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Abstract. We obtain geometric models for the infinite loop spaces of the motivic spectra

MGL, MSL, and 1 over a field. They are motivically equivalent to Z × Hilblci
∞(A∞)+,

Z×Hilbor
∞(A∞)+, and Z×Hilbfr

∞(A∞)+, respectively, where Hilblci
d (An) (resp. Hilbor

d (An),

Hilbfr
d (An)) is the Hilbert scheme of lci points (resp. oriented points, framed points) of degree

d in An, and + is Quillen’s plus construction. Moreover, we show that the plus construction
is redundant in positive characteristic.
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1. Introduction

Let k be a field, let MGL be Voevodsky’s algebraic cobordism spectrum over k, and let FSyn
be the moduli stack of finite syntomic k-schemes. In [EHK+20b, Corollary 3.4.2], we showed
that there is an equivalence

Ω∞T MGL ' Lmot(FSyngp),

where FSyngp is the group completion of FSyn under disjoint union and Lmot is the motivic
localization functor. This can be regarded as an algebro-geometric analogue of the identification
of Ω∞MO with the cobordism space of 0-dimensional compact smooth manifolds. However,
unlike in topology, the group completion is necessary in the above equivalence. The goal of this
paper is to obtain a group-completion-free description of Ω∞T MGL, which is more accessible for
some purposes. Let us write FSyn∞ for the colimit of the sequence

· · · → FSynd
+1−−→ FSynd+1 → · · · ,

where FSynd ⊂ FSyn is the moduli stack of finite syntomic k-schemes of degree d. Our main
result is the following:

Theorem 1.1. Let k be a field. Then there is an equivalence

Ω∞T MGL ' Lmot(Z× FSyn∞)+

in H(k), where + denotes Quillen’s plus construction (in the ∞-topos of Nisnevich sheaves).
Moreover, there is an equivalence

(Ω∞T MGL)(k) ' Z× (LA1FSyn∞)(k)+.

If k has positive characteristic, the same equivalences hold without the plus construction.
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Here, LA1 is the “naive” A1-localization functor given by the formula

(LA1F)(X) = colim
n∈∆op

F(X×An).

We recall that FSynd is motivically equivalent to the Hilbert scheme

Hilblci
d (A∞) = colim

n→∞
Hilblci

d (An)

of finite local complete intersections of degree d in A∞, which is a smooth ind-scheme [EHK+20b,
Lemma 3.5.1]. Taking the colimit along the obvious closed immersions

Hilblci
d (A∞)→ Hilblci

d+1(A1 ×A∞) ' Hilblci
d+1(A∞),

we obtain a smooth ind-scheme Hilblci
∞(A∞) such that the canonical map (forgetting the em-

bedding into A∞)

Hilblci
∞(A∞)→ FSyn∞

is a motivic equivalence, and in fact an A1-equivalence on affine schemes. Thus, we can rewrite
Theorem 1.1 as follows:

Theorem 1.2. Let k be a field. Then there is an equivalence

Ω∞T MGL ' Lmot(Z×Hilblci
∞(A∞))+

in H(k). Moreover, there is an equivalence

(Ω∞T MGL)(k) ' Z× (LA1Hilblci
∞(A∞))(k)+.

If k has positive characteristic, the same equivalences hold without the plus construction.

Remark 1.3. Unfortunately, we do not know if the plus construction can be removed in
characteristic zero. As we will see, this is the case if and only if the cyclic permutation of three
points in FSyn3(k) becomes homotopic to the identity in (LA1FSyn∞)(k).

We have similar results for the motivic sphere spectrum 1 and for the special linear algebraic
cobordism spectrum MSL. Recall that a framing of a finite syntomic morphism f : Y → X is a
trivialization of the cotangent complex Lf in K(Y), and an orientation of f is a trivialization of
the dualizing sheaf ωf = det(Lf ) in Pic(Y). We denote by FSynfr and FSynor the moduli stacks
of framed and oriented finite syntomic k-schemes, respectively. There are forgetful morphisms

FSynfr → FSynor → FSyn.

By [EHK+19, Theorem 3.5.18] and [EHK+20b, Corollary 3.4.4], there are equivalences

Ω∞T 1 ' Lmot(FSynfr,gp) and Ω∞T MSL ' Lmot(FSynor,gp).

Let h ∈ FSynfr(k) be the framed finite syntomic k-scheme consisting of two k-points, one with
trivial framing and the other with the opposite framing. We define

FSynfr
∞ = colim(· · · → FSynfr

2d
+h−−→ FSynfr

2d+2 → · · · ),

FSynor
∞ = colim(· · · → FSynor

2d
+h−−→ FSynor

2d+2 → · · · ).

