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Introduction

The subject of this Master thesis was motivated by the article [TV08] from B. Toën and G. Vez-
zosi. In this article they define categorical sheaves on schemes and use a construction from
derived algebraic geometry to define the Chern character of such a sheaf. The original goal of
this thesis was to go as far as possible towards a precise understanding of these constructions.
In the end, the focus has shifted to the related construction of the Chern character of an “ordi-
nary” sheaf, culminating in Chapter 4 with a computation of this character for vector bundles
on derived affine schemes, and only a very small part of this text is dedicated to the study of
categorical sheaves themselves.

The first chapter discusses Hochschild homology, cyclic homology, and the Chern character
in the classical context of algebras. It was written first and in certain places is only remotely
related to the remaining chapters. The material here is also much older. I believe however that
some parts of the presentation are new, namely, the explicit formula for the map on Hochschild
complexes induced by a bimodule and the emphasis on Morita invariance which is used to lift
the Chern character to negative cyclic homology (and accessorily to give a simple proof that
Hochschild and cyclic homology preserve finite products).

The second chapter reviews the theory of stacks on model categories as presented in [HAGI,
§4]. The third chapter develops the basic setup for derived algebraic geometry in the language
of stacks on model categories. We give detailed proofs of two results from [HAGII]: the flat
descent theorem (Theorem 24) and a characterization of dualizable objects in the homotopy
category of simplicial modules (Theorem 37).

Chapter 4 comes back to Hochschild and cyclic homology and gives geometric interpretations
of these constructions in term of the loop space of a derived stack. In §4.3, we give a detailed
construction of the Chern character of a vector bundle on a derived stack, and we successfully
prove the claim made in [TV08] that it is compatible with the classical Chern character of
Chapter 1.

Chapter 5 was originally meant to be an exposition of the construction of the Chern character
for categorical sheaves outlined in [TV08]. Categorical sheaves are defined there as sheaves
of differential graded categories on derived stacks. As it appeared that most of the results
beyond the basic homotopy theory of differential graded categories would be conjectural and that
there was not enough time to tackle their proofs, I decided to modify slightly the construction
by replacing dg categories with simplicial categories. The two approaches are not unrelated
since it is proved in [Tab07a] that the homotopy theories of nonnegatively differential graded
categories and of linear simplicial categories are equivalent through a generalized normalization
functor; so the only added value of dg categories is the possibility of having unbounded complexes
of morphisms. There are similarly two approaches to derived stacks, one that uses dg rings
and another that uses simplicial rings, and since this text presents the simplicial approach to
derived stacks it is only natural to use the simplicial approach to categorical sheaves as well.
Indeed, in the “mixed” setting of [TV08], one has to use the normalization functor to be able
to speak of a dg category over a simplicial ring. All the propositions of Chapter 5 stated
as “conjectures” are known to be true if one replaces simplicial categories by dg categories
(see [Toë06b, TV07, Tab07b]), and I believe that many of them can in fact be derived as
consequences of these known results using the above equivalence. The construction of the Chern
character itself is almost word for word the same as that presented in Chaper 4.

Unfortunately, there remain a few unproved results in the text, the most important one being
Theorem 48. The other ones are three small technical results, namely

• Proposition 16,

• an argument in the proof of Proposition 22, and

• Lemma 27.

all of which are claimed to be true in [HAGII].
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Notations, terminology, etc.

Our conventions regarding categories are mostly self-explanatory. We use the definition of model
category of [Hir03]: it has functorial factorizations but they need not be part of the model
structure. Our notions of monoidal model category, (closed) C-module (C a symmetric monoidal
category), and C-model category (C a symmetric monoidal model category) are those defined
in [Hov99, §4]. The following rule is applied to distinguish between the multitude of hom objects:
the hom sets of a category C are always denoted by C(x, y), and the notations Map(x, y) and
Hom(x, y) are used respectively for the simplicial mapping spaces of a simplicial category (and
in a few instances for enriched hom sets of an enriched category) and the internal hom objects
of a closed monoidal category. The category of simplicial objects (resp. cosimplicial objects) in
C is denoted by sC (resp. by cC). The objects of the simplicial index category ∆ will simply be
denoted by 0, 1, 2, etc. If n ≥ 0, snC denotes the category of functors from the full subcategory
of ∆op spanned by 0, . . . , n to C. Decorated arrows follow no strict convention. For instance,
an arrow ։ may denote either an epimorphism or a fibration depending on the context.

Although universes are never mentioned in the text, they are implicitely used starting from
Chapter 2 in the following manner. We fix two universes U ∈ V and we assume that the base
commutative ring k belongs to U. The base model category C of Chapter 2 is an U-bicomplete
category whose set of objects belongs to V and whose sets of morphisms between any two objects
belong to U. In forming the functor category sSetC the target category sSet is the category of
V-small simplicial sets (i.e. simplicial sets belonging to V). This is extremely important as it
allows the values of a functor C→ sSet to be as big as the category C itself. In our application to
derived algebraic geometry in Chapter 3, sModk is the category of U-small simplicial k-modules.
The word “small” will always mean U-small (except when it is used informally).



1 The classical Chern character

Let k be a commutative ring and A an associative and unital k-algebra (henceforth simply a
k-algebra). Then the Chern character of A is a natural map of graded groups

ch−∗ : K∗(A)→ HC−∗ (A)

where K∗(A) is the K-theory of A and HC−∗ (A) is the negative cyclic homology of A. In this
chapter we shall review the definitions and the elementary properties of the objects involved to
arrive at the definition of the Chern character in degree 0.

As an example, suppose that k is an algebraically closed field and consider the group algebra
k[G] of a finite group G whose order is not a multiple of the characteristic of k. Here, K0(k[G]) is
the Grothendieck group of the category of finite-dimensional representations of G (this category
being equivalent to that of finitely generated projective k[G]-modules), and HC0(k[G]) is the
group of complex-valued functions on the conjugacy classes of G. Then if ρ : G → Aut(V ) is a
finite-dimensional representation of G over k, ch0(ρ) is just the usual character of ρ: for C ⊂ G
a conjugacy class and g ∈ C,

ch0(ρ)(C) = tr(ρ(g)).

We first recall the definition of the functor K0. Let A be a k-algebra. We define K0(A)
as the Grothendieck group of the category of finitely generated and projective (f.g.p.) left A-
modules. In other words, if µ(A) is the monoid of isomorphisms classes of f.g.p. left A-modules,
with the law of composition induced by the direct sum, then µ(A) → K0(A) is the universal
monoid map from µ(A) to groups. If A is commutative, the tensor product gives µ(A) the
structure of a “semiring” which makes K0(A) into a commutative ring, and µ(A) → K0(A)
is the universal semiring map from µ(A) to rings. A map of k-algebras f : A → B induces a
map of monoids (or semirings) f∗ : µ(A) → µ(B) by extension of scalars, which lifts to a map
of groups (or rings) f∗ : K0(A) → K0(B) by universality. Thus, K0 is a covariant functor on
Algk. The K0 construction also exhibits a contravariant behaviour if we impose some finiteness
condition on maps of algebras. Specifically, if f : A → B is a map of k-algebras that makes
B into an f.g.p. left A-module, then restriction of scalars along f induces f∗ : µ(B) → µ(A),
whence f∗ : K0(B) → K0(A). This makes K0 into a contravariant functor on a subcategory of
Algk. In the sequel we shall view K0 primarily as a covariant functor.

1.1 Hochschild and cyclic homology of algebras

Throughout this section, A denotes an associative and unital algebra over some commutative
ring k, and M is an A-bimodule. We first review the definitions of the Hochschild homology
and the various cyclic homologies of A.

The Hochschild complex C(A,M) of A with values in M is the simplicial k-module with
Cn(A,M) =M ⊗A⊗n, with face maps di : Cn(A,M)→ Cn−1(A,M) given by

di(m⊗ a1 ⊗ · · · ⊗ an) =











ma1 ⊗ a2 ⊗ · · · ⊗ an if i = 0,

m⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an if 1 ≤ i ≤ n− 1,

anm⊗ a1 ⊗ · · · ⊗ an−1 if i = n,

and with degeneracy maps si : Cn(A,M)→ Cn+1(A,M) given by

si(m⊗ a1 ⊗ · · · ⊗ an) = m⊗ a1 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an.

The Hochschild homology H(A,M) of A with values in M is then the graded k-module with
Hn(A,M) = πnC(A,M).

It is clear that C(A,M) is a functor of M , and it is even a functor from the fibered category
of k-algebras and bimodules over them. That is, if N is a B-bimodule, then a pair of maps
f : A → B, m : M → f∗N induces a simplicial map C(f,m) : C(A,M) → C(B,N), and this
construction respects identities and compositions.
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6 the classical chern character 1.1

When M = A, we write C(A,M) = C(A) and H(A,M) = HH(A); HH(A) is the Hochschild
homology of A. It follows from the functoriality of C(A,M) that C(A) (resp. HH(A)) is a
functor from k-algebras to simplicial k-modules (resp. to graded k-modules).

Before introducing cyclic homology we recall a categorical construction. Let I be an index
category and C a monoidal category with colimits. The tensor product over I of two functors
F : Iop → C and G : I→ C is defined as the coend

F ⊗I G =

∫ i∈I

F (i)⊗G(i).

This is the usual “geometric realization” construction: F ⊗I G is the coequalizer of the two
obvious maps

∐

k→j F (j) ⊗G(k) ⇉
∐

i∈I F (i)⊗G(i). Suppose moreover that C is abelian and

that the tensor product in C is biadditive, e.g. C = Modk. Then CI
op

and CI are also abelian
categories and ⊗I is a biadditive functor, so we may consider the classical left derived functors
of F ⊗I ? which, when they exist, are denoted TorIn(F, ?). These are of course bifunctors and
reduce to the usual Tor objects when I is a point. For I = ∆ and C = Modk we have the following
result (whose proof is detailed from [Lod92, §6.2]).

Theorem 1. The nth homotopy module functor πn : sModk → Modk is isomorphic to Tor∆n (?, k),
where k is viewed as a constant cosimplicial k-module.

Proof. Left derived functors are computed using projective resolutions. Let Kn denote the
free cosimplicial k-module generated by the cosimplicial set ∆n = ∆(n, ?). For φ : m → n,
let K(φ) : Kn → Km be the morphism of cosimplicial modules induced by precomposition by
φ. The functor K is then a simplicial cosimplicial k-module with a canonical augmentation
K0 → k to the constant cosimplicial module k that sends all the generators to 1. Thus, it has
an associated augmented chain complex K∗ → k of cosimplicial k-modules. We claim that this
is a projective resolution of k.

That each Kn is projective follows from the Modk-enriched Yoneda lemma. More precisely,
if we apply the free k-module functor to every set of morphisms of ∆ we obtain a Modk-enriched
category k[∆] and the cosimplicial k-module Kn is just the functor represented by n on k[∆].
The Yoneda lemma then says that the functor Mod∆k (Kn, ?) is isomorphic to the “evaluation at
n” functor Mod∆k → Modk, which is exact. By definition, this means that Kn is projective.

Homology of complexes of functors to abelian categories is computed pointwise, so we must
check that each complex

· · · → K2(m)→ K1(m)→ K0(m)→ k(m) = k

is a resolution of k. From the definition of K(φ) we see that this complex is associated to
the augmented simplicial k-module L → k freely generated by the augmented simplicial set
∆m = ∆(?,m)→ ∗. This augmented simplicial set admits an “extra degeneracy” hn : ∆

m(n)→
∆m(n+ 1) given by h−1(∗)(0) = m and

hn(φ)(j) =

{

φ(j) if 0 ≤ j ≤ n,

m if j = n+ 1,

for n ≥ 0. It induces an extra degeneracy on L→ k, which is therefore aspherical.

If E is a simplicial k-module, it follows that we can compute Tor∆∗ (E, k) as the homology
of the complex E ⊗∆ K∗. Hence it will suffice to prove that E ⊗∆ K∗ is naturally isomorphic
to the chain complex associated to E (whose homology modules are the homotopy modules
of E). We prove more generally that the simplicial k-modules E ⊗∆ K and E are naturally
isomorphic. Define αn : E ⊗∆ Kn → En and βn : En → E ⊗∆ Kn by αn(y ⊗ ψ) = E(ψ)(y)
and βn(x) = x ⊗ idn. It is clear from the coequalizer description of E ⊗∆ Kn that these maps
are well-defined, natural in E, and inverse to each other. For φ : m → n, we must verify the
relations E(φ)αn = αm(idE ⊗∆ K(φ)) and (idE ⊗∆ K(φ))βn = βmE(φ); the former is trivial
and the latter is x⊗ φ = E(φ)(x) ⊗ idm which is true because φ = Km(φ)(idm).



1.1 hochschild and cyclic homology of algebras 7

This theorem suggests that for index categories I other than ∆, we can define “generalized
homotopy groups” of functors F : Iop → Modk as the k-modules TorIn(F, k). Cyclic homology is
just one example of this idea, when I is the cyclic category.

The cyclic category Λ is an extension of ∆ with the same objects but having for each n a
permutation n→ n of order n+1 as an additional morphism, satisfying some relations displayed
(in dual form) below. The structure theorem for Λ says that any morphism in Λ factors uniquely
as an automorphism followed by a map in ∆. A cyclic (resp. cocylic) object in a category C is
a functor Λop → C (resp. Λ → C). It can be shown that defining a cyclic object X amounts to
defining objects Xn, n ≥ 0, and morphisms di : Xn → Xn−1, si : Xn → Xn+1, and cn : Xn → Xn

(0 ≤ i ≤ n) satisfying the usual simplicial identities as well as

dicn = cn−1di−1,

sicn = cn+1si−1, and

cn+1
n = id,

where d−1 = c−1n−1dn and s−1 = cn+1sn. Here cn is the image by X of the cyclic permutation
n → n which sends 0 to n, 1 to 0, 2 to 1, etc. (Dually, cocyclic objects are determined by
morphisms di, si, and cn satisfying the same identities with compositions reversed.)

We endow the Hochschild complex C(A) with a cyclic k-module structure by defining

cn(a0 ⊗ · · · ⊗ an) = an ⊗ a0 ⊗ · · · ⊗ an−1.

In this way we obtain a functor from k-algebras with values in cyclic k-modules (in fact, the
morphisms C(f) will commute with any permutation of the factors, not only cyclic ones).

