} for x an ordinal, where Def y is the the set of subsets of y which are characterized
by a formula with parameters and quantifiers restricted to sets in y, i.e., the set of all sets of the form
{z|z € y A A’} with y not occurring in A. Then a set is constructible if it lies in fx for some ordinal x. This
definition ensures that the interpretations by L of the subset axioms hold. Moreover, the interpretations
of the other axioms can be proved to hold as well by simple arguments. Unfortunately, a more precise
look at this “definition” brings us to the conclusion that it is flawed. It is indeed possible to define a unary
function symbol Def in ZF such that -zgDef x € Px and for any formula A of ZF with parameters and
quantifiers restricted to a variable x, |-zry € x AVz(z € y <> A) — y € Def x. But it makes no sense to ask
that for every y € Def x there exists a formula A as above such that z € y <> A. The formal definition of L
will thus necessarily differ from this naive definition, but it will retain all of the above properties. We shall
even be able to prove that the interpretations by L of the axiom of choice and the generalized continuum
hypothesis hold. We shall then use the interpretation theorem to obtain a result on consistency. Note that
the proof of this result will be entirely finitary. Here, instead of defining the symbol Def, constructible sets
will be defined more directly as the image of a function symbol on ordinals. The hard part will be to build
that function symbol so that it satisfies our requirements. The property of Def that we mentioned above
can be found in the theorem on definability in §2.3.

The method given here is essentially the original one of Godel [4], and we use the same notations with
a few minor differences. (Godel’s original proof was written for the first-order theory NBG, but all his
arguments translate into ZF in a straightforward manner.)

2.2 Definition of L. We define the binary function symbols §, ..., §9, called the Godel symbols, as follows
(all the definitions are legit according to the third theorem on definitions or the proposition 1 of ch. 11
§2.2):

(i) z=Fxy o Vwwez < Ty (w=(x",y)Awexany ex))

(i) z=Faxy o Vw(wez < Ix'(w = (x',x") Aw e x));

(ili) z=Fsxy o Vwwez o Ix'Ty'(w=(x",yYrAwexrx'ey));

(iv) z=F4xy o Vwwez < Ix'FY' (w=(x",y ) Awexny ey

(v) z=Fsxy o Vww ez« Ix'Ty' (w=(x", y ) Awexn(y,x') e y);

(Vi) z=Fexy o Vww ez < Ix'Fy' 32/ (w=(x",y", 2y Awex n{y,x',2') € y));
(vii) z=Frxy o Vww ez« x'TY'I'(w=(x", ¥, Z') nwex A (2, x", ') € y));
(viii) z=Fsxy <o z=x—-y;

(ix) z=F89xy <> z=xnDom y.
Note that the §; are absolute for transitive simple interpretations of ZF,,, and that |-zx§;xy € x. We then
define the unary function symbols Jo, J;, J» as follows:

(x) Jox = mO’x;

(xi) Jix = m0°x;

(xii) Jox = 7I§O3x.
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Then the J; are absolute for transitive simple interpetations of ZF,. By (viii) and (ix) of ch. v1 §3.5, we
have |zrOrdx — 0 < Jox = J1x < x A Jx < x. Hence we may define a function symbol C by transfinite
recursion so that

Fzpy =Cx < (Ordx AJox = 0 A Vw(w € y « 3z(z < x Aw = Cz)))
vV (Ordx AJox =1 A y = FClhxClax)
v (Ordx AJox =2 A y = §,CJ1xCJ,x)
v (Ordx AJox = 3 Ay = §3CJ1xCJax)
v (Ordx AJox =4 A y = F4CJ1xCJx)
v (Ordx AJox =5A y = §5CJ1xCJ2x)
v (Ordx AJox = 6 A y = F6CJ1xCJ2x)
vV (Ordx AJox =7 A y = §7CI1xCJ,x)
Vv (Ordx AJox =8 A y = FsCJ1xCl,x)
v (Ordx AJox =9 A y = F9CJ1xClrx)
v (Ordx A9 < Jox Ay = {CJ1x, Cl,x})
v (10rdx A y = 0).

Finally, we define L by Lx <> 3y(Ord y A x = Cy). If x is constructible, the first ordinal y such that x = Cy
is called the order of x. Formally, we define Odby y = Odx < (OrdyAx = CyAVz(z <y - x #
Cz)) v (MLx A y = 0). Observe that FzzLx — Ly - x # y - Odx # Od y. Finally, we define C* by
C*'x={Cy|y<x}.

2.3 Constructibility and definability. In this paragraph we review the fundamental properties of L. The
main result is the theorem on definability which says that “definable” sets are constructible.

LEMMA 1. }zplx - yex - Ly AOd y € Od x.