Theorem 1.4. Let k be a field. Then there are equivalences

Ω∞T 1 ' Lmot(Z× FSynfr
∞)+,

Ω∞T MSL ' Lmot(Z× FSynor
∞)+

in H(k). Moreover, there are equivalences

(Ω∞T 1)(k) ' Z× (LA1FSynfr
∞)(k)+,

(Ω∞T MSL)(k) ' Z× (LA1FSynor
∞)(k)+.

If k has positive characteristic, the same equivalences hold without the plus construction.
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Finally, we also have a Hilbert scheme version of Theorem 1.4: the moduli stacks FSynfr
d and

FSynor
d are motivically equivalent to the smooth ind-schemes Hilbfr

d (A∞) and Hilbor
d (A∞) (see

[EHK+19, 5.1.6] and [EHK+20b, §3.5]). We define Hilbfr
∞(A∞) and Hilbor

∞(A∞) in an obvious
way so as to match the definitions of FSynfr

∞ and FSynor
∞.

Theorem 1.5. Let k be a field. Then there are equivalences

Ω∞T 1 ' Lmot(Z×Hilbfr
∞(A∞))+,

Ω∞T MSL ' Lmot(Z×Hilbor
∞(A∞))+

in H(k). Moreover, there are equivalences

(Ω∞T 1)(k) ' Z× (LA1Hilbfr
∞(A∞))(k)+,

(Ω∞T MSL)(k) ' Z× (LA1Hilbor
∞(A∞))(k)+.

If k has positive characteristic, the same equivalences hold without the plus construction.

Our interest in these group-completion-free models is motivated in part by the following
conjecture of Mike Hopkins, called the “Wilson space hypothesis”:

Conjecture 1.6 (M. Hopkins). For every n ∈ Z, the motive M(Ω∞−nT MGL) ∈ DM(k) is pure
Tate.

The analog of this conjecture for the complex cobordism spectrum MU is a theorem of
Wilson [Wil73], and the analog in C2-equivariant homotopy theory was recently proved by Hill
and Hopkins [HH18]; these results are subsumed by Conjecture 1.6 for k = C and k = R,
respectively. Since the plus construction is invisible to motives, Theorem 1.1 implies that

M(Ω∞T MGL) '
⊕
d∈Z

M(Hilblci
∞(A∞)).

We thus obtain the following geometric reformulation of the case n = 0 of the above conjecture:

Corollary 1.7. Conjecture 1.6 holds for n = 0 if and only if M(Hilblci
∞(A∞)) is a pure Tate

motive.

Remark 1.8. The motive of Hilblci(An) is not pure Tate for 2 6 n <∞. Indeed, one can show

that M(Hilblci
3 (An)) cannot be pure Tate by analyzing the restriction to the lci locus of the

Bia lynicki-Birula stratification of the Hilbert scheme Hilb3(An), which is smooth. For example,

M(Hilblci
3 (A2)) ' Z⊕ Z(1)[2]⊕ Z(2)[4]⊕ Z(4)[7].

Nevertheless, the motive of Hilblci
3 (A∞) turns out to be pure Tate, as shown in [HJN+20,

Theorem 7.1].

Acknowledgments. We would like to thank Marc Levine for explaining to us the principle of
moving via an étale correspondence; this was the main inspiration of Proposition 2.3.

The last five authors would like to acknowledge the hospitality of the Institute for Advanced
Study in Princeton, where part of this work was done in July 2019.

2. A moving lemma

Lemma 2.1. Let k be a field, X a smooth geometrically connected quasi-projective k-scheme of
dimension > 2, and A ⊂ X a subscheme étale over k. Then there exists a smooth geometrically
connected closed subscheme H ⊂ X of codimension 1 containing A.
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Proof. If k is infinite, a generic hypersurface section of X of large enough degree containing A
is geometrically irreducible and smooth of codimension 1, by [AK79, Theorems 1 and 7].

If k is finite, choose an embedding X ⊂ Pnk and a first-order thickening Ã of A in Pnk that is
transverse to X. Let Pd = Γ(Pnk ,O(d)) and let

Qd = {f ∈ Pd | Z(f) ∩ (X−A) is smooth of codimension 1 in X and f |Ã = 0},
Rd = {f ∈ Pd | Z(f) ∩X is geometrically irreducible}.

Note that Z(f) ∩ X is smooth for any f ∈ Qd, so it suffices to show that Qd ∩ Rd is nonempty
for some d. We have

lim
d→∞

#Qd

#Pd
> 0 and lim

d→∞

#Rd

#Pd
= 1

by [Poo04, Theorem 1.2] and [CP16, Theorem 1.1], respectively. Hence, Qd ∩ Rd is nonempty
for all large enough d. �

Lemma 2.2. Let k be a field, X ⊂ Pnk a quasi-projective k-scheme, and A,B ⊂ X disjoint finite
subschemes. Suppose A étale over k and X− B smooth of dimension m > 1 over k. Then, for
every large enough d, there exist global sections f, g ∈ Γ(Pnk ,O(d)) such that:

(1) f |B = g|B;
(2) f |A = 0;
(3) g does not vanish on A ∪ B;
(4) Z(f) ∩X and Z(g) ∩X are smooth over k of dimension m− 1.