We introduce some useful operators on a cyclic object X in a category enriched over abelian
groups. We usually write bn : Xn → Xn−1 for the differential of the chain complex associated to
the underlying simplicial object of X , and we write b′n for bn − (−1)ndn =

∑n−1
i=0 (−1)

idi. The
map b′ also defines a chain complex since b′2 = 0. There is a signed version of cn defined by
tn = (−1)ncn. The averaging operator Nn is id + tn + · · ·+ tnn; it satisfies tnNn = Nntn = Nn
and in particular (id − t)N = 0. We spare the reader the straightforward computations of the
identities (id− t)b′ = b(id− t), b′N = Nb, and s−1b

′+ b′s−1 = id (see [Lod92, 1.1.12 and 2.1.1]).
Finally, we define Bn : Xn → Xn+1 by Bn = (id− tn+1)s−1Nn. From the previous formulas we
obtain immediately that B2 = 0 and bB +Bb = 0.

By analogy with the Tor definition of Hochschild homology, we define the cyclic homology of
a cyclic k-module E to be the graded k-module

HCn(E) = TorΛn(E, k).

We prove that this is well-defined by producing a projective resolution of the constant cocyclic
k-module k. It will be constructed as the total complex of a double complex K∗∗ of cocyclic
k-modules. Let Kpq = k[Λq−p] = k[Λ(q − p, ?)] if q ≥ p ≥ 0 and let Kpq = 0 otherwise. Each
column Kp∗ obviously has a structure of cyclic cocyclic k-module, and we take for the vertical
(downward) differentials b the ones associated to the underlying simplicial object. The horizontal
(leftward) differentials Bn : k[Λn] → k[Λn+1] are (1 − tn+1)s−1Nn. The complex K∗∗ looks like
this: ...

...
...

...

k[Λ3] k[Λ2] k[Λ1] k[Λ0]

k[Λ2] k[Λ1] k[Λ0]

k[Λ1] k[Λ0]

k[Λ0].

(1)

We have explained above that this is indeed a bicomplex (with anticommuting squares). There
is an augmentation K00 → k sending Λ0 to 1.
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Theorem 2. TotK∗∗ → k is a projective resolution of the constant cocyclic k-module k.

Proof. Since Kpq is a representable functor on k[Λ], it is projective by the Modk-enriched Yoneda
lemma (cf. the proof of theorem 1), and so is any finite product of the Kpq’s.

Let us prove that TotK∗∗ → k is a resolution of k. Here we may safely forget the cocyclic
structures and view TotK∗∗ and k as chain complexes of cosimplicial k-modules. We introduce
an auxiliary bicomplex L∗∗ of cosimplicial k-modules:

...
...

...
...

k[Λ3]

b

k[Λ3]

−b′

id−t
k[Λ3]

b

N
k[Λ3]

−b′

id−t
· · ·

k[Λ2]

b

k[Λ2]

−b′

id−t
k[Λ2]

b

N
k[Λ2]

−b′

id−t
· · ·

k[Λ1]

b

k[Λ1]

−b′

id−t
k[Λ1]

b

N
k[Λ1]

−b′

id−t
· · ·

k[Λ0] k[Λ0]
id−t

k[Λ0]
N

k[Λ0]
id−t

· · · ,

(2)

with the same augmentation TotL∗∗ → k as TotK∗∗. We let M∗∗ be the bicomplex obtained
from L∗∗ by annihilating the even-numbered columns. Let φ : TotK∗∗ → TotL∗∗ be the map
induced by (id, s−1Nr) : k[Λr] → k[Λr] ⊕ k[Λr+1] and let ψ : TotL∗∗ → TotM∗∗ be the one
induced by −s−1Nr + id: k[Λr] ⊕ k[Λr+1] → k[Λr+1]. The proof that φ and ψ are chain maps
uses only the relations between b, b′, id − t, N , and B that we already wrote down. Moreover,
φ is compatible with the augmentations to k as φ0 is the identity. Thus we have a commutative
diagram

0 TotK∗∗
φ
TotL∗∗

ψ
TotM∗∗ 0

0 k k 0 0

(3)

whose rows are obviously exact. To complete the proof we will show that the last two vertical
arrows are quasi-isomorphisms: it will then follow from the associated long exact sequences
and the five lemma that the first vertical arrow is also a quasi-isomorphism. From the identity
s−1b

′ + b′s−1 = id we obtain that each column of M∗∗ has zero homology, and hence that that
the third vertical map in (3) is a quasi-isomorphism. Next we show that each row in (2) has
zero positive homology, so that the homology of TotL∗∗ can be computed as the homology of
the zeroth column of horizontal homology of L∗∗.

† This can be proved pointwise, so consider a
part of the nth row evaluated at m:

· · · k[Λ(n,m)]
id−t

k[Λ(n,m)]
N

k[Λ(n,m)] · · · . (4)

By the structure theorem for Λ, we have Λ(n,m) = Zn+1 ×∆(n,m), where Zn+1 is the set of
automorphisms of n in Λ, and we see that (4) is obtained from a complex of k-modules

· · · k[Zn+1]
id−t

k[Zn+1]
N

k[Zn+1] · · · (5)

by applying the exact functor M 7→ M∆(n,m), so we need only prove that (5) is exact. Let
x = (x0, . . . , xn) ∈ k[Zn+1]. Suppose first that (id − tn)x = 0; then we obtain successively
x0 = (−1)nx1 = · · · = (−1)nnxn and hence x = N(x0, 0 . . . , 0). Suppose then that Nx = 0, i.e.

that
∑n
i=0(−1)

nixi = 0; then putting y0 = 0, y1 = −x0, y2 = −x0−x1, . . . , yn = −
∑n−1
i=0 xi, we

†The proof of this fact given here is from [Con83]. We should note that the shorter proof in [Lod92] is
incorrect.
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find (id− tn)y = x. These calculations also show that the image of id− tn : k[Zn+1]→ k[Zn+1]
is exactly the kernel of the surjective map k[Zn+1] → k, (x0, . . . , xn) 7→

∑n
i=0(−1)

nixi, so
that the homology of the nth row in degree 0 can be identified with k[∆n]. Moreover, the map
k[∆n]→ k[∆n−1] induced by b is exactly the differential of the chain complex k[∆∗] considered in
the proof of Theorem 1. Since we know that the latter is a resolution of the constant cosimplicial
k-module k, this proves that TotL∗∗ → k is a resolution of k, i.e., that the second vertical arrow
in (3) is a quasi-isomorphism.

Let E be a cyclic k-module. We let B(E) denote the bicomplex of k-modules obtained by
applying the functor E ⊗Λ ? to (1). Using the same maps α and β as in the proof of theorem 1,
we obtain a natural isomorphism of simplicial k-modules E ⊗Λ Kp,∗+p

∼= E∗, and so the nth
column of B(E) is just the complex associated to E with E0 in degree n. We still write Bn for
the horizontal differential idE ⊗Λ Bn, which is identified to αn+1(idE ⊗Λ Bn)βn : En → En+1.
Explicitly, we have Bn = (1− tn+1)s−1Nn.

By definition, the cyclic homology of E is the total homology of B(E). The bicomplex B(E)
has an obvious periodic pattern, and it is useful to fill it on the left to obtain the bicomplex
Bper(E):

...
...

...
...

· · · E3 E2 E1 E0

· · · E2 E1 E0

· · · E1 E0

· · · E0

The complex B(E) is obtained from Bper(E) by removing the negatively graded columns. If one
removes the positively graded columns instead, one obtains a bicomplex B−(E). In figurative
terms, the bicomplexes B−(E) and B(E) “cover” Bper(E) and their “intersection” is just the
0th column, which we denote by B0(E). Then the total homology of Bper(E) (resp. of B−(E))
is called the periodic cyclic homology (resp. the negative cyclic homology) of E, and it is denoted
by HCper(E) (resp. by HC−(E)).

If C is a bicomplex, C[m,n] will denote the bicomplex with C[m,n]pq = Cp+m,q+n; one has
(TotC)k+m+n = (TotC[m,n])k. The periodicity of Bper(E) is then expressed by Bper(E) =
Bper(E)[1, 1]. It is obvious that there are diagrams of short exact sequences

0 B
−[1, 1] B

−
B

0 0

0 B
−[1, 1] B

per
B 0

0 B
−

B
per

B [−1,−1] 0

0 B
0

B B [−1,−1] 0

0 B
−[1, 1] B

−
B

0 0

0 B
−[1, 1] B

per
B 0

0 B
−

B
per

B [−1,−1] 0

0 B
0

B B [−1,−1] 0

where pairs of arrows are retract pairs. From these two diagrams we obtain eight functorial long
exact sequences and morphisms between them.

Corollary 3. Let E and F be cyclic k-modules and let f, g : E ⇉ F be maps of cyclic k-
modules. Then HH(f) = HH(g) if and only if HC(f) = HC(g). When this is the case
HCper(f) = HCper(g) and HC−(f) = HC−(g).

Proof. The first statement follows from an inductive five-lemma analysis of the long exact se-
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quences

· · · HCn−1(E) HHn(E) HCn(E) HCn−2(E) HHn−1(E) · · ·

· · · HCn−1(F ) HHn(F ) HCn(F ) HCn−2(F ) HHn−1(F ) · · ·

· · · HC0(E) HH1(E) HC1(E) 0 HH0(E) HC0(E) 0

· · · HC0(F ) HH1(F ) HC1(F ) 0 HH0(F ) HC0(F ) 0

induced by the last line of the diagram on the left above, where the vertical maps are induced by
f and g. The other results come from the fact that maps of bicomplexes that are homologically
equal on each column are globally homologically equal. This is proved using either a staircase
argument or a spectral sequence argument.

Of course, if A is a k-algebra, HC(A), HCper(A), and HC−(A) stand for HC(C(A)),
HCper(C(A)), and HC−(C(A)).

1.2 Morita invariance

Let A and B be k-algebras. A well-known theorem of commutative algebra (see e.g. [Bas68,
Thm. 2.3]) says that there is a bijection between isomorphism classes of (B,A)-bimodules and
isomorphism classes of colimit-preserving k-linear functors ModA → ModB (here ModA denotes
the category of left A-modules). This correspondence is given explicitly as follows: to a (B,A)-
bimodule BMA we associate the functor BMA⊗?, and to a k-linear functor F : ModA → ModB we
associate the (B,A)-bimodule F (A) whose right A-module structure is given by the composition

A
∼=

HomA(A,A)
F

HomB(F (A), F (A)),

where the first map is the action of A on itself by multiplication on the right. This bijection
transforms tensor products of bimodules into compositions of functors.† In particular, the
categories ModA and ModB are k-linearly equivalent if and only if there exist bimodules BPA
and AQB and isomorphisms AQB ⊗ BPA ∼= A and BPA ⊗ AQB ∼= B of A-bimodules and B-
bimodules, respectively; if F and G are mutually inverse equivalences, we can choose P = F (A)
and Q = G(B). When either of those two conditions is satisfied, we say that A and B are Morita
equivalent, and P , Q, F , and G are called Morita equivalences.

Let us quickly review the main results of Morita theory (proofs can be found in [Bas68]
or [Lam98]). Let A be a k-algebra. A left A-module P is automatically an (A,EndA(P )

op)-
bimodule, and its dual P ∗ = HomA(P,A) is an (EndA(P )

op, A)-bimodule. There is a canonical
map of EndA(P )

op-bimodules
P ∗ ⊗A P → EndA(P )

given by ξ ⊗ x 7→ ξ(?)x and a canonical map of A-bimodules

P ⊗EndA(P )op P
∗ → A

given by x⊗ ξ 7→ ξ(x). It is well-known and easy to prove that the first map is an isomorphism
if and only if P is a finitely generated projective module. It can also be proved, but we will
never use it, that the the second map is an isomorphism precisely when P is a generator of
ModA in the categorical sense, i.e., when the functor ModA(P, ?) is faithful; we then say that P
is generating.

The Morita theorems say that P is an f.g.p. and generating left A-module if and only if
the categories ModA and ModEndA(P )op are equivalent; P ∗ ⊗A ? and P ⊗EndA(P )op ? are then
quasi-inverse equivalences. Moreover, all Morita equivalences are of this form, in the following
sense: if A and B are k-algebras, then a (B,A)-bimodule BPA is a Morita equivalence if and

†Other formal properties of this bijection could be succintly summarized by proving that it comes from an
equivalence of suitable 2-categories.
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only if it is generating and f.g.p. as a left B-module and the action of A induces an isomorphism
A → EndB(P )

op. When this is the case, B → EndA(P ) is also an isomorphism of k-algebras,
and HomA(P,A) and HomB(P,B) are isomorphic as (A,B)-bimodules and are inverse to BPA.

In this section we shall prove that the functors K0, HH , HC, HC−, and HCper send Morita
equivalent k-algebras to isomorphic objects. But we want to express this fact more functorially
so that the Chern character becomes “Morita natural”. The obvious category to consider is
that with k-algebras as objects and isomorphism classes of bimodules as morphisms between
them. However, the functor K0 does not lift to this category because tensoring with arbitrary
bimodules does not preserve f.g.p. modules. This motivates the following definition.

Define the category Mork as follows. Its objects are (associative and unital) k-algebras, and
a morphism from A to B is the isomorphism class of a (B,A)-bimodule BMA that is f.g.p. as
a left B-module. The composition of two morphisms BMA and CNB is the (C,A)-bimodule

CNB ⊗ BMA, and the identity morphism at A is AAA. There is a functor Algk → Mork which
sends a map f : A→ B to the (B,A)-bimodule BBA whose right A-module structure is induced
by f . This functor is faithful, for if f and g have the same image, then for all a ∈ A and b ∈ B,
bf(a) = bg(a); taking b = 1, we get f = g.

Let F be any functor defined on Algk. We say that F is Morita invariant if it factors
through the functor Algk → Mork defined above. This implies in particular that F sends Morita
equivalent k-algebras to isomorphic objects. If F and G are two Morita invariant functors with
given factorizations, then we have two notions of a natural transformation F → G. When F
and G are viewed as functors on Mork a natural transformation F → G will be called Morita
natural. Any Morita natural transformation is in particular a natural transformation between
functors on Algk.

We shall see that the functors that interest us are all Morita invariant in this sense. Here is
an easy example of a Morita invariant functor, which motivated our definition of Mork.

Theorem 4. The functors µ and K0 are Morita invariant.

Proof. It suffices to prove the theorem for µ. Let BPA be a morphism from A to B in Mork.
It induces a colimit-preserving functor between the categories of f.g.p. left A-modules and f.g.p.
left B-modules, whence a monoid morphism µ(BPA) : µ(A) → µ(B). When BPA is the image
of a map f : A → B, this is exactly how we defined µ(f). The fact that this defines a functor
on Mork is obvious.