Proof. Suppose that x is constructible and that y € x. We derive the result using the priniciple of transfinite
induction on Odx. If JyOdx = 0, then x = {Cz |z < Odx}. So y = Cz for some z < Od x, and hence
Lyand Ody < z < Odx. If JyOd x = 1, then x = §,CJ; Od xCJ, Od x; so x € CJ; Od x. Thus y belongs
to CJ; Od x and J; Odx < Odx. By induction hypothesis, Ly and Od y < J; Odx < Odx. We proceed
similary for 2,...,9. Finally, if 9 < Jo, Od x, then y =CJ;0dx or y = CJ, Od x, but in either case Ly and
Ody < Odx. 0

LEMMA 2. |zpVy(y € x - Ly) > Jy(Ly Ax C y).

Proof. Assume that Vy(y € x — Ly) and using (v) of ch. vI §3.3 let z be an ordinal such that y € x —
Ody < z. Then x € {Cx’ | x" < z}. There exists an ordinal w satisfying z < w such that O*w = (0, z),
whence {Cx’ | x" < z} € {Cx" | x" < w}. Since Jow = 0, Cw = {Cx" | x < w}. Consequently, x € Cw. O

From the two Lemmas we now derive some properties of stability of L.

(i) For1<i<9, bzplx - Ly —» LT ixy;

(111) I—ZFLxl —> e = an g L(X:I, e ,xn>.
Suppose that x = Cz and y = Cw for some ordinals z and w. There exists an ordinal x” such that Jox' = 1,
Jix" = z,and J,x" = w. So §1xy = Cx'. Similarly for §>, ..., §o. This proves (i). Under the same hypotheses,
we may choose an ordinal x’ such that Jox’ = S9, J;x’ = z, and J,x’ = w. Then {x, y} = Cx’. By induction
using (ii), we find (iii).

(iv) Fzplxy = -+ > Lx, = L(xg x - x x);

(V) FzpLx - Ly - L(x x' y);

(vi) FzpLx — Ly = L(x x* y).
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For (iv), it suffices to derive Lx - Ly — L(xx y). Let x and y be constructible sets. By (iii), z is constructible
forall z € xx y. So by Lemma 2, there is a constructible set w such that x x y € w. Butthen xx y = §4Fzwxy,
so L(x x y). Similarly, there is a constructible set w such that x x! y ¢ w (resp. x x? y € w). Then
x x!y =Few(x x p) (resp. x x2 y = Fyw(x x y)), whence (v) (resp. (vi)).

(vii) FzpLx - LCnvx.

Let (y, z) be a member of x. Then by Lemma 1, {y, z} and hence y and z are constructible. By (iii), (z, y) is
contructible. By Lemma 2, there exists a constructible set w such that Cnv x € w, and then Cnv x = §swx
is constructible.

(viii) FzpLx - Ly - L(x U y);

(ix) FzpLlx - Ly — L(x N y);

(x) FzpLlx; = -+ = Lx, — L{xy,..., x,}.
Let x and y be constructible. By Lemmas 1 and 2, there is a constructible set z such that x U y € z. Then
xUy = FgwSsSswxy and x N y = FgxFsxy, so both are constructible. Since {x1,...,x,} = {x;, %1} U
{x2,...,x,}, (x) follows from (ii) and (viii) by induction.

(xi) FzpLx — LDom x;
(xii) FzpLx = LImx.

Let x be constructible. By Lemma 1, y € Dom x implies Ly. So by Lemma 2, there exists a constructible
set z such that Dom x € z. Then Dom x = §9zx. Finally, Im x = Dom Cnv x.

LEMMA 3. Foranyn >1,1<i<n,1<j<n, Fzplx - Ly - Jz(LzA VX ... Vx, (1€ x = - > x, €
x_><xia-xj>€y<_)(-xl)'--axn)ez))'

Proof. Assume that x and y are constructible. We shall exhibit a constructible set z satsfying the theorem;
this set will be seen in each case to be constructible on the basis of (i)-(xii), and we shall not mention it.
We first note that if i = j, then x,x...x DomF,yyx ... x, where Dom §, yy stands at the i-th place, is as
desired. In particular, the result is proved for n = 1. If i = 1and j = 2, then the set (x,_x...x) x* y (read
yif n = 2) is as desired. We suppose from now on that n > 2, and we prove the result by induction on #.
We shall distinguish the following cases:

(i) i=1land j>2;
(ii) i>landi < jj

(iif) j<i.
By induction hypothesis, there is a constructible set w such that for all x;, x3, ..., X, in x, (X1, xj) € y <>
(x1,X3,...,%,) € w. For (i), we may then take z to be x x! w. By induction hypothesis, there exists a
constructible set w such that for all x;, ..., x,, in x, {x;,x;) € y < (x3,...,x,) € w. Hence we may
take x x w for z in case (ii). For (iii), since Cnv y is constructible, there exists by the preceding cases a
constructible set z such that for all xi, ..., x,, in x, (xj,x;) € Cnvy < (x1,...,%,) € z. Clearly z is as
required. O