Proof. Suppose first that k is finite. Let h ∈ Γ(A∪B,O(1)) be a nonvanishing section. Applying
[Poo04, Theorem 1.2] with an auxiliary thickening of A as in the proof of Lemma 2.1, we deduce
that for every large enough d there exists a global section f of O(d) satisfying conditions (2)
and (4) such that f |B = h⊗d|B. By the same theorem, there also exists a global section g of
O(d) satisfying condition (4) such that g|(A ∪ B) = h⊗d. Then f and g satisfy all conditions.

If k is infinite, take d such that IA(d − 1) is generated by its global sections and such that
H1(Pnk , IA∪B(d)) = 0, where IZ ⊂ OPn

k
denotes the ideal defining a closed subscheme Z. Let

f and h be generic sections of O(d) with f |A = 0 and h|B = 0, and let g = f + h. By choice
of d, every global section of O(d) is the sum of one vanishing on A and one vanishing on B.
Hence, g is a generic section of O(d), and in particular does not vanish on A ∪ B. Moreover,
Z(f)∩ (X−B) and Z(g)∩ (X−B) are smooth of dimension m− 1 by [AK79, Theorem 7]. The
sections f and g thus satisfy conditions (1)–(4). �

Proposition 2.3. Let k be a field, X a smooth k-scheme, and U ⊂ X a dense open subscheme.
For any k-point x : Spec k → X, there exist framed correspondences α, β ∈ Corrfr

k (Spec k,U)

with finite étale support and an A1-homotopy x+ α ∼ β in Corrfr
k (A1

k,X).

Proof. Since the question is local around x, we can assume X quasi-projective and geometrically
connected [Gro65, Corollaire 4.5.14]. By Lemma 2.1, we can find a smooth connected subscheme
C ⊂ X of dimension 1 such that x ∈ C and such that C ∩ U is nonempty (hence cofinite in
C). Let C be a projective closure of C and L an ample invertible sheaf on C. Shrinking C if
necessary, we may assume that C is affine and that ΩC/k and L|C are trivial. Let A = {x},
and let B be the complement of C ∩ U in C with x removed. Then A and B are disjoint finite
subschemes of C such that A is étale and C − B is smooth. By Lemma 2.2, we can find an
integer d and global sections f and g of L⊗d with étale vanishing loci, such that f(x) = 0, f = g
on B, and Z(f) − {x},Z(g) ⊂ C ∩ U. Let h be the section (1 − t)f + tg over A1 × C and let
H = Z(h). Then H is a proper local complete intersection of relative virtual dimension 0 over
A1
k. Moreover, since f and g agree and do not vanish on B, h does not vanish on A1 × B, so

H ⊂ A1 ×C and H is finite over A1
k (hence syntomic by [EHK+19, Proposition 2.1.16]). Thus,
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H defines a finite syntomic correspondence from A1
k to X. Since ΩC/k and L⊗d|C are trivial,

there exists a framing τ : LH/A1
k
' 0 in K(H). Multiplying τ by a unit of k, we can assume that

τ restricts to the trivial loop in K({x}). Then (H, τ) is a framed correspondence from A1
k to X

with the desired properties. �

3. Quillen’s plus construction and group completion

We shall say that a morphism f : X→ Y in an ∞-topos T is acyclic if it is an epimorphism
in the categorical sense, i.e., if the square

X Y

Y Y

f

f id

id

is cocartesian. Recall that a modality on T is a factorization system on T (in the sense of Joyal
and as explained in [Lur17b, §5.2.8]) whose left class of morphisms is stable under base change
[ABFJ20, §2].

Lemma 3.1. In any ∞-topos T, acyclic morphisms form the left class of a modality. In
particular, acyclic morphisms are stable under composition, retracts, colimits, cobase change,
base change, and finite products.

Proof. Acyclic morphisms are stable under base change since cocartesian squares are (by univer-
sality of colimits). By [Lur17b, Proposition 5.5.5.7], it remains to show that the class of acyclic
maps is of small generation as a saturated class. For any X ∈ T, the full subcategory of T/X
spanned by the acyclic morphisms is accessible by [Lur17b, Proposition 5.4.6.6], being the fiber
of the suspension functor. It is thus generated under filtered colimits by a small subcategory.
Let C ⊂ Fun(∆1,T) be the union of these small subcategories of T/X as X ranges over a small
set of generators of T. Using that acyclic maps are stable under base change, we immediately
deduce that C generates the class of acyclic maps under colimits. �

For X ∈ T, we denote by X→ X+ the final object in the ∞-category of acyclic maps out of
X, which exists by Lemma 3.1. The functor X 7→ X+ is called the plus construction. Note that
acyclic morphisms are connected and become equivalences after a single suspension; it follows
that the canonical map X → X+ induces an isomorphism on π0, and that it is an equivalence
whenever X admits a structure of E1-group (i.e., when X is a loop space [Lur17a, Theorem
5.2.6.15]).