We continue to write µ and K0 for the extensions of these functors to Mork. Observe that
µ is just the functor represented by k on Mork, and similarly K0 is the functor represented by
k on the category obtained from Mork by turning the monoids of morphisms into groups. Note
however that if BPA is a bimodule where A and B are commutative algebras, then K0(BPA) is
not a morphism of rings in general.

Less trivial is the fact that Hochschild homology and the various cyclic homologies are Morita
invariant. The construction of their lift that we present here is slightly simplified from that in
Loday [Lod92].

Let A and B be k-algebras and let BPA be a morphism in Mork. Write P ∗ for HomB(P,B).
Then P ∗ is an (EndB(P )

op, B)-bimodule, and also an (A,B)-bimodule thanks to the map of
k-algebras A → EndB(P )

op. Recall from the beginning of this section that we have canonical
maps

u : P ∗ ⊗B P → EndB(P ), π ⊗ p 7→ π(?)p,

and
v : P ⊗EndB(P )op P

∗ → B, p⊗ π 7→ π(p),

of EndB(P )
op-bimodules and B-bimodules, respectively. We think of these two maps as products

and we write simply πp for u(π ⊗ p), pπ for v(p ⊗ π), πbp for u(πb ⊗ p) = u(π ⊗ bp), and pαπ
for v(pα ⊗ π) = v(p ⊗ απ). These products are then associative: we have (πp)π′ = π(pπ′) and
(pπ)p′ = p(πp′), as is clear from the definitions of u and v. Other associativity identities follow
formally using the linearity of u and v, such as (pπ)(p′π′) = p(πp′)π′. In these notations we also
identify elements of A with their image in EndB(P )

op. For example, if a ∈ A, paπ stands for
v(pa⊗ π) = v(p⊗ aπ) = π(pa). This turns out to be a very effective formalism.
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By definition of the morphisms in Mork, u is an isomorphism. Thus there is a canonical
element πj ⊗ pj of P ∗ ⊗B P such that πjp

j = idP (here and in the sequel we use Einstein’s
sum convention). Let N be any B-bimodule and let AMA = P ∗ ⊗B N ⊗B P . We then define a
k-module map φn : Cn(A,M)→ Cn(B,N) by the formula

φn((π ⊗ y ⊗ p)⊗ a1 ⊗ · · · ⊗ an) = (pj0π)y(pπj1)⊗ p
j1a1πj2 ⊗ · · · ⊗ p

jnanπj0 . (6)

We omit the easy proof that if k : P → P ′ is an isomorphism of (B,A)-bimodules, then the map
φ′n defined from P ′ is equal to φn, as long as we use the decomposition (k∗)−1(πj) ⊗ k(pj) of
the canonical element of P ′∗ ⊗B P ′.

Lemma 5. The map φ is a morphism of simplicial k-modules. If we are given different decom-
positions of the canonical element of P ∗ ⊗B P , the resulting maps are simplicially homotopic.
In particular, the map induced by φ on Hochschild homology depends only on P .

Proof. For the first statement we only verify that diφn = φn−1di for 1 ≤ i ≤ n − 1, but the
method is the same for the other cases. We have

diφn((π ⊗ y ⊗ p)⊗ a1 ⊗ · · · ⊗ an) =

(pj0π)y(pπj1 )⊗ p
j1a1πj2 ⊗ · · · ⊗ (pjiaiπji+1)(p

ji+1ai+1πji+2)⊗ · · · ⊗ p
jnanπj0

and

φn−1di((π ⊗ y ⊗ p)⊗ a1 ⊗ · · · ⊗ an) =

(pj0π)y(pπj1)⊗ p
j1a1πj2 ⊗ · · · ⊗ p

ji(aiai+1)πji+2 ⊗ · · · ⊗ p
jnanπj0 ,

where we have judiciously indexed the indices in the second expression. To see that the two
expressions are equal, just insert idP = πji+1p

ji+1 between ai and ai+1 in the second expression
and use associativity.

For the second statement, suppose that we are given another decomposition κk ⊗ qk of the
canonical element for P , and let ψ be the map defined from it. For 0 ≤ i ≤ n, define a map
hi : Cn(A,M)→ Cn+1(B,N) by

hi((π ⊗ y ⊗ p)⊗ a1 ⊗ · · · ⊗ an) =

(pj0π)y(pκk1)⊗ q
k1a1κk2 ⊗ · · · ⊗ q

kiaiκki+1 ⊗ q
ki+1πji+1 ⊗ p

ji+1ai+1πji+2 ⊗ · · · ⊗ p
jnanπj0 .

The identites for simplicial homotopies that we must check are d0h0 = φn, dn+1hn = ψn,
dihj = hj−1di for i < j, dihi = dihi−1, and dihj = hjdi−1 for i > j + 1. All are seen to hold
without writing anything down, keeping in mind that πjp

j = κkq
k = idP .

Lemma 6. Let A, B, C be k-algebras, BPA and CQB morphisms in Mork, L a C-bimodule,

BNB = Q∗⊗CL⊗CQ, and AMA = P ∗⊗BN⊗BP . Define as above maps of simplicial k-modules
φ : C(A,M) → C(B,N), ψ : C(B,N) → C(C,L), and χ : C(A,M) → C(C,L) from P , Q, and
Q⊗B P , respectively. Then ψφ and χ are simplicially homotopic.

Proof. Suppose that φ and ψ were defined from the decompositions πj ⊗ pj and κk ⊗ qk of
the canonical elements for P and Q. In the statement of the lemma, we have tacitly used the
canonical morphism of (A,C)-bimodules P ∗ ⊗B Q∗ → (Q ⊗B P )∗ to define χ. This morphism
sends π ⊗ κ to the left C-linear form q ⊗ p 7→ q(pπ)κ, and because P and Q are left f.g.p. it is
actually an isomorphism whose inverse sends an element ζ ∈ (Q ⊗B P )

∗ to πj ⊗ κkζ(q
k ⊗ pj).

We shall write π ⊗ κ for either an element of P ∗ ⊗B Q∗ or of (Q⊗B P )∗.
Now (πj⊗κk)⊗(qk⊗pj) is the canonical element for Q⊗BP , because for any q⊗p ∈ Q⊗BP ,

(q ⊗ p)(πj ⊗ κk)(q
k ⊗ pj) = q(pπj)κkq

k ⊗ pj = q(pπj)⊗ p
j = q ⊗ pπjp

j = q ⊗ p.

By lemma 5, the map C(A,M) → C(C,L) obtained from this decomposition is simplicially
homotopic to χ, so we shall assume that it is χ and we shall prove ψφ = χ. On the one hand

ψnφn((π ⊗ κ⊗ z ⊗ q ⊗ p)⊗ a1 ⊗ · · · ⊗ an) =

(qk0(pj0π)κ)z(q(pπj1 )κk1)⊗ q
k1(pj1a1πj2)κk2 ⊗ · · · ⊗ q

kn(pjnanπj0)κk0 ,
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and on the other hand

χn((π ⊗ κ⊗ z ⊗ q ⊗ p)⊗ a1 ⊗ · · · ⊗ an) =

((qk0 ⊗ pj0)(π ⊗ κ))z((q ⊗ p)(πj1 ⊗ κk1))⊗ (qk1 ⊗ pj1)a1(πj2 ⊗ κk2)

⊗ · · · ⊗ (qkn ⊗ pjn)an(πj0 ⊗ κk0).

These expressions are seen to be equal by inspection.

Lemma 7. Let A and B be k-algebras, BPA a morphism in Mork, and N → N ′ a morphism of
B-bimodules. Then the square

C(A,P ∗ ⊗B N ⊗B P ) C(B,N)

C(A,P ∗ ⊗B N
′ ⊗B P ) C(B,N ′)

is commutative, provided that the same decomposition of the canonical element of P ∗ ⊗B P is
used to define both horizontal maps.

Proof. This is obvious from (6).

Finally, we note that if BBA is the image of a map of k-algebras f : A→ B and if N is any
B-bimodule, then the map C(A, f∗N) → C(B,N) induced by BBA is simplicially homotopic
to C(f, id). In fact, they are equal if one uses the decomposition idB ⊗ 1 ∈ B∗ ⊗B B of the
canonical element, for then in the formula (6) the factors are of the form 1ai, which is f(ai) by
definition of the action of A on B.

Let us gather the consequences of these results for the special case where the B-bimodule N
is just B (where A, B, P , φ are as before). We define a map C(A)→ C(B) as the composition

C(A,A) C(A,P ∗ ⊗B P )
φ

C(B,B) (7)

where the first map is induced by the map of A-bimodules

A EndB(P )
u−1

P ∗ ⊗B P .

If C is a third k-algebra and CQB is a morphism in Mork, we can form the diagram

C(A,A) C(A,P ∗ ⊗B P ) C(B,B)

C(A,P ∗ ⊗B Q
∗ ⊗C Q⊗B P ) C(B,Q∗ ⊗C Q)

C(C,C)

in which all the maps have been defined. The upper left triangle commutes by the classical
functoriality of the Hochschild complex; the square commutes by lemma 7; and the lower triangle
commutes up to simplicial homotopy by lemma 6.

In case BPA = BBA is the image of f : A → B, the second map in (7) can be chosen to be
C(f, id), as we have just seen above, so by functoriality of the Hochschild complex, (7) is exactly
C(f). Thus, the Hochschild complex functor with values in the homotopy category of simplicial
k-modules lifts to Mork. If now we pass to the homotopy groups, we obtain:

Theorem 8. The functor HH from k-algebras to graded k-modules is Morita invariant.
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In fact, lemmas 6 and 7 prove more generally that the functor HH lifts from the fibered
category of pairs (A,AMA) to the category with the same objects but in which a morphism
from (A,M) to (B,N) is a morphism BPA of Mork together with a map of A-bimodules M →
P ∗ ⊗B N ⊗B P . If we wanted to state this fact precisely we would run into problems with the
use of isomorphism classes (we would probably need to define Mork as a 2-category), so we shall
not attempt it.

We continue to write HH for the lift of HH to Mork. We can of course give an explicit
description of HH(BPA) : HH(A) → HH(B). If πj ⊗ pj is a decomposition of the canonical
element, it is induced by the simplicial morphism φ : C(A)→ C(B) given by

φn(a0 ⊗ · · · ⊗ an) = pj0a0πj1 ⊗ p
j1a1πj2 ⊗ · · · ⊗ p

jnanπj0 . (8)

We sometimes write φ = C(BPA) when the fact that it is only well-defined up to simplicial
homotopy is irrelevant.

There remains to handle the various cyclic homologies, but this is now easy. It is obvious
from the structure of the map φn above that it commutes with the cyclic operator tn, so that it
is in fact a map of cyclic k-modules. We still have to prove that the map induced by φ on cyclic
homology does not depend on the choice of a decomposition of the canonical element, and that
composition is preserved, but this follows from corollary 3. Thus:

Theorem 9. HC, HC−, and HCper are Morita invariant.

We continue to write HC, HC−, and HCper for the lifts of these functors to Mork.
One can think of the category Mork as an “additivization” of Algk. Indeed, Mork is an

additive category: it is enriched over abelian monoids (that one can replace by abelian groups if
one wants to, but this is not necessary), it has a zero object, and it has biproducts. The monoid
structure on Mork(A,B) is of course induced by the direct sum of bimodules, and composition
in Mork becomes biadditive. The zero element is the zero algebra 0, because any left or right
0-module is zero (if M is a 0-module and x ∈M , then x = 1x = (1+1)x = x+x whence x = 0).
Finally, for any k-algebras A and B there is a biproduct diagram

A
A×BAA

A×B
AAA×B BBA×B

B.
A×BBB

where A × B acts on A or B via the projections. The identites for biproducts that we must
check are

AAA×B ⊗ A×BAA ∼= AAA,

BBA×B ⊗ A×BBB ∼= BBB , and

(A×BAA ⊗ AAA×B)⊕ (A×BBB ⊗ BBA×B) ∼= A×B(A×B)A×B,

all of which are clear. In any category enriched over abelian monoids, a biproduct provides at
the same time the product and the coproduct. Since the bimodules AAA×B and BBA×B are
the images of the projections in Algk and since 0 is terminal in Algk, we see that the functor
Algk → Mork creates finite products.

The Hochschild complex functor is additive on Mork up to simplicial homotopy. To see
this, note that if πj ⊗ pj (resp. κk ⊗ qk) is the canonical element for BPA (resp. BQA), then
(πj +0)⊗ (pj +0)+ (0+κk)⊗ (0+ qk) is the canonical element for P ⊕Q. From the formula (8)
we obtain at once C(P ⊕Q) = C(P )+C(Q). It follows that each of the functors HH , HC, HC−,
and HCper is additive on Mork and hence preserves zero objects and biproducts. In particular,
any of these functors preserves finite products when viewed as a functor on Algk.

1.3 The Chern character in degree zero

We begin with another description of the K0 of a k-algebra A. Let Matn(A) denote the ring
of left A-linear endomorphisms of An, and let Mat(A) = lim

−−→
Matn(A) (this is a nonunital k-

algebra). Using the canonical basis of An, we can, and we will, identify elements of Matn(A)
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with square matrices that act on the left A-module An of row vectors by multiplication on the
right. To any idempotent e in Mat(A) we can associate an element [e] of µ(A), namely the
isomorphism class of the image Im e of e: if we factor e as

An
p

Im e
i

An,

then p is a retraction of i, showing that Im e is an f.g.p. module. Conversely, if M is an f.g.p.
left A-module, there is an integer n ≥ 0 and a commutative diagram

M
i

=

An p M ;

then the composite ip is an idempotent in Mat(A), and M is in the isomorphism class [ip].
Moreover, two idempotents e and e′ determine the same isomorphism class of f.g.p. modules if
and only if there exists α ∈ GL(A) such that e′ = αeα−1. Only the necessity is nontrivial, but
if e ∈Matn(A), e

′ ∈Matm(A), and if f : Im e→ Im e′ is an isomorphism, then

[

e′ 0
0 0

]

=

[

h 1− e′

1− e g

] [

e 0
0 0

] [

g 1− e
1− e′ h

]

and

[

h 1− e′

1− e g

] [

g 1− e
1− e′ h

]

= 1,

where g : An → Am and h : Am → An denote the extensions of f and f−1 by zero. Hence, there
is a bijection between µ(A) and the set of orbits of idempotents in Mat(A) under the action of
GL(A) by conjugation.

We now define the Chern character ch0 with values in HH0(A) = HC0(A) = A/[A,A]. If e
is an idempotent in Mat(A), ch0([e]) is the image of e by the composition

Mat(A)
tr

A A/[A,A].