THEOREM ON DEFINABILITY. Let Xj, ..., X,, X, and y be distinct variables. For any formula A of L(ZF)
with free variables among x;, ..., X, Fzplx — 3Jy(Ly A VX;...VX,(x; € X > -+ > X, € X —
(XI:- --)Xn) €y < AL))

Proof. We proceed by induction on the length of A, and we assume (without loss of generality) thatx;, ...,
X,, X, and y are x, ..., X4, X, and y, respectively. If A is atomic, then A is of the form x; = x; or x; € x;
for some i and j, and Ay is A. Suppose that A is x; = x; (resp. x; € x;), and let a be F(x; x x;)x; (resp.
S1(x; x x;)x;). Then for x; and x; in x, {x;, x;) € a <> A, and by Lemma 3, there is a constructible set y

such that for x; and x; in x, (x;, x;) €a <> (x1,..., x,) € y. Thus, y satisfies the theorem.
Suppose that A is B v C; then Ay, is By, v Cy.. By induction hypothesis, there are constructible sets y;
and y, such that for all x;, ..., x, in x, (x1,...,x,) € y1 <> Brand (x;,...,x,) € y» <> Cp; then y; U y,

is constructible and such that for all xy, ..., x,, in x, {x1,...,%,) € y1 U ¥, <> Ar. Suppose that A is 7B,
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so that A, is 7By. By induction hypothesis, there is a constructible set z such that for all x;, ..., x, in x,
(x1,...,%,) € z <> By. We then see that the constructible set (x,x ...x) — z is as required.
Finally, suppose that A is 3zB, so that Ay, is 3z(Lz A By). Define an n-ary function symbol f by

y=fx;...x, < (Ly ABp[z]y] A Vw(Lw - Odw < Od y » "B_[z|w])) v (7132(Lz A By) A y = C0),

ie, fxy...x, denotes the constructible set z of smallest order such that By, if such a set exists, and C0
otherwise. Then clearly fx; . .. x, is constructible, so by Lemma 2 there is a constructible set w’ such that
xU{fx;...x, | x € x Ao Axy, € x} Cw'. By induction hypothesis, there is a constructible set w such that

forall z, x1, ..., x, inw', (z,x1,...,x,) € w <> Br. Letabe Dom(w n x,,.qw’...w'), and let us verify that
a satisfies the theorem, namely that for all xy, ..., x, in x, (x1,...,x,) €a < AL. Fix xy, ..., x,, in x. Now
(x1,...,xp) €aifand onlyif 3z(z € w' A (z,x1,...,x,) € W N x,qw' ... w'). Since x € w’, this is the case
if and only if 3z(z € w’' A BL), and since {fx;...x, | x; € x A=+ A x,, € x} € w', this holds if and only if
3z(Lz A By), as was to be shown. L]

2.4 Lis an interpretation of ZF. We now turn to the proof that L is an interpretation of ZF.
LEMMA 1. The simple interpretation defined by L is an interpretation of ZF,,.

Proof. We have |-7zLCx, so -z 3xLx. This means that L is an interpretation of L(ZF) in (an extension by
definitions of) ZF. Note that by Lemma 1 of §2.3, L is transitive. Thus by Lemma 1 of §1.2, the interpretations
of the extensionality axiom and the regularity axiom hold.

Suppose that y is constructible. Then by Lemma 2 of §2.3, there exists a constructible set z such that
Lx Ax C y > x € z. By Lemma 2 of §1.2, the interpretation of the power set axiom holds.

We now derive the interpretations of the subset axioms. Suppose that the variables free in A are x,
X1, ... Xn. Let x, x1, ..., x,, be constructible. Then x U {xy,...,x,} is constructible. By the theorem on
definability, there exists a constructible set w such that for all z € x, (z,x1,...,x,) € w < Ay. Then
z e Im(w N (x x {x1} x -+ x {x,})) <> z € x A A, so by extensionality the set Im(w N (x x {x1} x --- x {x,}))
equals {z | z € x A AL}, which is thus constructible. Hence by Lemma 4 of §1.2, the interpretation of each
subset axiom holds.

To derive the interpetations of the replacement axioms, suppose that f is a defined L-invariant (n + 1)-
ary function symbol, and let y, x1, ..., x, be constructible sets. Then every member of Un{fxx; ...x, |x €
y} is constructible, so by Lemma 2 of §2.3 there exists a constructible set z such that Un{fxx;...x, | x €
v} € z. Thus for all x € y, fxx;...x, C z. By Lemma 5 of §1.2, the interpretation of each replacement
axiom holds. O

LEMMA 2. |pOrd x — Lx.