In the ∞-topos Spc of spaces, the above construction coincides with Quillen’s plus construc-
tion which was used to define algebraic K-theory [Qui72, §12]. More precisely, X → X+ is the
initial map that kills the maximal perfect subgroups of the fundamental groups of X, and hence
it is an equivalence if and only if the fundamental groups of X are hypoabelian (i.e., have no
nontrivial perfect subgroups). We refer to [Rap19] for a discussion of acyclic morphisms in Spc
and for a proof of this fact.

Let M be a commutative monoid in T and let m : ∗ → M be a global section. We denote
by ModM(T) the ∞-category of M-modules, i.e., objects of T with an action of M (which is
again an ∞-topos). The full subcategory of M-modules on which m acts invertibly is reflective,
and we denote by E 7→ E[m−1] the associated localization functor. It is easy to check that
this functor preserves finite products. In particular, M[m−1] is again a commutative monoid
and M→ M[m−1] is the initial morphism of commutative monoids sending m to an invertible
global section. For E ∈ModM(T), we define the telescope telm(E) ∈ModM(T) as the colimit
of the sequence

· · · → E
·m−−→ E→ · · · .
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There is then a canonical map of M-modules telm(E) → E[m−1], but unlike in the case of
1-topoi, it is not invertible in general. For example, if T = Spc and F =

∐
n>0 BΣn is the

free commutative monoid on a single element a, then F[a−1] is the group completion of F, but
tela(F) ' Z × BΣ∞ does not admit a monoid structure since its fundamental groups are not
abelian.

Proposition 3.2. Let T be an∞-topos, let M be a commutative monoid in T, and let m : ∗ → M
be a global section. For any M-module E, the canonical map telm(E)→ E[m−1] is acyclic.

Proof. Since acyclic maps are closed under colimits and finite products, it suffices to prove the
result for E = M. The classifying ∞-topos for pointed commutative monoids is a presheaf
∞-topos (namely, presheaves on the pushout of (Spcfin

∗ )op ← (Spcfin)op → (CMon(Spc)fin)op in
the ∞-category of ∞-categories with finite limits), so we are immediately reduced to the case
T = Spc. Let F be the free commutative monoid on an element a. The element m induces a
morphism of commutative monoids F→ M sending a to m, and we have telm(M) = M⊗Ftela(F)
and M[m−1] ' M⊗F Fgp, where ⊗F is the tensor product of spaces with F-action. Since acyclic
maps are closed under colimits and finite products, M⊗F (−) preserves acyclic maps. We can
therefore replace (M,m) by (F, a), and in particular we can assume that π0(M)[m−1] is a group.
In this case we must show that the canonical map telm(M)+ → Mgp is an equivalence, which is
the classical McDuff–Segal group completion theorem [MS76]. We recall a proof due to Nikolaus
[Nik17]. Note that the plus construction preserves finite products and hence commutative
monoids. Consider the commutative square

telm(M)+ Mgp

telm(M+)+ (M+)gp.

The left vertical is an equivalence since the plus construction is a left localization of Spc. The
lower horizontal map is an equivalence by Proposition 5.1, since the cyclic permutation of
order 5 becomes trivial in the hypoabelianization of Σ5. The top horizontal map is a stable
equivalence by the localization theory of E∞-ring spectra. Hence the right vertical map is a
stable equivalence. Since E∞-groups are simple, the right vertical map is in fact an equivalence,
so the top horizontal map is an equivalence as well. �

Remark 3.3. In the proof of Proposition 3.2, the reduction to the McDuff–Segal theorem only
uses that M is an E2-monoid, and the given proof of that theorem only uses that M is E3. In
fact, the McDuff–Segal theorem holds more generally for homotopy commutative E1-monoids
[RW13], so Proposition 3.2 holds for M an E2-monoid.

If S is an arbitrary set of global sections of M, we can define more generally the telescope
functor telS : ModM(T)→ModM(T) by

telS(E) = colim
F⊂S

F finite

tel∏
m∈Fm

(E)

(see [Hoy17, §6.1] for a precise construction). Proposition 3.2 immediately implies that the
canonical map telS(E)→ E[S−1] is acyclic. In particular:

Corollary 3.4. Let T be an ∞-topos, M a commutative monoid in T, and S a set of global
sections of M such that π0(M)[S−1] is a group. Then there is an equivalence telS(M)+ ' Mgp.