Let us check that this is well-defined. If [e] = [e′], we have seen above that there exists α ∈
GL(A) such that e′ = αeα−1, so by linear algebra tr(e) − tr(e′) belongs to the commutator
submodule [A,A]. Moreover, ch0 is a morphism of monoids because the direct sum of [e] and
[e′] is represented by the idempotent

e⊕ e′ =

[

e 0
0 e′

]

,

and the trace of this idempotent is the sum of the traces of e and e′. Thus, by universality, we
obtain a morphism of groups

ch0 : K0(A)→ HC0(A).

We want to prove that the map ch0 is natural when A varies in Algk and even in Mork. To do
this we have to make explicit the way a left f.g.p. bimodule BPA acts on idempotents in Mat(A).
Let πj ⊗ pj be the canonical element of P ∗ ⊗B P with 1 ≤ j ≤ r. For any matrix x ∈ Matn(A),
we write Px ∈Matrn(B) for the matrix







p1xπ1 p1xπ2 . . .
p2xπ1 p2xπ2 . . .

...
...






,

where pixπj is computed coefficient by coefficient. An easy computation shows that x 7→ Px is
a map of nonunital k-algebras. In particular, if e is an idempotent, so is Pe. We claim that

BPA ⊗ A Im e ∼= B ImPe. (9)

Define a left B-linear map α : P ⊗A An → Brn by α(p ⊗ a) = (paπ1, . . . , paπr). If ae = a, it is
clear that α(p ⊗ a)Pe = α(p ⊗ a), and so α restricts to a map α′ : P ⊗A Im e → ImPe. Define
β : Brn → P ⊗A An by β(b) = bjip

j ⊗ ui, where the vector b is divided in r chunks of length n
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and where ui is the ith vector of the canonical basis of An. Observe that βα = id. Suppose that
b = bPe, or equivalently that bji = blkp

leki πj . Then

(bjip
j ⊗ ui)e = blkp

leki πjp
j ⊗ ei = blkp

leki ⊗ e
i = blkp

l ⊗ eki e
i = blkp

l ⊗ (e2)k

= blkp
l ⊗ ek = blkp

l ⊗ eki u
i = blkp

leki ⊗ u
i = blkp

leki πjp
j ⊗ ui = bjip

j ⊗ ui,

that is, β(b)e = β(b). Thus, β restricts to a map β′ : ImPe → P ⊗A Im e. It remains to check
that α′β′ = id, or explicitly that for b ∈ ImPe, bji = bmip

mπj . This equality becomes obvious
if we multiply both sides on the right by Pe:

(bPe)ji = blkp
leki πj = bmkp

mπlp
leki πj = (α′β′(b)Pe)ji.

Using equation (9) and the formula (8) for n = 0 it is now clear that ch0 is Morita natural,
because the trace of Pe is exactly pj tr(e)πj = C0(BPA)(tr(e)).

[The matrix Px has the following origin. If P̂ is the unique lift of P as in

Matn(A)
∼=

P̂

A

P

Matrn(B)
∼=

B,

then the decomposition of the canonical element for P induces one of the canonical element
π̂k ⊗ p̂k for P̂ , and Px is just p̂kxπ̂k.]

We use this description of Pe to prove that, if A is commutative, ch0 is a morphism of
rings. Let e ∈ Matn(A) and e′ ∈ Matm(A) be idempotents. The tensor product Im e ⊗A Im e′

can also be viewed as the image of Im e′ under the map µ(AIm eA), and so it is represented by
the idempotent (Im e)e′. The canonical element of (Im e)∗ ⊗A Im e is πj ⊗ e

j where πj is the
restriction of the jth projection of An and ej is the jth row of e (i.e., the image by e of the jth
vector of the canonical basis). Using this decomposition of the canonical element, the matrix
(Im e)e′ becomes the classical tensor product matrix e⊗ e′, whose trace is tr(e) tr(e′).

We are now going to prove that ch0 factors through HC−0 . This is actually trivial thanks to
our work on Morita naturality. As we have noted in §1.2, the functor µ from Mork to abelian
monoids is represented by k. Let F : Mork → Ab be any additive functor. Then, by the Yoneda
lemma and the universality ofK0, τ 7→ τk(k) is an isomorphism from the group of Morita natural
transformations K0 → F to F (k) which is natural in F . Since the canonical map HC−0 → HC0

is an isomorphism on k (as an explicit computation reveals), it follows that any Morita natural
transformation τ : K0 → HC0 has a unique Morita natural lift τ− as in the diagram

K0
τ

τ−

HC0

HC−0 .

Explicitly, if M is an f.g.p. left A-module, then

τ−(AM) = HC−0 (AMk)(τ
−(kk)),

where τ−(kk) is the preimage of τ(kk) by the isomorphism HC−0 (k) → HC0(k). Applying this
to ch0 we obtain the Chern character ch−0 : K0 → HC−0 .

Remark 1. It may seem that we have not gained much in passing from ch0 to ch−0 , whose
construction was almost entirely formal. However, we now have natural maps ch0,n : K0 → HC2n

for all n ≥ 0 by composing ch−0 with the canonical maps HC−0 → HCper
0 = HCper

2n and HCper
2n →

HC2n. On the category of commutative k-algebras, there is also a canonical map of graded
k-module-valued functors HC → HdR, where HdR is the de Rham homology functor. Thus, the
Chern character ch−0 of the proposition induces a map fromK0(A) into the even-valued de Rham
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homology of A (in fact, the Chern character ch0,n arose as a generalization of this map to the
noncommutative case). This provides the connection between the algebraic version of the Chern
character discussed here and the topological version discussed elsewhere. If X is a paracompact
space, then it is well-known that there exists an isomorphism K0(X) → K0(CC(X)) where
K0(X) is the Grothendieck ring of finite-dimensional complex vector bundles on X and CC(X)
is the C-algebra of complex-valued continuous functions on X . This isomorphism is constructed
by associating to a vector bundle on X its CC(X)-module of sections. When X is a C∞ manifold,
the inclusion i : C∞

C
(X) → CC(X) induces an isomorphism i∗ : K0(C

∞
C
(X)) → K0(CC(X)). A

famous theorem of de Rham says that there is an isomorphism

HdR(C∞C (X)) ∼= H(X,C),

where the H on the right is singular cohomology. All said, we obtain a map

K0(X)→ H(X,C)

when X is a manifold. This can be extended to all paracompact spaces using the fact that any
vector bundle on a paracompact space X is the pullback of a vector bundle on a manifold (the
universal bundle). In this way, it seems, we recover up to a coefficient the Chern character for
paracompact spaces as defined in algebraic topology (e.g. using Chern classes).

Remark 2. All that we have done in this chapter generalizes straightforwardly from commuta-
tive k-algebras to schemes over k. We mention without proofs the steps of this generalization.
First, the K0 of a scheme X is defined using the category of OX -modules that are locally free
of finite rank (this is equivalent to being locally f.g.p.); it is now a contravariant functor, and,
when precomposed by the contravariant spectrum functor, gives back the covariant K0 for com-
mutative k-algebras. The Hochschild complex of a scheme is defined in exactly the same way as
for k-algebras, using the structural sheaf OX instead. Thus, we obtain the Hochschild homology
and the various cyclic homologies as sheaves of graded k-modules. To obtain k-modules from the
latter, we cannot simply take global sections because this operation would not give an invariant
of the Hochschild complex under weak equivalences (e.g. simplicial homotopy equivalences). In-
stead, we have to apply first the total right derived functor RΓ of global sections before taking
homology. There are several categories with weak equivalences in which this derived functor can
be defined (simplicial sheaves, nonnegatively differential graded sheaves, unbounded differential
graded sheaves), but the results obtained are compatible through the Dold–Kan equivalence or
the truncation functor (see 4.1). We can still define the Chern character ch0 and its lift ch−0 in
the same way, and they are natural transformations between contravariant functors.

In the affine case we have seen that K0 is also a covariant functor (a contravariant functor on
algebras) if we impose some finiteness condition on the morphisms. The same is obviously true for
all schemes. The Hochschild homology and cyclic homologies of a scheme X are also covariant
functors under the same restriction on morphisms. In the case of k-algebras, for example, a
map f : A → B that makes B into an f.g.p. A-module induces a map C(ABB) : C(B) → C(A)
between the Hochschild complexes. We can then ask if the Chern character for schemes is a
natural morphism between covariant functors as well. This is true for affine schemes by Morita
naturality. In the general case, however, we guess that there is a Grothendieck–Riemann–Roch
formula instead.



2 Stacks over model categories

In this chapter we summarize the results of [HAGI] about stacks on model categories. We
should note that there exists a more general notion of stack over (∞, 1)-categories and that the
two notions are compatible via simplicial localization. But for convenience we state at once the
results in a form suited for their applications later on.

2.1 Mapping spaces in model categories

We recall some facts about mapping spaces in model categories. All of them are proved
in [Hov99]. Let I be an index category. For any category C with colimits, there is an equivalence
between the category CI and the category of adjunctions SetI

op

→ C. If A is a functor I→ C, its
image by this equivalence is an adjunction with left adjoint written ?⊗A : SetI

op

→ C and with
right adjoint written C(A, ?): C→ SetI

op

; for K a functor Iop → Set, K ⊗A can be described by
the glueing procedure

K ⊗A =

∫ i∈I
∐

x∈K(i)

A(i),

while C(A,X)(i) = C(A(i), X). When K is the functor represented by i ∈ I, we have K ⊗
A = A(i). For example, when I = ∆, C is the category of topological spaces, and A is the
cosimplicial space such that A(n) is the standard topological n-simplex, then K ⊗ A is the
geometric realization of K and C(A,X) is the singular simplicial set of X .

Suppose now that C is a model category. We recall the definition of the Reedy model structure
on the category of simplicial objects sC whose equivalences are the pointwise equivalences. Since
C has all limits and colimits, one can certainly define the skeleton and coskeleton functors
skn : sC→ sC and coskn : sC→ sC as the compositions

skn = (in)!i
∗
n and coskn = (in)∗i

∗
n,

where i∗n : sC → snC is the truncation at n with left adjoint (in)! and right adjoint (in)∗ (this
is defined for all n ≥ −1). A morphism X → Y in sC is a (trivial) fibration (resp. a (trivial)
cofibration) for the Reedy structure if and only if the induced maps

Xn → coskn−1(X)n ×coskn−1(Y )n Yn (resp. skn−1(Y )n ∐skn−1(X)n Xn → Yn)

are (trivial) fibrations (resp. (trivial) cofibrations) for all n ≥ 0 (see [Hir03, 15.3.15] for this
characterization of trivial fibrations and trivial cofibrations). We shall make use of the following
result.

Proposition 10. Let C be a model category and endow the category sC with its Reedy model
structure. For any n ≥ 0, the functors skn : sC → sC and coskn : sC → sC form a Quillen
adjunction.

Proof. We check that coskn preserves fibrations and trivial fibrations. For a map f : X → Y in
sC we write Mmf for the induced map

Xm → coskm−1(X)m ×coskm−1(Y )m Ym.

Suppose that f : X → Y is a Reedy (trivial) fibration. Using the isomorphisms coskp coskq ∼=
coskq coskp ∼= coskp if p ≤ q and coskn(?)m = ?m if m ≤ n, we obtain that Mm coskn(f) can be
identified with Mmf if m ≤ n, in which case it is a (trivial) fibration by hypothesis, and is an
isomorphism if m > n. Thus coskn(f) is a Reedy (trivial) fibration.

A cosimplicial resolution functor on C is a functor Γ∗ : C→ C∆ together with an isomorphism
Γ0 → idC such that for every cofibrant object A of C the adjoint map Γ∗(A) → A is a Reedy
cofibrant replacement of the constant cosimplicial object A. One defines dually the notion of
simplicial resolution functor. The axioms of a model category (with functorial factorizations)
imply that cosimplicial and simplicial resolutions always exist. So fix a cosimplicial resolution

18
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functor Γ∗ : C → C∆ and a simplicial resolution functor Γ∗ : C → C∆
op

on C. Composing these
functors with the equivalences of the previous paragraph, we obtain four bifunctors

sSet× C→ C, (K,X) 7→ K ⊗X,

Cop × C→ sSet, (X,Y ) 7→ Mapℓ(X,Y ),

sSetop × C→ C, (K,Y ) 7→ Y K , and

C× Cop → sSetop, (X,Y ) 7→ Mapr(X,Y ),

with the property that ?⊗X is left adjoint to Mapℓ(X, ?) and Y
? is right adjoint to Mapr(?, Y ).

It turns out that these four bifunctors preserve sufficiently many weak equivalences to have
total derived functors (K,X) 7→ K ⊗L X , (X,Y ) 7→ RMapℓ(X,Y ), (K,Y ) 7→ Y RK , and
(X,Y ) 7→ LMapr(X,Y ). These derived functors do not depend on Γ∗ and Γ∗, in the sense that
different choices of cosimplicial and simplicial resolutions yield naturally isomorphic derived
bifunctors. Moreover, RMapℓ is actually canonically isomorphic to (LMapr)

op; we simply
denote by RMap one of these two bifunctor (it is further isomorphic to the simplicial hom-
set functor of the simplicial localization of the model category C). Now, although the two
adjunctions above are not Quillen adjunctions in general, they are if X is cofibrant and if Y is
fibrant. Thus if QX denotes a cofibrant replacement of X , then ?⊗QX and Mapℓ(QX, ?) form
a Quillen adjunction for any X , and hence their derived functors, which are exactly ?⊗LX and
RMapℓ(X, ?), are adjoint. Similarly, we obtain an adjunction between LMapr(?, Y ) and Y R?

for any Y . To summarize, there are isomorphisms

[K ⊗L X,Y ] ∼= [K,RMap(X,Y )] ∼= [X,Y RK ] (10)

which are easily seen to be natural in K, in X , and in Y (one only needs to check that the
first one is natural in X and the second one in Y ). In particular, we obtain that K ⊗L ? is left
adjoint to ?RK . It can be proved that the adjunctions (10) are part of a closed Ho sSet-module
structure on the category HoC, where Ho sSet is endowed with the monoidal structure given by
the direct product. These canonical closed Ho sSet-module structures on the homotopy categories
of model categories are moreover functorial for Quillen adjunctions: in fact, if F : C → D is a
colimit-preserving functor between model categories that also preserves cofibrant objects and
cofibrations and equivalences between them, then LF : HoC → HoD is the underlying functor
of a morphism of left Ho sSet-modules, so that LF (K⊗LX) ∼= K⊗LLF (X) (this is only proved
in [Hov99] when F is left Quillen, but exactly these properties of the functor F are used in the
proof). Dualizing the hypotheses we obtain that RF (Y RK) ∼= RF (Y )RK .