Proof. By the results of §1.3 and Lemma 1, Ord is absolute for L. Recall that we have derived 3x(Ord x Ax ¢
y)in ZF,. So by Lemma 1 its interpretation by L holds, namely Ly — 3x(Lx A Ordy x A 1(x € y)). Since
Ord is absolute for L and ¢, is €, we have

FzeLy = 3x(Lx AOrdx A x ¢ y). (1)

We now prove }-zpOrdx — Lx by transfinite induction. Let x be an ordinal. By induction hypothesis,
every member of x is constructible. So there is a constructible set y such that x € y. By (1), there is a
constructible ordinal z such that z ¢ y. Now if z < x, then z € y. So x < z, and hence x is constructible by
transitivity of L. O

THEOREM. The simple interpretation defined by L is an interpretation of ZF.

Proof. By Lemma 2, }-zzLw. So by Lemma 3 of §1.2, the interpretation of the infinity axiom holds. O

LEMMA 3. C is absolute for transitive simple interpretations of ZF,,.
Proof. C is defined by transfinite recursion so that ,rOrdx — Cx = g{(Cy, ) | ¥ < x}x where g is the
binary function symbol defined by
y=gx'x < (Ordx AJox =0AVw(we y < Iz(ze x Aw = x"2)))
V(Ordx AJox =1 A y=F1x"Tixx"Tax) v v (Ordx A9 < Jox A y = {x"T1x, X" Tox})

v (70rdx A y =0).
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Since all the symbols in the right-hand side are absolute for transitive simple interpretations of ZF,,, g, and
hence C, is absolute for such interpretations. O

2.5 The axiom of constructibilty. The axiom of constructibility is a translation of VxLx into ZF. We denote
by ZFL the first-order theory obtained from ZF by the adjunction of the axiom of constructibility. Note
that |zp Ordx - 3zVy(Ody < x — y € z) and }7zp Od x = py(x = Cy). Thus by Lemma 2 of §1.3 and
Lemma 3 of §2.4, Od is absolute for transitive simple interpretations of ZFL.

THEOREM 1. If ZFL is inconsistent, so is ZF.

Proof. We already know that L is an interpretation of ZF in an extension by definitions of ZF. By the
interpretation theorem, it remains to show that the interpretation by L of the axiom of constructibility is
a theorem. This interpretation is Vx(Lx — Ly x). Thus it will suffice to prove that L is absolute for L. But L
was defined by Lx <> 3y(Ord y A x = Cy). Because |-zzOrd x — Lx, Ord y A x = Cy is complete in y for
L. Hence L is absolute for L by Lemma 3 of §2.4. O

THEOREM 2. The axiom of choice is a theorem of ZFL.

Proof. In ZFL, we define a unary function symbol Inf by y = Inf x <> 3z(OrdzA y = CzA(x =0V Cz €
x) AVw(Ordw — w < z = 1I(x = 0 v Cw € x))). Thus Inf x is the image by C of the first ordinal z such
that x = 0 v Cz € x. To prove that this is a valid definition, we must derive 3z(Ordz A x = 0 v Cz € x). If
x is 0, we can choose z to be 0. Otherwise, since ¥xLx, any member of x is constructible, so we can find
such a z. If x does not equal 0, then Inf x € x. Thus the set {(Inf y, y) | y € Px — {0}} is a choice function
on x. So Yx3y Ch yx is derivable in ZFL. O

In a less formal setting, the proof of the above theorem can be summarized as follows: in ZFL, the
universe of all sets is well-ordered via Od, and this provides a canonical way of defining a choice function
on a set. Note that in a first-order theory for sets in which the notion of class is defined, such as NBG,
together with the axiom of constructibility, the above proof shows in fact that there is an explicit (i.e.,
definable) choice function on the class of all sets.

Since the axiom of choice is a theorem of ZFL, # is a defined symbol of ZFL.

§3 The cardinality theorem

3.1 The reflection principle. The goal of this section is to prove a formal version for the first-order theory
ZFC of the famous result of model theory known as the (downward) Léwenheim-Skolem theorem. By a
“formal version”, we mean of course that both the formulation and the proof of this theorem will be com-
pletely finitary. We first prove a weaker result known as the reflection principle (in ZF). In this paragraph,
we let T be a good extension of ZF in which there is a constant ey, and we let I consist of finitely many
instantiations of T.

REFLECTION PRINCIPLE. There is a defined constant e of T such that |-re, C e, -1 Tre, and for every
instantiation JyB of T with free variables xy, ..., X, FrX; €€ - - > x, € e > JyB - Jy(y e e A B).

Proof. Let A be a formula of I of the form 3yB with free variables x;, ..., x,, in reverse alphabetical order.
Choose z not free in B and define in T a function symbol f, by

z=1farX;...X, < (3y(B ARky = z) A YW(Rkw < z » “B[y|lw])) v ("A Az = 0).