In what follows we will use the plus construction in Spc and in the ∞-topos of Nisnevich
sheaves on Smk.
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4. Proofs of the main results

Recall that FSyn∞ = colimd→∞ FSynd. In the notation of Section 3, there is a canonical
map

Z× FSyn∞ → tel1(FSyn),

which is an equivalence on connected schemes (in particular, it is a Zariski-local equivalence).

Proposition 4.1. Let k be a field. Then LmotFSyn∞ ∈ H(k) is connected in the Nisnevich
topology and (LA1FSyn∞)(k) is connected.

Proof. For the first statement, by [Mor05, Lemma 6.1.3], it suffices to show that the stalks of
LmotFSyn∞ at separable finitely generated field extensions of k are connected. Since there is a
surjection

π0(LA1FSyn∞)(k)→ π0(LmotFSyn∞)(k)

by [MV99, §2 Corollary 3.22], we are reduced to proving the second statement. We will show
more precisely that for any T ∈ FSynd(k) there exists n > 0 and a cobordism T + n ∼ d + n
in FSynd+n. Choosing an embedding of T in Am defines a k-point of the smooth k-scheme

Hilblci
d (Am). We now apply Proposition 2.3 with X = Hilblci

d (Am) and U the open subscheme
classifying finite étale subschemes of Am of degree d. We obtain in particular a finite syntomic
correspondence A1 ← H → Hilblci

d (Am) such that the fibers H0 and H1 are étale over k,

H0 = {x}tH′0, and H′0 and H1 map to U. The map H→ Hilblci
d (Am) classifies a finite syntomic

morphism W → H, and the composite W → H → A1
k is a cobordism between W0 ' T tW′0

and W1 such that W′0 and W1 are finite étale over k. Using [EHK+19, Proposition B.1.4], both
W′0 and W1 are further cobordant to their degree, which concludes the proof. �

Corollary 4.2. Let k be a field. Then the canonical maps

Lmot(Z× FSyn∞)+ → Lmot(FSyngp)

Z× (LA1FSyn∞)(k)+ → (LA1FSyn)(k)gp

are equivalences.

Proof. We first observe that Lmot(FSyngp) is the group completion of Lmot(FSyn) in Nisnevich
sheaves. To prove this we may replace k by a perfect subfield, and the claim follows from
[EHK+19, Theorem 3.4.11] since the objectwise group completion of Lmot(FSyn) is an A1-
invariant presheaf with framed transfers. By Corollary 3.4, it remains to show that the monoids
πnis

0 Lmot(FSyn∞) and π0(LA1FSyn∞)(k) are groups, which follows from Proposition 4.1. �

Except for the statement about positive characteristic, which we shall prove in Section 5,
Theorem 1.1 follows from Corollary 4.2 and [EHK+20b, Corollary 3.4.2(i)].

If S is a scheme and a ∈ O(S)×, we denote by 〈a〉 ∈ FSynfr(S) the finite syntomic S-scheme
S framed by the image of a under the canonical map O(S)× → ΩK(S). We write nε for the
alternating sum

〈1〉+ 〈−1〉+ 〈1〉+ · · ·
with n terms, and we write h for 2ε = 〈1〉+ 〈−1〉. Recall that FSynfr

∞ = colimd→∞ FSynfr
2d and

FSynor
∞ = colimd→∞ FSynor

2d, where the transition maps are given by adding h. In the notation
of Section 3, we have equivalences

Z× FSynfr
∞ ' telh(FSynfr) and Z× FSynor

∞ ' telh(FSynor)

on connected schemes.

We recall a basic construction from [EHK+19, B.1.1]. Let S be a scheme and f(x) ∈ O(S)[x]
a polynomial with invertible leading coefficient. Then the zero locus Z(f) ⊂ A1

S is a finite
syntomic S-scheme. Moreover, f generates the conormal sheaf NZ(f)/A1

S
= (f)/(f2), hence
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defines a framing of Z(f) over S. We denote this framed finite syntomic S-scheme by ϕ(f).
By [EHK+19, Proposition B.1.4], ϕ(f) is framed cobordant to 〈a〉dε, where a is the leading
coefficient of f(x) and d is its degree.

Lemma 4.3. Let S be a scheme and a ∈ O(S)×. Then there exists an A1-homotopy in FSynfr
S

between 〈a〉+ 〈−a〉 and h = 〈1〉+ 〈−1〉.

Proof. We have 〈a〉 + 〈−a〉 ' ϕ(x(x − a)), because x(x − a) is congruent to a(x − a) modulo
(x− a)2 and to −ax modulo x2. Thus, if h(t) = 1 + t(a− 1), then ϕ(x(x− h(t))) is the desired
A1-homotopy. �

Remark 4.4. The main point of Lemma 4.3 is that the relation 〈a〉 + 〈−a〉 = 〈1〉 + 〈−1〉 in
the Grothendieck–Witt group holds in LA1FSynfr

S prior to group completion. This is not the
case of some other relations, such as 〈ab2〉 = 〈a〉 (indeed, FSynfr

1 ' ΩK is already A1-invariant
on regular schemes).