In the special case that C is a simplicial model category, there are canonical choices for
resolution functors induced by the sSet-module structure of C, namely Γ∗(A) = ∆∗ ⊗ A and
Γ∗(A) = A∆∗

. By abstract nonsense the bifunctors K⊗X and Y K induced by these resolutions
coincide with those from the sSet-module structure of C. In particular, Mapℓ = (Mapr)

op = Map
are just the simplicial hom’s of C and the functors K ⊗ ? and ?K are already adjoint at the
underived level, and this is in fact a Quillen adjunction.

2.2 Prestacks

Let C be a model category and W its set of weak equivalences. We endow the category sSetC
op

of simplicial presheaves on C with the projective model structure for which equivalences and
fibrations are defined pointwise (this does not use the model structure of C). By virtue of the
adjunction between the constant simpicial set functor Set→ sSet and the evaluation at 0 functor
sSet→ Set, a simplicial presheaf on C is the same thing as an sSet-enriched presheaf if we view
C as an sSet-enriched category with constant morphism objects. Therefore, by the sSet-enriched
Yoneda lemma, there is a fully faithful simplicial functor h : C → sSetC

op

, x 7→ hx, and for any
simplicial presheaf F there is an isomorphism of simplicial sets

F (x) ∼= Map(hx, F )

natural in F and in x. This implies that hx is cofibrant for any x ∈ C. Indeed, to show that hx
has the left lifting property with respect to a trivial fibration F → G, it suffices to prove that
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F (x)0 → G(x)0 is surjective. But, by definition of the projective model structure, F (x)→ G(x)
is a trivial fibration in sSet and hence any map ∗ → G(x) lifts to ∗ → F (x). Objects of the form
hx will be called representables. The model category sSetC

op

is in a precise sense the homotopical
version of the presheaf category SetC

op

and has many analogous properties. One of them is that
any object in Ho sSetC

op

is in a canonical way a homotopy colimit of a diagram of representables:
see [Dug01, §2.6].

Recall that sSetC
op

is a proper, cellular, and simplicial model category (see [Hir03, 13.1.14
and 12.1.5]). We can therefore consider the left Bousfield localization of sSetC

op

along the image
h(W ) of W by the simplicial Yoneda embedding, which is again a left proper, cellular, and
simplicial model category ([Hir03, 4.1.1]); it is denoted by C∧ and is called the model category of
prestacks on C. It has the same underlying category, cofibrations (hence also trivial fibrations),
and simplicial structure as sSetC

op

, while its equivalences are the h(W )-local equivalences in
sSetC

op

. By definition, the identity sSetC
op

→ C∧ is an equivalence-preserving left Quillen
functor enjoying the following universal property: any left Quillen functor sSetC

op

→ D whose
total derived functor sends elements of h(W ) to isomorphisms in HoD lifts uniquely to a left
Quillen functor C∧ → D. Its derived right adjoint Rid : HoC∧ → Ho sSetC

op

is simply the
functor induced by a fibrant replacement functor in C∧, and it is fully faithful by [Hir03, 3.5.1
(1)].†

By [Hir03, 3.4.1 (1)], an object F ∈ C∧ is fibrant if and only if it is h(W )-local in sSetC
op

,
i.e., if and only if it is pointwise fibrant and for any equivalence y → z in C, RMap(hz, F ) →
RMap(hy, F ) (mapping spaces in sSetC

op

) is an isomorphism in Ho sSet. Since hz and hy are
projectively cofibrant and F is projectively fibrant, those mapping spaces can here be chosen
to be the simplicial hom’s of sSetC

op

. Then the simplicial Yoneda lemma gives us the following
criterion: a functor F : C→ sSet is fibrant in C∧ if and only if

• it is pointwise fibrant and

• it preserves equivalences.

This implies that the essential image of Rid : HoC∧ → Ho sSetC
op

consists of the equivalence-
preserving functors; such functors are called prestacks.

Observe that the simplicial Yoneda embedding h : C → C∧ preserves weak equivalences by
definition, so that it has a total right (and left) derived functor Rh. Fix a cosimplicial resolution
functor Γ∗ on C and a functorial cofibrant replacement Qx→ x, and define a functor h : C→ C∧

by
hx(y) = Mapℓ(Qy, x) = C(Γ∗(Qy), x).

Here we take a cofibrant replacement of y so that Γ∗(Qy) → Qy is a cosimplicial resolution of
Qy in the sense of [Hir03] (which is only guaranteed for cofibrant objects with our definition of
cosimplicial resolution functors). If R is a fibrant replacement functor on C, there is a canonical
map

h→ hR? (11)

adjoint to C(y, x)→ C(Qy, x) ∼= C(Γ0(Qy), x)→ C(Γ0(Qy), Rx).

Proposition 11. The functor h : C → C∧ preserves fibrant objects, fibrations between fibrant
objects, equivalences between fibrant objects, and all trivial fibrations. In particular, h has a total
right derived functor Rh : HoC→ HoC∧ which underlies a morphism of right Ho sSet-modules.

Proof. As a functor to sSetC
op

, h preserves fibrant objects ([Hir03, 16.5.3 (1)]), all fibrations and
trivial fibrations ([Hir03, 16.5.4 (2)]), and weak equivalences between fibrant objects ([Hir03,
16.5.5 (2)]). Now take h : C→ C∧. To prove that hx is fibrant for x fibrant, we must prove that
for any equivalence y → z in C, hx(z)→ hx(y) is an equivalence in sSet: this is is [Hir03, 16.5.5
(1)]. Since fibrant objects in C∧ are h(W )-local in sSetC

op

, it follows from [Hir03, 3.3.16 (1)]
that h also preserves fibrations between fibrant objects. Finally, h preserves weak equivalences

†The statement of Lemmas 3.5.1 and 3.5.2 in [Hir03] should include a hypothesis of left (right) properness
for the proofs given there to work. The missing hypothesis is restored in Proposition 3.5.3. Alternatively, one
should replace the condition of (co)locality with the stronger condition of being (co)fibrant in the localization; it
is this modified statement that we use here.
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between fibrant objects and all trivial fibrations since the identity sSetC
op

→ C∧ preserves
equivalences and trivial fibrations.

Proposition 12. The map (11) is an equivalence in C∧, so that Rh ∼= Rh and the latter does
not depend on the choice of a cosimplicial resolution functor. For any fibrant F ∈ C∧ and any
x ∈ C, there is an isomorphism

F (x) ∼= RMap(Rhx, F )

in Ho sSet which is natural in F and in x. In particular, Rh is fully faithful.

Proof. The first assertion is proved in [HAGI, Lem. 4.2.2]. As F is fibrant and hx is cofibrant
in C∧, it implies that RMap(Rhx, F )

∼= Map(hx, F ) in Ho sSet, so the other statements follow
from the simplicial Yoneda lemma.

We call Rh the derived Yoneda embedding.

2.3 Model sites and hypercovers

Let C be a model category. A model topology on C is defined to be a topology on HoC. A model
category endowed with a model topology is called a model site.

In the remaining of this section we will discuss the notion of hypercovers which will be used
to formulate the relevant descent condition for stacks in the next section. Hypercovers are a
generalization of the classical notion of Čech cover, which we recall first.

Let (C, τ) be a classical site with fibered products. To a covering family U = {xi → x}i
of an object x ∈ C (this means that the sieve generated by U is a covering sieve for τ), one
associates an augmented simplicial object C∗(U)→ x, called the nerve of U , which in degree n
is a “formal disjoint union” of intersections

∐

i0,...,in

xi0 ×x · · · ×x xin .

The classical descent condition is that a presheaf of sets F on C is a sheaf if and only if for
every covering family U the map F (x)→ lim

←−−
F (C∗(U)) is an isomorphism, where by definition

F transforms formal disjoint unions into products. One can get rid of these imprecise formal
disjoint unions using the Yoneda embedding h : C→ SetC

op

which freely adds colimits to C. For
U a covering family as above, C∗(U) is really an object in s(SetC

op

↓ hx), and the presheaf F is
a sheaf if and only if the presheaf on SetC

op

that it represents identifies hx with the colimit of
C∗(U); explicitly, this means that the map

F (x) ∼= SetC
op

(hx, F )→ SetC
op

(lim
−−→

C∗(U), F ) = lim
←−−

SetC
op

(C∗(U), F )

is an isomorphism. (Since lim
−−→

= π0 and lim
←−−

= π0, limits and colimits here are really equalizers
and coequalizers.)

To understand hypercovers it is useful to consider first a covering family {u→ x} consisting
of a single morphism, so that there is no need to embed C in SetC

op

to express the descent
condition relative to u→ x. The simplicial object C∗ in (C ↓ x) is

· · · u×x u×x u u×x u u x

where only the faces are displayed. The crucial observation is that this simplicial object is
determined inductively up to isomorphism by the condition that the canonical maps

Cn → coskn−1(C∗)n

be isomorphisms in (C↓x) for all n ≥ 1 (and it is by hypothesis a covering map for n = 0). Here
coskn : s(C ↓ x)→ s(C ↓ x) is the nth coskeleton functor. A representable hypercover of x in the
site (C, τ) is defined to be a simplicial object C∗ in the site (C ↓ x) (with the induced topology)
such that for every n ≥ 0 the canonical map

Cn → coskn−1(C∗)n
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is (not necessarily an isomorphism but) a covering map, i.e., generates a covering sieve.
The general definition is the following. First we endow SetC

op

with the topology for which a
family of presheaves {Fi → G}i is a covering if the map

∐

i

Fi → G

induces an epimorphism between the associated sheaves, or equivalently has the local surjectivity
property. This topology extends the one on C since a family {xi → x}i is a covering family if
and only if {hxi → hx}i is a covering family: in this case the local surjectivity property says
that the pullback of the sieve generated by {xi → x}i along every y → x is a covering sieve, and
by the axioms for a topology this is the case if and only if {xi → x}i is a covering family. A
hypercover of x in C is a representable hypercover C∗ of hx in the site SetC

op

, such that each Cn is
a small coproduct of representables. Clearly Čech nerves are hypercovers. With this definition
of hypercover, it is still true that a presheaf is a sheaf if and only if it satisfies descent with
respect to all hypercovers. Indeed, suppose that F is a sheaf, that C∗ → hx is a hypercover,
and that Č∗ → hx is the Čech nerve generated by the covering map C0 → hx; then one has a
commutative diagram

C1 C0 hx

Č1 Č0 hx

in which the leftmost vertical arrow is a covering map, and since F is a sheaf SetC
op

(?, F )
transforms covering maps into monomorphisms. Although generalising from Čech covers to
hypercovers is not necessary for sheaves of sets, the correct characterization of simplicial sheaves
must require descent with respect to all hypercovers, not just Čech nerves (see [DHI04]; the
only differences is that one uses the simplicial Yoneda embedding into sSetC

op

and a family of
maps in this category is defined to be a covering family if one obtains a covering family in SetC

op

by taking connected components, see below). What makes this the “correct characterization”
will become clear in the next section.

It is now straightforward to formulate the correct definition of hypercovers in a model site.
Let (C, τ) be a model site. We first define the functor of connected components πτ0 : HoC∧ →
Sh(HoC) from prestacks to sheaves of sets on HoC (recall that by definition τ is a topology on
this homotopy category). For F : Cop → sSet, define πτ0 (F ) to be the sheaf associated to the
presheaf x 7→ π0((RF )(x)) where R is a fibrant replacement functor on C∧. This is a well-defined
presheaf on HoC since RF , being fibrant in C∧, preserves equivalences. Moreover, this presheaf
does not depend on the fibrant replacement functor R since different fibrant replacements of
F are equivalent in C∧ and hence pointwise equivalent by [Hir03, 3.3.5 (1)]. Thus we obtain
a well-defined functor C∧ → Sh(HoC). Now if F → G is an equivalence in C∧, RF → RG
is a pointwise equivalence by [Hir03, 3.3.5 (1)] and in particular π0(RF (?)) → π0(RG(?)) is
an isomorphism of presheaves. By the universal property of the homotopy category we get
a functor πτ0 : HoC∧ → Sh(HoC). Define a map F → G in HoC∧ to be a τ-covering map
if πτ0 (F ) → πτ0 (G) is an epimorphism of sheaves of sets. A map in C∧ will also be called a
τ -covering map if its image in HoC∧ is.

Lemma 13. Let (C, τ) be a model site. A family of morphisms {yi → x}i in HoC is a τ-covering

family if and only if
∐

L

i Rhyi → Rhx is a τ-covering map.

Proof. Let h′ : HoC → Sh(HoC) be the Yoneda embedding HoC → Set(Ho C)op composed with
the associated sheaf functor. Up to a natural isomorphism, h′ is the composite

HoC
Rh

HoC∧
πτ
0

Sh(HoC).

We already know that {yi → x}i is a covering family if and only if
∐

i h
′
yi → h′x is an epi-

morphism. We complete the proof by showing that πτ0 : HoC∧ → Sh(HoC) commutes with
coproducts (recall that coproducts indexed by a set I in HoC are derived coproducts under
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the isomorphism Ho(CI) ∼= (HoC)I). Factor πτ0 as π′0 : HoC∧ → Set(Ho C)op followed by the
associated sheaf functor. The latter preserves colimits (being left adjoint), so it suffices to prove
that π′0 preserves coproducts. Let (Fi)i∈I be an arbitrary family of objects in HoC∧. We may
suppose that each Fi is fibrant and cofibrant. Then their coproduct in HoC∧ coincides with
their coproduct G =

∐

i Fi in C∧. Since each Fi is a prestack and coproducts of simplicial
sets preserve equivalences, G is a prestack. Therefore, a fibrant replacement G→ RG is just a
pointwise fibrant replacement. Using that π0 : sSet→ Set preserves colimits (it is left adjoint to
the inclusion), we find π′0(G)(z) = π0((RG)(z)) = π0(G(z)) =

∐

i π0(Fi(z)) =
∐

i π
′
0(Fi)(z).

We shall consider for G ∈ C∧ the comma category (C∧ ↓ G) which we endow with the
induced model structure (equivalences, fibrations, and cofibrations are as in C∧). The forgetful
functor induces a functor Ho(C∧ ↓G)→ HoC∧. Fix a fibrant object x ∈ C. Since C∧ and hence
(C∧↓hx) have all limits and colimits, one can certainly define the skeleton and coskeleton functors
skn : s(C

∧ ↓ hx) → s(C∧ ↓ hx) and coskn : s(C
∧ ↓ hx) → s(C∧ ↓ hx). Recall from Proposition 10

that this is a Quillen adjunction for the Reedy model structure. A τ-hypercover of x in C is a
simplicial object C∗ in (C∧ ↓ hx) such that

• for every n ≥ 0, the image in HoC∧ of the canonical map Cn → R coskn−1(C∗)n is a
τ -covering map and

• each Cn is equivalent in C∧ to a small coproduct of representables.