Thus fax; ... X, denotes the smallest rank of a set y such that B, if such a set exists. We also definein T a
unary function symbol g4 by gax = Un{fax;...x, | X1 € Stgx A -+ A X, € Stgx}, for some x not free in A.
This definition implies that if x;, ..., X,, belong to Stgx and if there exists y such that B, then we can find
such ayin Stggax.

Say T consists of Ay, ..., A,. We define g by gx = Un{ga,x,...,8a,x,Sx,Rkeg}. Finally, we define a
unary function symbol h by transfinite recursion so that |7Ordx — hx = Un{ghy | y < x}. Note that
F7Ord x - Ordhx and, by definition of g, F7Ordx - y < x - hy <hx.

We claim that the constant e defined by e = Un{Stghz | z < w} has the required properties. Clearly
Freo € eand |7 Tre. Let JyB be an instantiation of T with free variables xy, ..., x,,. We derive the second
assertion in English, and we assume thaty, xy, ..., X, are y, xy, ..., X,. Suppose that x, ..., x, belong to
e. Then they belong to Stghz for some z < w. Assume that A holds. Then by definition of g, there exists
y € Stgghz such that B. By definition of h, ghz <hSz, and since Sz < w, we find y € e. O
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Note that if A consists of finitely many formulae of T and if any subformula of a formula in A is in A,
then applying the reflection principle to the instantiations of A yields a constant e with the property that
the formulae of A are absolute for the transitive simple interpretation e (by Lemma 7 of ch. 11 §3.5). It is
because of this fact that the reflection principle is thus named.

3.2 The cardinality theorem. In this paragraph, we let I' be a collection of formulae of L(ZF), and T an
extension of ZFC whose language is L(ZF). We denote by T the first-order theory obtained from T by the
adjunction of a new constant ey, and as new axioms Jx(x € eg) and a translation of Tr ey. Form T; from
Ty by adding a new constant e;.

We let TT be obtained from T; by the adjunction of the following nonlogical axioms:

(i) atranslation of ey C ey;
(ii) a translation of Ord x — #ey < Rx — #e; < Rx;
(iii) for every instantiation 3yB of I with free variables xy, ..., X,, in reverse alphabetical order, x; € ¢; —

- —>X, €€ - JyB » Jy(yce; AB).

Axioms (i) and (ii) mean that e; includes e; and that the cardinality of e; is no greater than the cardinality
of eg. The formula #e; < Max(R0, #eo) is derivable from these two axioms. The axioms of (iii) mean that
whenever a formula of T' holds which has parameters in e; and asserts the existence of some set, there
must be such a set member of e;. Note that all of the above extensions are good extensions, since the only
nondefined added symbols are constants.

LEmMA 1. TT is a conservative extension of Tj.

Proof. Let C be a formula of Tg such that |-;rC. By the reduction theorem, there are formulae Dy, ...,
D, among the closures of the axioms (i)-(iii) added to form TT such that Fr,DiA--ADg - C. Letx
be a variable not occurring in C, Dy, ..., Dy, and for each i let D} be obtained from D; by replacing each
occurrence of e; by x. Then by the theorem on constants, |-, D] A--- A D} — C, whence Fr,3x(D] A+ A
D)) — C by the 3-introduction rule. Thus it will suffice to prove

Fr,3x(D] A - AD}). (1)

Let e be obtained by the reflection principle applied to A, T, and ey, where A consists of the finitely many
instantiations of I whose associated axioms are among Dy, ..., Dg. Then -1, e € e and for each 3yB in A
with free variables x, ..., X,

Fr,xice— - —Xx, ce— JyB - Jy(yceAB). (2)

Choose variables z and w not occurring in any formula of A and distinct from x. For A a formula of A of
the form 3yB with free variables x;, ..., X,, we define an (n + 1)-ary function symbol Sky by

y = Skax;...x,w <> (AAChwery=wi{z|zeenB[yz]}) v (1(A A Chwe) Ay =0).

By the functional closure theorem, we can define in T, a unary function symbol h such that

Fr,e0 € hw, (3)
Fr,Ordx — #ey < Rx — #hw < Rx, and (1)
Fr,xi €ehw — - > x, e hw - Skax;...x,w € hw (5)

for every A in A with free variables xy, ..., X,. By the definition of Sk, and the fact that |—T00 € e, we
clearly have |-1,x; € e - --- - X, € e > SkaX;...X,W € e for such A, so by (iv) of the functional closure
theorem, |, hw c e. Thus by (2), F7,x; € hw > -+ > x, e hw > A > {z|z € e A B[y[z]} # 0, so by the
definition of Sky,