We denote by GW the presheaf of Grothendieck–Witt rings [Kne77], and by GW = KMW
0

the presheaf of unramified Grothendieck–Witt rings [Mor12, §3.2]. Note that if K is a field then
GW(K) = GW(K) [Mor12, Lemma 3.10], whereas in general the relationship between GW(R)
and GW(R) is more subtle.

Lemma 4.5. Let R be a regular local ring over a field. Then the group GW(R) is generated by
〈a〉 for a ∈ R×.

Proof. If R has characteristic 6= 2, we know that GW(R) = GW(R) [BH18, Theorem 10.12],
and GW(R) has the claimed property by [HM73, Corollary I.3.4]. Suppose therefore that R
has characteristic 2. By Popescu’s theorem [Stacks, Tag 07GC], we can assume R essentially
smooth over a perfect field. The result now follows from Lemma 4.6(iii) below. �

Lemma 4.6. Let k be a perfect field of characteristic 2. Let I ⊂ GW denote the kernel of the
rank map GW→ Z, and write In ⊂ GW for the nth power Zariski subsheaf of ideals.

(i) Each sheaf In is strictly A1-invariant (in particular a Nisnevich sheaf).

(ii) We have Lzar(I
n/In+1) ' νn, where νn is the sheaf of logarithmic differential n-forms [GL00,

§2].

(iii) For n > 1, the sheaf In is Zariski locally generated by n-fold Pfister forms 〈〈a1, . . . , an〉〉
with ai ∈ O×. The sheaf GW is Zariski locally generated by 〈a〉 for a ∈ O×.

Proof. Denote by In ⊂ GW the sheaf defined in [Mor12, Example 3.34]. Thus each In is a strictly
A1-invariant subsheaf of ideals, InIm ⊂ In+m, and In(K) = In(K) for finitely generated field
extensions K/k. Moreover I1 is the kernel of the rank map, so that I1 = I. For X ∈ Smk, write
Nn(X) ⊂ νn(X) for the subgroup generated by global logarithmic differentials, i.e., expressions
of the form [a1, . . . , an] = da1/a1 ∧ · · · ∧ dan/an with ai ∈ O(X)×. It is clear that Nn is a
subpresheaf of νn. Let X ∈ Smk be connected with generic point η, and consider the following
diagram

Nn(X) (In/In+1)(X)

νn(η) (In/In+1)(η),

f̃

f

'

where In/In+1 is the quotient in the Nisnevich topology. It follows from [GL00, Theorem 8.3]
that νn is strictly A1-invariant, and hence the left-hand vertical map is injective. Since strictly
A1-invariant sheaves form an abelian subcategory of Nisnevich sheaves, In/In+1 is strictly A1-
invariant and the right-hand vertical map is an injection. By [Kat82], there is an isomorphism f
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as displayed, which is determined by f([a1, . . . , an]) = 〈〈a1, . . . , an〉〉. This formula implies that

f restricts to a morphism f̃ , and that the maps f̃ (for various X) assemble into a morphism
of presheaves. By [Mor15, Theorem 1.2], LzarN

n = νn and hence we have constructed a map

Lzarf̃ : νn → In/In+1. Since Lzarf̃ induces an isomorphism on fields, it is an isomorphism.

Let R be an essentially smooth local k-algebra. For n > 1, let Jn ⊂ In(R) denote the
subgroup generated by n-fold Pfister forms. Consider the exact sequence

0→ In+1(R)→ In(R)→ (In/In+1)(R) ' νn(R).

The map Jn ⊂ In(R)→ νn(R) is surjective, since it sends 〈〈a1, . . . , an〉〉 to [a1, . . . , an]. It follows
that νn(R) ' In(R)/In+1(R). It also follows that In(R) = Jn+ In+1(R) and hence by induction
that In(R) = Jn+Im(R) for any m > n. By [HM73, Theorem III.5.10 and preceeding paragraph]
and the unramifiedness of Im, we have Im(R) = 0 for m > dim R. Thus Jn = In(R) = In(R),
and so In = In. If G ⊂ GW(R) denotes the subgroup generated by 〈a〉 for a ∈ R×, then G→ Z
is surjective and we similarly get GW(R) = G + I(R) = G. All claims follow. �

Remark 4.7. One may prove that for any local ring R, GW(R) is generated by elements of
the form 〈a〉 for a ∈ R×. It follows from Lemma 4.6(iii) that for any regular local k-algebra
R with fraction field K, the ring GW(R) ⊂ GW(K) = GW(K) coincides with the image of
GW(R)→ GW(K).

Proposition 4.8. Let k be a field. Then the canonical maps

Lmot(Z× FSynfr
∞)+ → Lmot(FSynfr,gp)

Z× (LA1FSynfr
∞)(k)+ → (LA1FSynfr)(k)gp

are equivalences. The same holds for FSynor.