If x is not fibrant, a τ -hypercover of x in C is defined to be a hypercover of some fibrant
replacement of x; it is therefore an object of s(C∧ ↓Rhx). Observe that in HoC∧ a coproduct
of representables is the same thing as a homotopy coproduct of Rhy’s, because hy is a cofibrant
replacement of Rhy (Proposition 12). Thus a hypercover of x is an augmented simplicial object
of the form

· · ·
L
∐

i∈I2

Rhyi

L
∐

i∈I1

Rhyi

L
∐

i∈I0

Rhyi Rhx. (12)

The reason that we need x to be fibrant in this definition is the following. One could define a
model topology τ∧ on C∧ such that the τ -covering maps defined above are exactly the maps
generating a τ∧-covering sieve. If hx is not fibrant one cannot necessarily pull back τ∧ through
the functor Ho(C∧ ↓ hx) → HoC∧ (see Lemma 14), which is what we really do in the first
condition above.

We discuss two especially useful kinds of hypercovers. A representable hypercover is a hyper-
cover of the form Rhy∗ → Rhx induced by an augmented simplicial object y∗ → x in C. In this
case we also say that y∗ → x a τ -hypercover. Using Lemma 13 and the fact that h commutes
with limits and hence with coskeletons, we obtain the following characterization of representable
hypercovers. An augmented simplicial object y∗ → x is a τ -hypercover if and only if for every
n ≥ 0 the canonical map yn → R coskn−1(y∗)n in HoC generates a τ -covering sieve.

If U = {yi → x}i is a τ -covering family, then by Lemma 13
∐L

i Rhyi → Rhx is a τ -covering

map and we define inductively a τ -hypercover C∗, called the Čech hypercover associated to U
or the homotopy nerve of the covering U , by

C0 =

L
∐

i

Rhyi and Cn = R coskn−1(C∗)n.

(Here R coskn−1(C∗) really means R(in−1)∗(i
∗
n−1C∗) where sn−1(C ↓ Rhx) is given the Reedy

model structure. The construction is well-defined up to a pointwise equivalence.) Since h
commutes with limits, C∗ → Rhx has the form

· · ·
L
∐

i0,i1,i2

Rh(yi0 ×
R

x yi1 ×
R

x yi2)

L
∐

i0,i1

Rh(yi0 ×
R

x yi1)

L
∐

i0

Rh(yi0) Rhx.

It may seem that since we restricted the values of a hypercover to certain coproducts we
should also restrict the face maps and degeneracy maps to be “morphisms of coproducts” (as is
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the case in a Čech hypercover). This is in fact automatically the case. Precisely, any morphism
hx →

∐

i hyi factors through hyi for a uniquely determined index i (it is the index of the
component into which idx goes). This follows from the simplicial Yoneda lemma: there are
bijections

∐

i

C∧(hx, hyi)
∼=

∐

i

hyi(x)0
∼= C∧(hx,

∐

i

hyi)

sending a morphism hx → hyi to the composition hx → hyi →
∐

i hyi. Thus an arbitrary
morphism

∐

i hxi →
∐

j hyj is induced by an element of

∏

i

∐

j

C∧(hxi , hyj) =
∏

i

∐

j

C(xi, yj).

2.4 Stacks

In the classical situation of presheaves of sets on a category C, a topology τ on C allows us to
define a sheaf as a presheaf F which satisfies the following descent condition: for any covering
family U = {xi → x}i of an object x, the map

F (x) ∼= SetC
op

(hx, F )→ SetC
op

(lim
−−→

C∗(U), F ) = lim
←−−

SetC
op

(C∗(U), F ) (13)

is an isomorphism, where C∗(U) is the Čech cover associated to the covering family {xi → x}i
(as we already mentioned, this will then hold for arbitrary hypercovers). The category Sh(C)
is the full subcategory of SetC

op

consisting of sheaves. A basic result is that the inclusion
i : Sh(C)→ SetC

op

has a left adjoint left inverse a, called the associated sheaf functor. Moreover,
the counit ia → id of this adjunction is a τ -local isomorphism, where a map of presheaves
F → G is called a τ -local isomorphism if for any x ∈ C there exists a τ -covering sieve S such
that F (u)→ G(u) is an isomorphism for all u→ x in S. These formal properties imply at once
that the category of sheaves, together with the functor a, is a localization of the category of
presheaves along τ -local isomorphisms. Indeed, if f : SetC

op

→ D is a functor that sends τ -local
isomorphisms to isomorphisms, then fia ∼= f , and any functor g : Sh(C)→ D satisfying ga = f
must be fi because g = gai = fi. Writing presheaves as colimits of representables, it is not
difficult to prove that the functor a is also universal among colimit-preserving functors on SetC

op

that send lim
−−→

C∗ → hx to an isomorphism for every x and every hypercover C∗ → hx.
These three descriptions of the category of sheaves of sets on a site (the descent property,

the localization with respect to τ -local isomorphisms, and the cocontinuous localization with
respect to hypercovers) have analoguous counterparts in the context of prestacks. We shall
follow the second one to define the model category of stacks : it will be the localization of C∧

along τ -local equivalences, which are to equivalences as local isomorphisms were to isomorphisms.
Here of course localization must be understood in the context of model categories, as Bousfield
localization. There are several ways to define τ -local equivalences. Our official definition can be
summarized as follows: a morphism is a τ -local equivalence if it induces τ -local isomorphisms
on all presheaves of homotopy groups. To make this precise we need a lemma.

Lemma 14. Let (C, τ) be a model site and let x ∈ C be fibrant. There is a model topology on
(C↓x) for which a sieve is a covering sieve if and only if its image by the functor Ho(C↓x)→ HoC
generates a τ-covering sieve.

Proof. We first note that for an arbitrary functor φ : D → E where E is a site, the sieves in D
whose images by φ generate covering sieves always satisfy all the axioms for a Grothendieck
topology except possibly the stability axiom. This axiom reads: for any f : z → y in D and any
covering sieve S of y, f∗(S) = {g | fg ∈ S} is a covering sieve of z. Let us prove that this axiom
holds when D = Ho(C ↓ x), E = HoC, and φ is induced by the forgetful functor (C ↓ x) → C.
Let S be a sieve on y → x and let f : (z → x) → (y → x) be a morphism in Ho(C ↓ x). The
hypothesis is that the sieve generated by φ(S) is a covering sieve of y, and one must prove that
the sieve generated by φ(f∗(S)) is a covering sieve of z. It will suffice to prove that

φ(f)∗(sieve generated by φ(S)) ⊂ sieve generated by φ(f∗(S))



2.4 stacks 25

since the left-hand side is a covering sieve and the other inclusion is obvious. An arbitrary
morphism g : w → z on the left is such that φ(f)g = φ(h)k for some h ∈ S and k : w → v. We
must find morphisms m in Ho(C ↓ x) and n in HoC such that g = φ(m)n and fm ∈ S.

Let us abbreviate an object y → x in (C↓x) to yx. We choose once and for all an isomorphism
yx ∼= ỹx in Ho(C ↓ x) where ỹx is both fibrant and cofibrant. The forgetful functor (C ↓ x) → C
obviously preserves cofibrant objects, and since x is fibrant it also preserves fibrant objects. Thus
ỹ is also fibrant and cofibrant. Define similarly z̃x, w̃x, and ṽx. The induced maps f̃ : z̃x → ỹx
and h̃ : ṽx → ỹx are represented by maps in (C ↓ x); factor the first one into a trivial cofibration
z̃x → ẑx followed by a fibration ẑx → ỹx, and denote by ux the pullback ẑx ×ỹx ṽx in (C ↓ x).
Observe that ẑx is fibrant and cofibrant. The maps w̃ → ẑ and w̃ → ṽ in HoC are represented
by maps in C, and we have a diagram in C

w̃

u ẑ

ṽ ỹ

in which the square is a pullback (the forgetful functor (C ↓ x)→ C is a right adjoint and hence
preserves pullbacks). The two maps from w̃ to ỹ become equal in the homotopy category and
so they are homotopic. By [Hir03, 7.3.12 (2)], one can replace w̃ → ẑ by a homotopic map (i.e.,
another representative of the same map in HoC) that makes the boundary of the above diagram
strictly commutative, and we get a map w̃ → u in C as shown above. If m is the composite
ux → ẑx ∼= zx in Ho(C ↓ x) and n is the composite w ∼= w̃ → u in HoC, all this implies that
g = φ(m)n. It remains to prove that fm ∈ S. But fm is the composition of ux → ṽx ∼= vx and
h, so we are done.

Let (C, τ) be a model site and let x be a fibrant object in C. We continue to write τ for the
model topology of the lemma on (C↓x). Let s : hx → F be a morphism in HoC∧ (or equivalently,
by the derived Yoneda lemma, a connected component of (RF )(x) for some fibrant replacement
RF of F ). For n ≥ 1, we define the nth homotopy sheaf of F pointed at s to be the sheaf on
Ho(C ↓ x) associated to the presheaf

(u : y → x) 7→ πn((RF )(y), shu).

Here shu : hy → F is a morphism in HoC∧ that one identifies with a connected component of
(RF )(y). This presheaf is well-defined on (C ↓x) and descends to Ho(C ↓x) for exactly the same
reasons as the presheaf of connected component defined in §2.3. We denote the resulting sheaf
by πτn(F, s). This defines for each fibrant x and each n ≥ 1 a functor

πτn : (hx ↓Ho(C
∧))→ Sh(Ho(C ↓ x))

which obviously factors through the category of sheaves of groups on Ho(C ↓ x) and even of
abelian groups if n ≥ 2.

A morphism f : F → G in C∧ is called a τ-local equivalence if

• πτ0 (f) is an isomorphism;

• for any fibrant x ∈ C and any morphism s : hx → F in HoC∧ the map πτn(f) : π
τ
n(F, s)→

πτn(G, fs) is an isomorphism.

Because of the first condition any τ -local equivalence is in particular a τ -covering map.
Just as it is the case for simplicial sets, it is possible to give a more compact “basepoint-free”

definition of local equivalences: a morphism f : F → G is a τ -local equivalence if and only if for
each n ≥ 0 the induced map

F → R coskn−1(f)n

is a τ -covering map in HoC∧, where f is viewed as a constant simplicial object in s(C∧ ↓G). We
do not give a proof of this fact but it is essentially the same as the proof of the corresponding
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fact for classical simplicial presheaves (see [Jar87, Thm. 1.12]): one must first interpret this
condition as the right τ -local lifting property of a fibration replacement of f with respect to
the inclusions ∂∆n ⊂ ∆n, and the latter is seen to be equivalent to f being a weak equivalence
(when C is a point this is just the fact that ∂∆n ⊂ ∆n are generating cofibrations in sSet).

Let (C, τ) be a model site. The model category of stacks on (C, τ) is the left Bousfield
localization of C∧ along τ -local equivalences; it is denoted by C∼,τ . The existence of this left
Bousfield localization is not obvious because τ -local equivalences do not form a sufficiently
small set for the general existence theorem to apply. The definition of C∼,τ in [HAGI] uses
a different route to overcome this problem, and only afterwards is it proved that it is a left
Bousfield localization along τ -local equivalences. Here we shall assume that this localization
exists. Again, C∼,τ is a left proper, cellular, and simplicial model category. By the theory of
Bousfield localizations, the cofibrations (resp. the trivial fibrations) in C∼,τ are the projective
cofibrations (resp. the projective trivial fibrations). The identity id: C∧ → C∼,τ is a left Quillen
functor, and its derived right adjoint Rid : HoC∼,τ → HoC∧ is fully faithful; its essential image
consists of those objects that are equivalent in C∧ to fibrant objects in C∼,τ . The functor
Lid : C∧ → C∼,τ is called the associated stack functor ; it is left inverse to Rid. One often
identifies HoC∼,τ with a subcategory of HoC∧, and with this identification the associated stack
functor is just induced by a fibrant replacement functor in C∼,τ .

It turns out that stacks can be characterized among prestacks in exactly the same way as
sheaves are characterized among presheaves (if one is willing to use all hypercovers and not just
Čech covers). We say that a functor F : Cop → sSet has hyperdescent if for every hypercover C∗
of x the map

(RF )(x) ∼= RMap(Rhx, F )→ RMap(holim
−−−−→

C∗, F ) ∼= holim
←−−−−

RMap(C∗, F ),

induced by the map holim
−−−−→

C∗ → Rhx in HoC∧ adjoint to C∗ → Rhx in Ho sC∧, is an isomor-
phism in Ho sSet. If C∗ → Rhx is of the form (12) and if F ∈ C∧ if fibrant, then by the derived
Yoneda lemma RMap(C∗, F ) is the cosimplicial simplicial set

∏

i∈I0

F (yi)
∏

i∈I1

F (yi)
∏

i∈I2

F (yi) · · · .

We omit the rather complicated proof of the next theorem which can be found in [HAGI].

Theorem 15. Let (C, τ) be a model site. Then C∼,τ is the left Bousfield localization of C∧ with
respect to the set of morphisms holim

−−−−→
C∗ → Rhx where C∗ → Rhx runs through τ-hypercovers.

Equivalences in C∼,τ are exactly the τ-local equivalences, and fibrant objects are exactly the
fibrant objects in C∧ having hyperdescent.

In the proof one actually defines C∼,τ as the left Bousfield localization of C∧ along the maps
holim
−−−−→

C∗ → Rhx associated to sufficiently few hypercovers C∗ → Rhx, and one proves that the
equivalences in C∼,τ are exactly the τ -local equivalences. The basic step of the proof is the
observation that a morphism hx → hy (x and y fibrant) is a τ -local equivalence if and only if it
is a hypercover when viewed as an object in s(C∧ ↓ hy), which follows at once from the second
description of τ -local equivalences. The last part of the theorem is just the characterization of
fibrant objects in left Bousfield localizations of left proper model categories that we already used.
This characterization also implies that a fibrant object F ∈ C∧ has hyperdescent if and only if
for every τ -local equivalence G→ H the induced map

RMap(H,F )→ RMap(G,F ) (14)

is an isomorphism in Ho sSet. Conversely, a map G → H is a τ -local equivalence if and only
if, for every object F ∈ C∧ having hyperdescent, (14) is an isomorphism (this is a general
characterization of equivalences in a model category which is also a direct consequence of the
derived Yoneda lemma).