Fr,Chwe > x; ehw - - > x, ¢ hw > A > B[y|Skax; ...x,W]. (6)
By (5), (6), and the substitution axioms,
Fr,Chwe - x; ehw - - - x, ¢ hw - A — Jy(y ¢ hw A B). (7)

Using (3), (4), and (7) with the closure theorem and the substitution axioms, we obtain |-, Chwe —
3x(D] A - AD}). Since |7, 3w Ch we by the axiom of choice and the substitution rule, we find (1) using
the 3-introduction rule and the detachment rule. O
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Remark. By the functional extension theorem, we would have obtained a conservative extension of Ty by
simply adding for each A in T of the form 3yB with free variables xy, ..., X, the n-ary function symbol
Ska and the axiom A — B[y|Skax; ...x,]. An application of the functional closure theorem on finitely
many Sks would then yield at once Lemma 1 without using the reflection principle. Unfortunately, such
a simplification does not work, because the adjunction of the symbols Sk as above does not yield a good
extension of T. In fact, we can precisely see that some replacement axioms featuring the new symbols
which must be used in the proof of the functional closure theorem fail to be derivable. Thus the more
complicated proofs above were really necessary, as was the direct use of the axiom of choice in the proof
of Lemma 1. Note however that a much simpler proof of Lemma 1is possible if the axiom of constructibilty
holds in T, for then we can define Sk X; ... X, to be the set of smallest order such that B whenever such
a set exists, and apply the functional closure theorem.

LEMMA 2. Suppose that any subformula of a formula in I is in I'. Then the formulae of I are absolute
for the simple interpretation e, in T*. Explicitely, if A is in T and xi, ..., X,, are the variables free in A,
then Frrx;€e; > - > X, €€ > A < A,

Proof. This follows from the axioms of (iii) and Lemma 7 of ch. 11 §3.5. O

CARDINALITY THEOREM. Suppose that all the formulae of T are closed. Then in some good conserva-
tive extension T’ of Ty, there is a constant e such that

(i) FreoCe
(i) FrTre;
(iii) FpOrdx — #ey < Rx — #e < Rx;

(iv) A < A, for every formula A of T.

Proof. We let A consist of all the subformulae of the formulae of I' and all the subformulae of the exten-
sionality axiom. We shall build T’ as an extension by definitions of T2. So by Lemma 1, T’ will be a
conservative extension of Tp. It remains to define e suitably. Since by Lemma 2 the extensionality axiom
is absolute for e, in T2, it follows that the interpretation by e; of the extensionality axiom is a theorem
of T4. Recall that the ordinal function symbol Rk satisfies |-,zOrdx — 3yVz(Rkz < x — z € y) and
Fzrx € y - Rkx < Rk y. We can then apply the Mostowski collapsing theorem: the function symbol g
defined by gx = {gw |w € e; Aw € x} is an isomorphism from the interpretation e, to the transitive simple
interpretation e where e is defined by e = {gy | y € e;}. Because pnx ce; > yce; > x = y < gx = gy,
we see that {(gy, y) | ¥ € e} is an injective function whose image is e, so #e = #e;. It remains to prove (i)
and (iv). Because the formulae of I are closed, }-1+Ae, <> A, for all A in I by the isomorphism extension
theorem, and since by Lemma 2 |-vA < A, we obtain |-7vA < A.. This proves (iv). To prove (i), it will
suffice to prove that |-7.x € eg = gx = x. We proceed by transfinite induction on Rk x. Suppose x € ey. If
y € x, then Rk y < Rkx and by transitivity of ey, y € eg. So we may apply the induction hypothesis to y,
which yields gy = y. Now by definition of g, gx = {gy|yceiAnyex} ={y|yece Ayex} Sincey e x
implies y € ey and hence y € e, gx = {y | y € x} = x. O

A particular case of the cardinality theorem is when I' contains the closures of the axioms of T. Then
e is a transitive simple interpretation of T in T'. For let A be a nonlogical axiom of T and B its closure.
Then by (iv) and the closure theorem, |-B,, so by prenex operations and the closure theorem, |-+A°.

3.3 The countable interpretation. We obtain an important corollary to the cardinality theorem. We let T,
T, and T, be as in §3.2.

COROLLARY. Suppose that the formulae of T are closed. Let U be obtained from T by the adjunction
of a constant e and the following axioms:
(i) Ix(x ee);
(ii) a translation of Tre;
(ili) a translation of #e < R0;

(iv) A < A, for every formula A of I.