Proof. Let f : Lmot(Z × FSynfr
∞) → Lmot(FSynfr,gp) be the canonical map. As in the proof of

Corollary 4.2, Lmot(FSynfr,gp) is the group completion of Lmot(FSynfr) in Nisnevich sheaves.
For the first equivalence, it suffices by Corollary 3.4 to show that f induces an isomorphism on
πnis

0 . The πnis
0 of the right-hand side is isomorphic to the unramified Grothendieck–Witt sheaf

GW, and this isomorphism sends 〈a〉 to 〈a〉 [EHK+20a, Corollary 3.3.11]. If X is an essentially
smooth henselian local scheme, then GW(X) is generated by 〈a〉 for a ∈ O(X)× by Lemma 4.5,
and since 〈a〉 is invertible in the left-hand side by Lemma 4.3, we deduce that f is an effective
epimorphism. Note that a surjective map of discrete monoids whose codomain is a group is
injective if and only if its kernel is trivial. It therefore remains to show that the fiber of f over 0
is connected. By [Mor05, Lemma 6.1.3], it suffices to check this on finitely generated separable
field extensions of k. Thus, it suffices to show that π0Lmot(Z × FSynfr

∞)(k) is a group for any
field k; indeed, by Corollary 3.4 this implies that f is acyclic on k-points, and in particular
connected. Since we have a surjection

π0LA1(Z× FSynfr
∞)(k)→ π0Lmot(Z× FSynfr

∞)(k),

it suffices to show that the left-hand side is a group, which also implies the second equivalence
(by Corollary 3.4 again).

Let T ∈ FSynfr
d (k) be a framed finite syntomic k-scheme of degree d. Choosing an embedding

of T in Am and lifting the framing of T to a trivialization of its conormal sheaf, we obtain a k-
point of the smooth k-scheme Hilbfr

d (Am). We now apply Proposition 2.3 with X = Hilbfr
d (Am)

and U ⊂ X the finite étale locus: we obtain framed finite étale k-schemes A and B with a framed
cobordism T t A ∼ B. Now B is a sum of framed finite étale schemes of the form (Spec L, 〈a〉)
with L/k a finite separable field extension and a ∈ L×. We are therefore reduced to proving that
(Spec L, 〈a〉) is invertible in π0LA1(Z×FSynfr

∞)(k). By Lemma 4.3, it is enough to prove that, for
some a ∈ L×, both (Spec L, 〈a〉) and (Spec L, 〈−a〉) are invertible. If f(x) is a monic polynomial
such that L ' k[x]/(f(x)), then (Spec L, 〈±f ′(x)〉) ' ϕ(±f). By [EHK+19, Proposition B.1.4],
ϕ(±f) is framed cobordant to 〈±1〉[L : k]ε, which is clearly invertible in π0(Z × FSynfr

∞)(k).
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This completes the proof for FSynfr. The proof for FSynor is exactly the same, using that
the unit map Ω∞T 1 → Ω∞T MSL is a πnis

0 -isomorphism (see [BH18, Example 16.35] and [Yak19,
Corollary 3]). �

Except for the statement about positive characteristic, Theorem 1.4 follows from Proposi-
tion 4.8, [EHK+19, Theorem 3.5.18], and [EHK+20b, Corollary 3.4.4(i)].

5. Removing the plus construction in positive characteristic

The following proposition is an elaboration of [Rob15, Proposition 2.19].

Proposition 5.1. Let C be an Ek-monoidal ∞-category with 2 6 k 6 ∞ and let x ∈ C. Let
C[x−1] be the Ek-monoidal ∞-category obtained from C by inverting x, and let telx(C) be the
C-module colimit of the sequence

· · · → C
⊗x−−→ C→ · · · .

Consider the following assertions:

(1) The cyclic permutation of x⊗3 becomes homotopic to the identity in telx(C).
(2) For some n > 2, the cyclic permutation of x⊗n becomes homotopic to the identity in

telx(C).
(3) The canonical map telx(C)→ C[x−1] is an equivalence.

Then (1)⇒ (2)⇒ (3). If k > 3, then (3)⇒ (1).

Proof. The implication (1)⇒ (2) is trivial. Note that assertion (3) is equivalent to the assertion
that x acts invertibly on the telescope telx(C). Consider the commutative diagram

C C · · ·

C C · · ·

x⊗(n−1)

x

x⊗(n−1)

x

x⊗(n−1) x⊗(n−1)

where each square commutes via the the cyclic permutation of x⊗n. Let Seq be the 1-skeleton
of the nerve of the poset N and let σ : Seq. → ∞-Cat be the cone given by the first row
mapping to the colimit of the second row. Then the action of x on telx(C) is the induced map
colim(σ|Seq)→ σ(∞). Under assumption (2), we obtain an equivalent cone if we replace each
cyclic permutation in the above diagram by the identity, which is trivially a colimiting cone.
This proves (2)⇒ (3).