Call a hypercover C∗ → Rhx finite if each Cn is a finite coproduct of representables. Recall
that a topology is quasi-compact if every covering sieve contains a covering sieve generated by a
finite family.
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Proposition 16. Let (C, τ) be a model site such that τ is quasi-compact. Then C∼,τ is the
left Bousfield localization of C∧ with respect to the set of morphisms holim

−−−−→
C∗ → Rhx where

C∗ → Rhx runs through finite τ-hypercovers.

In view of Theorem 15 and our previous results on prestacks, HoC∼,τ is equivalent to the
full subcategory of Ho sSetC

op

consisting of the functors F : Cop → sSet such that

• F preserves weak equivalences and

• F has hyperdescent.

When these conditions are satisfied, we say that F is a stack.
To avoid confusing the two model structures C∧ and C∼,τ we use henceforth the following

rules. We continue to write RMap(F,G) for mapping spaces in C∧ and we use Rτ Map(F,G) for
the mapping spaces in C∼,τ . Similarly, we shall use the letter R for fibrant replacements in C∧

while Rτ will be used for fibrant replacements in C∼,τ (we make no such distinction for cofibrant
replacements since a cofibrant replacement in C∧ is in particular a cofibrant replacement in
C∼,τ ). Thus

RMap(F,G) = Map(QF,RG) and Rτ Map(F,G) = Map(QF,RτG),

the canonical map RMap(F,G)→ Rτ Map(F,G) being an isomorphism for all F if and only if
G has hyperdescent.

We remark that the identity C∧ → C∼,τ preserves homotopy colimits since it is left Quillen.
It follows that if C∗ → Rhx is a hypercover and C′∗ → Rhx is any object in s(C∧ ↓Rhx) that is
levelwise τ -locally equivalent to C∗ → Rhx, then holim

−−−−→
C′∗ → Rhx is an isomorphism in HoC∼,τ .

We say that a model topology τ on C is subcanonical if, for any x ∈ C, the prestack Rhx is a
stack (i.e., has hyperdescent). This means that the derived Yoneda embedding factors through
HoC∼,τ as in

HoC
Rh

HoC∧

HoC∼,τ .

Rid

The category sSetC
op

, viewed as a monoidal category for the direct product, is closed. This
is a general fact about presheaves of enriched categories, and the exponential Hom(F,G) of two
such presheaves is given by

Hom(F,G)(x) = Map(F × hx, G)

where h is the enriched Yoneda embedding. As explained in [HAGI, 3.6], C∼,τ need not be
a monoidal model category. However, there exists another model structure on sSetC

op

, called
the injective model structure, whose equivalences are also the τ -local equivalences and which
is compatible with this monoidal structure. This model structure is simply the left Bousfield
localization of sSetC

op

along the same set of morphisms that was used to define C∼,τ , but now we
endow sSetC

op

with the model structure in which equivalences and cofibrations are defined ob-
jectwise. It follows that the homotopy category HoC∼,τ is cartesian closed, and its exponentials
can be computed by

RHom(F,G) = Hom(F,RinjG)

where RinjG is a fibrant replacement of G for the injective model structure (and F is a cofibrant
replacement of itself since left Bousfield localization does not alter cofibrations).



3 Derived algebraic geometry

3.1 Introduction

Let us first recall the definition of a scheme over a base commutative ring k, from the functorial
point of view. The category Affk of affine k-schemes is defined to be the opposite of the category
Commk of commutative k-algebras (associative and with unit). We write suggestively X =
SpecA to mean that X is the object of Affk corresponding to the algebra A. Let h denote the
Yoneda embedding of Affk into the category of presheaves of sets on Affk. A morphism f : A→ B
between k-algebras is called a Zariski open immersion if it is flat, if f∗ : ModB → ModA is fully
faithful, and if the functor (A ↓ Commk)(B, ?) preserves filtered colimits. The category Affk
is endowed with a Grothendieck topology, called the Zariski topology, generated by the finite
families {Yi → X}i of Zariski open immersions such that the preimages of the prime spectra
(i.e., the sets of prime ideals) of the Yi cover the prime spectrum of X . The Zariski topology is
subcanonical, that is, representable presheaves have effective descent relative to Zariski coverings,
so we have a fully faithful embedding h from affine k-schemes to sheaves on the site of affine
k-schemes. Now if Y → h(SpecA) is any monomorphism of sheaves, call it a Zariski open
immersion if there exists Zariski open immersions A→ Bi such that Y , viewed as a subfunctor
of h(SpecA), is the image of

∐

i h(SpecBi) → h(SpecA). Finally, a general morphism Y → X
between sheaves is a Zariski open immersion if it becomes so after pulling back along any
morphism h(SpecA)→ X . The category Sch of schemes is then the full subcategory of sheaves
of sets on the Zariski site Affk whose objects X are locally affine in the following sense: there
exists affine schemes Yi and Zariski open immersions h(Yi) → X such that the induced map
∐

i h(Yi)→ X is an epimorphism.
The Zariski topology has its origin in the geometric point of view for schemes, where it is

actually the name of a classical topology on the prime spectrum SpecA of a k-algebra A. In this
topology an open set D(I) is the set of prime ideals which do not contain a given subset I of
A. The topological space SpecA has a canonical sheaf of k-algebras whose stalks are local rings,
namely the one associated to the presheaf D(I) 7→ S(I)−1A, where S(I) is the set of elements of
A which do not belong to any element of D(I). With this point of view a geometric scheme is a
locally k-ringed space covered by open affine schemes. The full subcategory of geometric schemes
that are isomorphic to spectra is equivalent to the category Affk of the previous paragraph.
Since any geometric schemes is a colimit of spectra by definition, the functor that restricts a
presheaf on the category of geometric scheme to a presheaf on the category Affk is a fully faithful
embedding. Precomposing with the Yoneda embedding, we obtain a fully faithful embedding of
the category of geometric schemes into the category of presheaves on Affk. Its essential image
is exactly the category of schemes, and the Zariski open immersions correspond precisely to the
open immersions of ringed spaces.

Put simply, homotopical algebraic geometry has vocation to replace the category of commu-
tative k-algebras in the above construction by the category of monoids on an arbitrary monoidal
(∞, 1)-category C. Most notions of classical algebraic geometry can be formulated in such a way
that they remain meaningful in this more general context. An example of such a reformulation
is the definition of Zariski open immersions given above. Classical algebraic geometry is recov-
ered by taking C = Modk with the trivial ∞-structure. The category AffC of affine schemes is
defined as the opposite of the category of commutative monoids in C. Then one assumes given
an “∞-topology” on AffC, and one defines a scheme to be a stack on AffC that is obtained by
glueing representable stacks using morphisms playing the rôle of Zariski open immersion. More
generally, there are analogues to algebraic stacks as well as their higher-categorical versions. All
of them are examples of geometric stacks.

Our main reference for homotopical algebraic geometry is [HAGII]. In this chapter we shall
only be interested in the following special case: C is the model category of simplicial k-modules.
The resulting geometry is called derived algebraic geometry. With the exception of the second
half of the proof of Theorem 21 and the proofs of Lemmas 32 and 33, all proofs in this chapter
are from [HAGII] unless otherwise stated in the text.

28
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3.2 Derived stacks

We start from the base symmetric monoidal model category sModk of simplicial k-modules over
a commutative ring k. This is a proper simplicial model category whose equivalences and fibra-
tions are defined through the forgetful functor Map(k, ?): sModk → sSet, left adjoint to the free
simplicial k-module functor ? ⊗ k (here k is a constant simplicial k-module). Recall from the
Dold–Kan equivalence that the homotopy groups of the underlying simplicial set of a simplicial
k-module are base-point invariant and agree with the homology groups of the associated non-
negatively graded complex, and that a map M → N is a fibration if and only if the induced map
M → π0(M) ×π0(N) N is degreewise surjective. In particular degreewise surjective morphisms
and morphisms between constant objects are fibrations. The tensor product is defined levelwise
while the internal hom’s are given by Hom(M,N)n = sModk(M ⊗k k[∆n], N) with the k-module
structure coming from the target.

We let sCommk be the category of commutative monoids in sModk, or in other words the cat-
egory of simplicial commutative k-algebras. The category sCommk is a proper simplicial model
category whose equivalences and fibrations are defined on the underlying simplicial k-modules
(hence on the underlying simplicial sets). If A ∈ sCommk, we denote by sModA the model
category of simplicial A-modules. Equivalences and fibrations are defined on the underlying sim-
plicial k-modules and this is again a proper simplicial model category. The homotopy relation
is compatible with the additive structure, so that the localization functor sModA → Ho sModA
is enriched in abelian groups. Moreover, this model category is a monoidal model category for
the tensor product ⊗A. This tensor product is left balanced in the sense that M ⊗A ? preserves
equivalences as soon as M is cofibrant. If A → B is a cofibration in sCommk, we also have
that the extension of scalars ? ⊗A B : sModA → sModB preserve equivalences. As a formal
consequences of these facts we have the following important result: if A → B and A → C are
maps in sCommk then the canonical map in Ho sModA from the underlying A-module of the
homotopy pushout of B and C over A to the derived tensor product in sModA of B and C is
an isomorphism. This is fortunate since the standard notation scheme yields the same notation
B ⊗L

A C for both constructions.
We recall that for K a simplicial set and X an object in any of these simplicial model

categories, K ⊗X is the diagonal of the bisimplicial object given in degree (p, q) by

∐

x∈Kp

Xq, (15)

with horizontal simplicial maps defined from the simplicial structure of K and vertical ones
defined from the simplicial structure of X (see [GJ99, ch. II, §2]).

A morphism f : A→ B in sCommk gives rise to a Quillen adjunction

f∗ : sModA ⇄ sModB :f∗

where f∗ is extension of scalars. If f is a weak equivalence, then this adjunction is a Quillen
equivalence. Indeed, a map φ : M → f∗(N) is, as a map of simplicial k-modules, the composition

M ∼=M ⊗A A
M⊗Af

M ⊗A B
φ♭

N

where M ⊗A f is a weak equivalence if M is cofibrant, in which case the two-out-of-three axiom
imply that φ is an equivalence if and only if φ♭ is.

If A is a commutative simplicial k-algebra, then π∗(A) is endowed with a graded k-algebra
structure (induced by the shuffle map), and π∗ is a functor from simplicial commutative k-
algebras to nonnegatively graded k-algebras. In particular, π0(A) is a k-algebra and πn(A) is a
π0(A)-module for every n ≥ 0. Similarly, if M is a simplicial A-module the shuffle map endows
π∗(M) with a structure of graded π∗(A)-module. Note that the functors πn preserve finite
products and filtered colimits.

Let A ∈ sCommk. The functor π0 : sModA → Modπ0(A) is left adjoint to the functor
i : Modπ0(A) → sModA which associates to a π0(A)-module M the constant simplicial π0(A)-
module i(M), viewed as a simplicial A-module through the canonical projection A → π0(A).
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Moreover, if we endow the category Modπ0(A) with the trivial model structure, then π0 pre-
serves all equivalences and cofibrations and so is left Quillen. In particular there is a derived
adjunction

Lπ0 : Ho sModA ⇄ Modπ0(A) :Ri.

Since both π0 and i preserve equivalences, we will often write abusively π0 = Lπ0 and i =
Ri. Note that the counit of the underived adjunction is an isomorphism. Since π0 preserves
equivalences the counit of the derived adjunction is an isomorphism as well. Although neither of
the functors π0 and i is a (co)monoidal functor for general A, the right adjoint i has a structure
of nonunital monoidal functor: there is a canonical map

i(M)⊗A i(N)→ i(M ⊗π0(A) N)

which is always an isomorphism since A→ π0(A) is surjective in each degree. Adjoint to

i(Homπ0(A)(M,N))⊗A i(M)→ i(Homπ0(A)(M,N)⊗π0(A) M)→ i(N)

we find a natural map

i(Homπ0(A)(M,N))→ HomA(i(M), i(N)).

We claim that this is also an isomorphism. It is clearly so in degree 0 by definition of the
A-module structure on i(M) and i(N), so it remains to prove that HomA(i(M), i(N)) is con-
stant. An explicit computation shows that the degeneracy mapModπ0(A)(M,N)→ sModA(∆

n⊗
i(M), i(N)) is just the adjunction isomorphism under the identification M ∼= π0(∆

n⊗ i(M)). It
follows by monoidal nonsense that the canonical map

π0(M ⊗A i(N))→ π0(M)⊗π0(A) N

is always an isomorphism. Since M ⊗L

A i(N) = QM ⊗A i(N), we find an isomorphism

Lπ0(M ⊗
L

A i(N)) ∼= π0(M)⊗π0(A) N. (16)

Let A ∈ sCommk and let M be a simplicial A-module. We call M strong if the induced map

π∗(A)⊗π0(A) π0(M)→ π∗(M)

is an isomorphism. A morphism A→ B in sCommk is called strong if B is a strong A-module.

Lemma 17. Let A be a simplicial commutative k-algebra and let M and N be simplicial A-
modules such that N is strong and π0(N) is a flat π0(A)-module. Then the natural map

π∗(M)⊗π0(M) π0(N)→ π∗(M ⊗
L

A N)

is an isomorphism.

Proof. This follows from the Künneth spectral sequence

E2
pq = Torπ∗(A)

p (π∗(M), π∗(N))q ⇒ πp+q(M ⊗
L

A N)

of [Qui67, §6]. Since N is strong, we have

?⊗π∗(A) π∗(N) ∼= ?⊗π∗(A) (π∗(A) ⊗π0(A) π0(N)) ∼= ?⊗π0(A) π0(N)

and so the flatness of π0(N) over π0(A) implies the flatness of π∗(N) over π∗(A). Therefore
E2
pq = 0 unless p = 0 and we obtain the required isomorphism E2

0∗
∼= π∗(M ⊗L

A N).

Under the hypotheses of the lemma, we say that N is flat over A.

Corollary 18. Strong morphisms are stable under composition and derived base change.
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Proof. Composition follows directly from the definition and base change is a consequence of the
lemma.

A morphism A→ B in sCommk is called flat (resp. unramified ; étale) if it is strong and the
induced morphism π0(A) → π0(B) of commutative k-algebras is flat (resp. unramified; étale).
Recall that a map A → B of k-algebras is unramified if B is of finite type over A and if the
B-module of differentials ΩB/A is zero, and that it is étale if it is both flat and unramified.
Thus a morphism in sCommk is étale if and only if it is flat and unramified. Since flat and
unramified morphisms in Commk are stable under compositions and base change, we obtain
using Lemma 17 and its corollary that flat, unramified, and hence étale morphisms are all stable
under composition and derived base change.