Then U is a conservative extension of T.
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Proof. Let T’ be as in the cardinality theorem. Form T” from T’ by the adjunction of the axiom e, = 1.
Then clearly (i)-(iv) are theorems of T”. This means that T" is an extension of U. Let A be a formula of
T such that -y A. Then |7~A. By the deduction theorem, |--eg = 1 - A. Since T’ is a conservative
extension of Ty, |-r,€0 = 1 — A. Hence by the deduction theorem, |73x(x €x) > Trx - x=1— A for
some x not free in A and distinct from x. By the substitution rule, 73x(x € )o>Tri-i=1-A,so0
A O

If T contains the closures of the axioms of T, we find as in §3.2 that e is a transitive simple interpretation
of T in its conservative extension U, and |-ye < RO0.

S4 The generalized continuum hypothesis

We now have the necessary tools to prove that the generalized continuum hypothesis is derivable in ZF
from the axiom of constructibility.

LEMMA 1. |75 Ord x — #C*Rx = Rx.

Proof. Let x be an ordinal. The set {{Cy, y) | y < Rx} is a function on Xx whose image is C*Xx. Hence
#C*Rx < #Rx, so #C*Rx < Rx. Thus it remains to derive the existence of an injective function from
Rx to C*Rx. Let f be defined by z = fy < (Ordy A 0%z = (0,y)) v (1Ord y A z = 0), and let a be
{{C*fy, y) | y < ®x}. This is a valid definition from the results of ch. v1 §3.5. Note that C*fy = Cfy by the
definition of C. If y < Rx, then y < Max O*Rx by (x) of ch. v1 §3.11, so Max O*fy = y < Max O*rx. Hence
fy < Rx by (vii) of ch. v1 §3.5. This proves that Ima € C*Rx. Let y and y’ be ordinals such that y’ < y and
y < ®x. Then fy # fy’. So either fy < £y’ or fy’ < fy. In the first case, a’y = C*fy = Cfy e C*fy’ = a‘y’.
In the second case, we find similarly a‘y’ € a‘y. But in both cases, a’y # a‘y’ by ch. v1 §3.1 (iii), so a is
injective. O

LEMMA 2. |75 Ord x - PC*Rx € C*RSx.

Proof. LetT consists of the closures of the axioms of ZFL. Let Ty, T, ey, e be as in the cardinality theorem
when T is ZFL. Then e is a transitive simple interpretation of ZFL in T”. Since Od is absolute for any
transitive simple interpretation of ZFL (cf. §2.5), Od is absolute for e. In particular, Od is e-invariant, so
Fry e e - Ody € e By transitivity ofe, -y €e - Ody Ce,s0 -y € e > #0d y < #e. Using (i)
and (iii) of the cardinality theorem, we find

FrOrdx — #ep < Rx - yeeg > #0d y < Rx. (1)

Let x be an ordinal such that #eq < Xx and let y € e;. Suppose that y ¢ C*RSx. Then ®Sx < Ody,
so Rx < #0d y, but this contradicts (1). Hence y € C*®Sx. In summary, we have |1.Ordx — #ey <
Rx — ey € C*RSx. Since T’ is a conservative extension of Ty, this is a theorem of Ty as well. Thus by the
deduction theorem,

Fzprdx(x € y) > Try - Ordx — #y < Rx > y € C*RSx. (2)

Now let x be an ordinal and let y belong to PC*Rx;, i.e., y € C*Rx. Let a be C*Rx U {y}. By Lemma 1
of §2.3, C*Rx is transitive. Since y € C*Rx, a is transitive. By Lemma 1, #a < #C*Rx @ #{y} = Rx @1 = Rx.
Thus a is a nonempty transitive set of cardinal at most Rx, so by (2), a € C*RSx. In particular, y € C*®Sx,
which proves the lemma. U

THEOREM. The generalized continuum hypothesis is a theorem of ZFL.

Proof. By (x) of ch. vi §3.10 and Lemma 1, |75 Ordx — #PC*Rx = #PRXx. Then by Lemma 2,
FzprOrdx — #PRx < #C*RSx, and again by Lemma 1, |75 Ordx — #PRx < RSx. Taking the clo-
sure, we find the generalized continuum hypothesis. O

¢
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conservative, 6
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first-order, see first-order theory
inconsistent, 19
formalized detachment rule, 76
formalized substitution rule, 76
formation theorem, 7
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absolute for an interpretation, 27
atomic, 7
belonging to a special constant, 31
closed, 8
complete for an interpretation, 28
defined, 24
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existential, 17
expressing the consistency of, 69
first-order, 7
Herbrand, 33
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of a formal system, 5
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Skolem, 33
strict RE-, 57
tautologically equivalent, 10
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function, 41
coding, 42
diagonal, 50
negation, 50
recursive, 41
representable, 45
representing, 41
sequence, 43
function (ZF), 97
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function symbol, 6
absolute for an interpretation, 28
coding, 65
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of a first-order language, 7
ordinal, 97
recursive, 57
special, 35
functional closure theorem, 107
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first version, 50
second version, 52
index, 6
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induction on theorems, 6
infinity axiom, 93
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numerical, 45
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transitive, 109
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isomorphism extension theorem, 26
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is an interpretation of ZF, 116
is an interpretation of ZFL, 117
language, 5

first-order, see first-order language
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least number principle, 61
length, 5

level, 29

Lob’s theorem, 69
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main lemma, 82

matrix, 17
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minimal arithmetic, 52
minimization, 41