If C is E3-monoidal and x ∈ C is invertible, then the cyclic permutation of x⊗3 is homotopic
to the identity. Indeed, π0 Aut(x⊗3) is an abelian group and the cyclic permutation of order 3
becomes trivial in the abelianization of Σ3. This proves (3)⇒ (1). �

Example 5.2. Let R be a derived commutative ring. The cyclic permutation of R3 is induced
by a matrix in SL3(Z) and hence is A1-homotopic to the identity. Applying Proposition 5.1 to
the E∞-space (LA1Vect)(R), we deduce the well-known fact that the canonical map

Z×Vect∞ → K

is an A1-equivalence on derived commutative rings, where Z is the constant sheaf with value
Z and Vect∞ = colimn Vectn. This explains why the plus construction is not needed in the
equivalences (over a regular base)

Ω∞T KGL ' Lmot(Z×Vect∞) ' Lmot(Z×Gr∞(A∞)).
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Lemma 5.3. Let p be a prime number. Over Fp, there exists a sequence of Cp-equivariant
framed cobordisms between p with nontrivial Cp-action and 〈−1〉pε with trivial Cp-action. In par-
ticular, for any Fp-scheme S and any α ∈ FSynfr(S), the action of Cp on pα in (LA1FSynfr)(S)
is trivial.

Proof. Let f(t, x) = x(x− t)(x−2t) · · · (x− (p−1)t). Consider the finite syntomic Fp[t]-scheme

X = SpecFp[t, x]/(f(t, x)),

with the framing τ induced by −f(t, x). The group Cp acts on X over Fp[t] by x 7→ x+ t. As
this action fixes −f(t, x), we obtain an action of Cp on (X, τ). The fiber X1 consists of p points
cyclically permuted and trivially framed: indeed, the framing on the point SpecFp[x]/(x − i)
is induced by (−1)p(p− 1)!(x− i) = x− i. On the other hand, the fiber X0 is SpecFp[x]/(xp)
with trivial action and framing induced by −xp. By [EHK+19, Proposition B.1.4], X0 is framed
cobordant to 〈−1〉pε. �

Remark 5.4. Let S be an affine Fp-scheme, M an étale sheaf of E∞-spaces on SmS, and
m ∈ M(S). Then the action of Cp on mp in (LA1M)(S) is trivial, because BétCp is A1-
contractible on affine Fp-schemes by Lemma 5.5 below. This does not apply directly to FSynfr,
which is not an étale sheaf. However, by [EHK+19, 4.2.36], there is an E∞-map FEt→ FSynfr

where FEt is the moduli stack of finite étale schemes, which is an étale sheaf. This gives an
alternative proof of the last statement of Lemma 5.3.

Lemma 5.5. The presheaf BétCp is A1-contractible on affine Fp-schemes.

Proof. By the Artin–Schreier sequence [Stacks, Tag 0A3J], we have a fiber sequence of presheaves

BétCp → BétGa → BétGa,

where Ga is the additive group scheme. Since LA1BétGa ' ∗, it suffices to prove that this
sequence remains a fiber sequence after applying LA1 . This follows from a general criterion for
the geometric realization of a cartesian square to remain cartesian [Lur17a, Lemma 5.5.6.17],
which applies because π0(BétGa(X)) = H1

ét(X,O) = ∗ for X an affine scheme [Stacks, Tags 03P2
and 01XB]. �

The following proposition completes the proofs of all the theorems in the introduction.

Proposition 5.6. Let k be a field of positive characteristic. Then the canonical maps

Lmot(FSyn∞)→ Lmot(FSyn∞)+

(LA1FSyn∞)(k)→ (LA1FSyn∞)(k)+

are equivalences. The same holds for FSynfr
∞ and FSynor

∞.

Proof. By Lemma 5.3 and Proposition 5.1, the left-hand sides are commutative monoids, and
they are grouplike by Corollary 4.2 and Proposition 4.8. Hence they coincide with their plus
constructions. �

Remark 5.7. Let C be a smooth curve over a field k of characteristic zero. If X is a finite flat
C-scheme with an action of the cyclic group Cn, then the locus of points c ∈ C such that Cn
acts trivially on the fiber Xc is clopen. Indeed, that locus is the equalizer of a pair of sections of
a finite flat C-subgroup scheme of Aut(X/C), which is necessarily étale. In particular, unlike in
positive characteristic, there cannot exist a Cn-equivariant cobordism between a finite syntomic
k-scheme with nontrivial Cn-action and one with trivial Cn-action. The group homomorphism
Cn → π1(LA1FSyn∞)(k) could nevertheless be trivial for other reasons.
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