Mostowski collapsing theorem, 109
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is incomplete, 55
NBG, 113, 117
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negation lemma, 44
nonlogical axiom, 9
nonlogical rule, 9
number, 41
numeral, 45
numerical equivalence, 56
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numerical realization, 56
deciding a predicate symbol, 56
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well-founded, 58
numerotation, 47
recursive, 47
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bound, 8
free, 8
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meaningful, 8
occurrence theorem, 7
order (ZF), 114
ordered pair (ZF), 96
ordinal (ZF), 97
limit, 102
the first one such that, 99
ordinal function symbol, 97
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arithmetical version, 91
Peano arithmetic, 59
power set axiom, 93
PR-formula, 57
predicate, 41
mutually exclusive, 42
recursive, 41
recursively enumerable, 43

representable, 45
predicate of constructibility, 113
predicate symbol, 6
absolute for an interpretation, 28
of a first-order language, 7
recursive, 57
recursively enumerable, 57
predicative equality axiom, 9
prefix, 17
premise, 5
prenex form, 17
prenex operation, 17
principle of complete induction, 61
principle of transfinite induction, 98
principle of transfinite recursion
for function symbols, 100
enhanced version, 100
variants, 101
for predicate symbols, 101
proof
by induction on theorems, 6

by tautological induction on theorems, 13

by transfinite induction (ZF), 98
propositional axiom, 9
propositional rule, 9

range (ZF), 97
rank (special constants), 31
rank (ZF), 103
RE-formula, 57
strict, 57
recursion principle
for function symbols, 67
for predicate symbols, 68
reduction theorem, 15
reflection principle, 117
regularity axiom, 93, 99, 103
replacement axiom, 93
replacement of an occurrence, 5
replacement theorem, 17
representability
of a function
by a formula, 45
by a function symbol, 45
by a term, 45
of a predicate
by a formula, 45
by a predicate symbol, 45
negative, 45
positive, 45
representability theorem, 54
representing function, 41
represents (arithmetical languages), 79
represents (arithmetical theories), 8o
Rosser’s formula, 52
rule of inference, 5
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contraction, 9
cut, 9

equality, 9
first-order, 9
J-introduction, 9
logical, 9
nonlogical, 9

of a formal system, 5
propositional, 9
quantification, 9

second e-theorem, 36
second incompleteness theorem, 69, 86
sequence, 5
empty, 5
sequence function, 43
set (ZF), 93
constructible, 114
empty, 96
transitive, 97
signature, 6
Skolem form, 33
Skolem theory, 29
special axiom, 29, 35
special constant, 29
special equality axiom, 29
special function symbol, 35
standard meaning, 9
strict RE-formula, 57
subformula, 5
subsequence, 5
subset (ZF), 96
subset axiom, 93
substitution axiom, 9
substitution rule, 13
formalized, 76
substitution theorem, 13
symbol, 5
defined, 24
equality, 6
function, see function symbol
Godel, 113
logical, 6
of a formal system, 5
of a language, 5
predicate, see predicate symbol
symbol number, 47
symmetry theorem, 16

tautological consequence, 10
tautological equivalence, 10
tautological induction on theorems, 13
tautology, 10

tautology theorem, 11, 12

term, 7

absolute for an interpretation, 27
closed, 8
€, 35
of a first-order language, 7
substitutible, 8
theorem, 5
theorem on consistency proofs, 86
extended version, 87
theorem on constants, 15
theorem on definability, 115
theorem on functional definitions, 22
theorem on functional extensions, 35
theorem on ordinal definitions, 99
theorem on predicative definitions, 20
theorem on prenex operations, 17
theorem on RE-formulae, 58
theorem on sequences, 64
theorem on set definitions
first version, 94
second version, 94
third version, 96
theorem on truth definitions, 51
theory, see first-order theory
transfinite induction, 98
translation, 23
truth definition, 51
truth valuation, 10
truth value, 6
n-tuple (ZF), 96

union axiom, 93

uniqueness condition, 23

universe
of an arithmetical interpretation, 77
of an interpretation, 24

value (ZF), 97
variable, 6
bound, 8
free, 8
variant, 8
variant theorem, 16
version, 8
version theorem, 16
von Neumann hierarchy, 102

well-ordering theorem, 104

Zermelo’s theorem, 104
Zermelo-Fraenkel set theory, 93
ZF, 93

arithmetical version, 92
ZF_, 93,99
ZF,, 93,102
ZFC, 104
ZFL, 117
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