We put dAffk = sCommop
k and we endow dAffk with the “opposite” model structure. When

we think of a simplicial algebra A as an object in dAffk we often denote it by SpecA instead.
As the model category dAffk is a simplicial model category, we shall always use the canonical
cosimplicial and simplicial resolution functors in applying the definitions of Chapter 2, and, since
all objects of dAffk are cofibrant, we use the identity functor as cofibrant replacement functor.
For instance, the functor h : dAffk → dAff∧k is defined by

hSpecA(B) = sCommk(A,Γ∗(B)) = Map(A,B),

where Map is the simplicial hom set of sCommk.
We shall endow dAffk with two model topologies. A family of maps {A→ Bi}i∈I in sCommk

is called a flat covering (resp. an étale covering) (of SpecA) if

• each morphism A→ Bi is flat (resp. étale);

• there exists a finite subset J ⊂ I such that every prime ideal in π0(A) is the preimage of
a prime ideal in

∏

i∈J π0(Bi).

These are equivalent to the conditions

• each morphism A→ Bi is strong;

• {π0(A)→ π0(Bi)}i∈I is a flat covering (resp. an étale covering) in Commk.

In both cases, {π0(A) → π0(Bi)}i∈I is a flat covering meaning that the family of base exten-
sion functors {π0(fi)∗ : Modπ0(A) → Modπ0(Bi)}i preserves and detects exact sequences (and in
particular isomorphisms). In general we shall say that a family of functors is conservative if it
detects isomorphisms.

Lemma 19. Let {fi : A→ Bi}i be a flat covering in sCommk. Then the family of derived base
change functors {L(fi)∗ : Ho sModA → Ho sModBi}i is conservative.

Proof. It suffices to prove that {(fi)∗}i detects weak equivalences between cofibrant objects.
Suppose that M and N are cofibrant and that M → N induces weak equivalences M ⊗A Bi →
N ⊗A Bi for all i, i.e., it induces isomorphisms

π∗(M ⊗A Bi) ∼= π∗(N ⊗A Bi)

for all i or equivalently, by Lemma 17, isomorphisms

π∗(M)⊗π0(A) π0(Bi) ∼= π∗(N)⊗π0(A) π0(Bi).

But {π0(fi)∗}i is conservative, and so M → N induces isomorphisms π∗(M)→ π∗(N).

One defines a model topology on dAffk, called the flat topology, as follows: a sieve S over x
is a covering sieve if and only if it is generated by the image in Ho dAffk of a flat covering of x.
It will be denoted by fl. We also define in the obvious way the étale topology, denoted by ét.

Proposition 20. fl and ét are model topologies on dAffk.
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Proof. This is an easy consequence of the analogous fact in the underived situation and the
properties of strong morphisms. Let us prove for example that the stability axiom is satisfied
(this is the only potentially nontrivial axiom to verify), say for the étale topology. Let S be the
sieve generated by the image of an étale covering {A→ Bi}i, and let f : A→ A′ be a morphism
in Ho sCommk, represented by a morphism QA→ A′ in sCommk. Using the same argument as
in the proof of Lemma 14 (where we really proved the weak universality of homotopy pullbacks),
we obtain that f∗(S) is the sieve generated by the image in Ho dAffk of the family of morphisms
{A′ → A′ ⊗L

QA Bi} which are strong by Corollary 18. By Lemma 17, the π0 of this family
is {π0(A′) → π0(A

′) ⊗π0(A) π0(Bi)} which is an étale covering in Commk since étale coverings
generate a classical topology on Commop

k .

It is clear from the definitions that these model topologies are quasi-compact, and Proposi-
tion 16 is therefore applicable.

Theorem 21. Let τ denote either the flat or the étale topology. Let (Xi)i∈I be a family of
objects in dAffk with I finite. Then the canonical map

L
∐

i∈I

RhXi
→ Rh∐L

i∈IXi

is an equivalence in dAff∼,τk .

Proof. By induction it suffices to prove the lemma for I empty or with exactly two elements. If
I is empty then the claim is that the unique map ∅ → Rh0 is a τ -local equivalence, where ∅ is
the constant functor sCommk → sSet with value the empty set and 0 is the zero algebra. Now
the empty family is clearly a covering family of 0 ∈ dAffk, so if C∗ → Rh0 denotes its homotopy
nerve, holim

−−−−→
C∗ → Rh0 is a τ -local equivalence. But Cn = ∅ for all n (it is an empty coproduct)

and hence holim
−−−−→

C∗ = ∅. [Note that ∅ → Rh0 is an isomorphism on every object of sCommk
except on the zero algebra where Rh0(0) = ∆0; the situation should be compared with that
of the empty presheaf of sets on a topological space, or on any site in which the empty family
covers the initial object, whose associated sheaf is everywhere empty except on the initial object
where its value becomes the one-point set.]

It remains to prove that

RhX ∐
L RhY → RhX∐LY = RhX∐Y

is a τ -local equivalence. We again use the obvious fact the the family {X → X∐Y, Y → X∐Y }
is a τ -covering family. Its homotopy nerve C∗ → RhX∐Y is

· · · Rh(X ×R

X∐Y X)∐L Rh(X ×R

X∐Y Y ) ∐L Rh(Y ×R

X∐Y X)∐L Rh(Y ×R

X∐Y Y )

RhX ∐
L RhY RhX∐Y .

We will prove that C∗ is levelwise equivalent in dAff∼,τk to the constant simplicial object C0. It
will follow that holim

−−−−→
C∗ ∼= holim

−−−−→
C0 in dAff∼,τk ; since the colimit functor and the constant functor

form a Quillen adjunction for the Reedy structure (see [Hir03, §15.10]), we have holim
−−−−→

C0 = C0

and the proof will be complete. Write X = SpecA and Y = SpecB. We shall prove below that

A⊗L

A×B B
∼= 0. (17)

In Cn there is one term which is an (n + 1)-fold derived tensor product of A over A × B, one
which is an (n+1)-fold derived tensor product of B over A×B, and all the other derived tensor
products have a factor of the form A⊗L

A×BB
∼= 0. Recall that the underlying simplicial k-module

of a homotopy pushout A ⊗L

C B of simplicial commutative k-algebras is also the underlying k-
module of the derived tensor product of A and B in sModC ; this implies 0⊗L

A×B C
∼= 0 for any

C and so all these mixed tensor products vanish. Using the first part of the proof we obtain
that C∗ → Rhx is levelwise τ -locally equivalent to

· · · Rh(X ×R

X∐Y X)∐L Rh(Y ×R

X∐Y Y ) RhX ∐
L RhY RhX∐Y .
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More precisely, we have proved that the obvious inclusion of this simplicial object into C∗ is
a levelwise τ -local equivalence. We can map the constant simplicial object C0 into the above
simplicial object diagonally, and we claim that this is a levelwise equivalence in dAff∧k . For this
it suffices to prove that the folding map induces an equivalence

A⊗L

A×B A
∼= A. (18)

We now prove (17) and (18). First we note that A and B are strong over A×B since

π∗(A×B)⊗π0(A×B) π0(A) ∼= (π∗(A)× π∗(B))⊗π0(A)×π0(B) π0(A) ∼= π∗(A),

and π0(A) and π0(B) are flat over π0(A × B) ∼= π0(A) × π0(B) (they are localizations of the
latter). Lemma 17 then tells us that

π∗(A⊗
L

A×B B) ∼= π∗(A)⊗π0(A)×π0(B) π0(B) = 0

and that the map π∗(A⊗L

A×B A)→ π∗(A) is identified with the map

π∗(A)⊗π0(A)×π0(B) π0(A)→ π∗(A)

which is clearly an isomorphism.

Proposition 22. Let τ be either the flat or the étale topology. The model category dAff∼,τk is
the left Bousfield localization of dAff∧k along the morphisms

holim
−−−−→

RhY∗
→ RhX and

L
∐

i∈I

RhZi
→ Rh∐L

i∈IZi
,

where RhY∗
→ RhX is a τ-hypercover and {Zi}i∈I is a finite family of objects in dAffk.

Proof. Let H1 and H2 denote these two sets of morphisms and let H be the set of all morphisms
of the form holim

−−−−→
C∗ → Rhx for C∗ → Rhx a finite hypercover. By Proposition 16, dAff∼,τk

is the left Bousfield localization of dAff∧k with respect to H . By Theorem 21, H1 and H2 are
τ -local equivalences, so it suffices to prove that an (H1 ∪ H2)-local object in dAff∧k is H-local.
Let F be an (H1 ∪H2)-local object, and let C∗ → Rhx be an arbitrary finite hypercover which
in degree n is

Cn =

L
∐

i∈In

Rhyi .

Recall that the face and degeneracy maps are induced by morphisms in dAffk between the various
yi’s. Let C

′
∗ → Rhx be the augmented simplicial object which in degree n is

C′n = Rh∐L

i∈In
yi

and with face and degeneracy maps induced by those of C∗. [To prove: C′∗ → Rhx is a
hypercover.] Then holim

−−−−→
C′∗ → Rhx belongs to H1 and there is a morphism of hypercovers

C∗ → C′∗ which belongs to H2 at each level. Using H1 and H2-locality we find

RMap(Rhx, F )
∼= holim
←−−−−

RMap(C′∗, F )
∼= holim
←−−−−

RMap(C∗, F ).

Using the derived Yoneda lemma one can rephrase Proposition 22 as follows. Recall that a
prestack on dAffk is an equivalence-preserving functor sCommk → sSet.

Corollary 23. Let τ be either the flat or the étale topology and let F be a prestack on dAffk.
Then F is a stack if and only if

• for every τ-hypercover Y∗ → X in dAffk, F (X) → holim
←−−−−

F (Y∗) is an equivalence of sim-
plicial sets;
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• for every finite family (Zi)i in dAffk, F (
∐

i Zi)→
∏

i F (Zi) is an equivalence of simplicial
sets.

The model category of derived stack is dStk = dAff∼,étk . Its homotopy category can be
identified with the full subcategory of Ho sSetsCommk consisting of equivalence-preserving functors
having étale hyperdescent ; such functors are called derived stacks. An object X ∈ dStk is a
derived stack if and only if it is pointwise equivalent to a fibrant object in dStk.

In the remaining of this section we shall give a proof of the most basic result in the theory
of derived stack which is the derived analogue to the faithfully flat descent theorem for affine
schemes. It characterizes the “gluing data” necessary to define a module locally on a flat hy-
percover. As in all our proofs so far it will be proved by reduction to the known situation of
commutative k-algebras. As a consequence we shall deduce that the flat and étale topologies are
subcanonical. We recall first some results about (nonsimplicial) commutative k-algebras. To dis-
tinguish between our generalized hypercovers and the hypercovers in the context of presheaves
of sets on a site, we call the latter Set-hypercovers. Let Affk = Commop

k . Faithfully flat descent
for affine k-schemes can be formulated as follows. If A→ B∗ is an augmented cosimplicial object
in Commk which is also a Set-hypercover for the flat topology, then the adjunction

?⊗A B
∗ : ModA ⇄ cModB∗ : lim

←−−
= π0

restricts to an equivalence between ModA and the full subcategory of cModB∗ consisting of
cartesian objects, where a cosimplicial B∗-module E∗ is cartesian if for every φ : m → n in ∆
the induced map

Em ⊗Bm Bn → En

is an isomorphism of Bn-modules.
A general result about representable Set-hypercovers on arbitrary ringed sites is that they

can be used to compute cohomology by means of a spectral sequence (see [AM69, Cor. 8.15]).
For the flat or étale site this has the following consequences. Let A → B∗ be a Set-hypercover
and let E be an A-module, corresponding to the cosimplicial B∗-module E∗ = E ⊗A B∗. There
is a convergent spectral sequence

Epq2 = πp(Hq(B∗, E∗))⇒ Hp+q(A,E)

where H∗(A,M) denotes the flat (resp. étale) cohomology of SpecA with values in a module
M . This cohomology is known to vanish in positive degrees ([Mil80, III, 3.7 and 3.8]), so the
spectral sequence says that πp(E∗) ∼= Hp(A,E) which is zero unless p = 0, in which case it
gives the already known isomorphism π0(E∗) ∼= E. In other words, the augmented cosimplicial
module E → E∗ is aspherical.

Finally, we prove that if Y∗ → X is a flat (resp. étale) hypercover in dAffk, then π0(Y∗) →
π0(X) is a flat (resp. étale) Set-hypercover in Affk. By hypothesis, π0(Yn)→ π0(R coskn−1(Y∗)n)
is a covering map in the site Affk, so it suffices to check that

coskn−1(π0(Y∗))n ∼= π0(R coskn−1(Y∗)n).

We may assume that Y∗ is Reedy fibrant since π0 preserves equivalence. Then the formula follows
from the fact that π0 : dAffk → Affk is right adjoint and hence commutes with the formation of
coskeletons.

We now consider the derived situation. Let A→ B∗ be an augmented cosimplicial object in
sCommk. We endow the category csModB∗ of cosimplicial simplicial B∗-modules with the model
structure for which equivalences and fibrations are defined pointwise. Extension and restriction
of scalars give an adjunction

?⊗A B
∗ : csModA ⇄ csModB∗ :U,

which is a Quillen adjunction as the right adjoint preserves equivalences and fibrations. There
is also an adjunction

i : Ho sModA ⇄ Ho csModA :holim
←−−−−
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by definition of the homotopy limit. Putting these together we obtain an adjunction

?⊗L

A B
∗ : Ho sModA ⇄ Ho csModB∗ :holim

←−−−−
. (19)

An object E∗ in csModB∗ is called cartesian if for every morphism φ : m→ n in ∆ the induced
morphism

Em ⊗L

Bm Bn → En

is invertible in Ho sModBn . Since ⊗A is left balanced, ifM is a simplicial A-module, M⊗L

AB
∗ ∼=

QM ⊗A B∗. It follows that any object of the form M ⊗L

A B
∗ is cartesian.

Theorem 24. If A → B∗ is a flat hypercover, the adjunction (19) restricts to an equivalence
between Ho sModA and the full subcategory of Ho csModB∗ consisting of cartesian objects.

Proof. We first prove that the counit of the restricted adjunction is an isomorphism, i.e., that
for any cartesian E∗ ∈ csModB∗ the map

(holim
←−−−−

E∗)⊗L

A B
∗ → E∗

is a weak equivalence of cosimplicial simplicial B∗-modules. Since each A→ Bm is flat, we have
by Lemma 17

πq((holim←−−−−
E∗)⊗L

A B
∗) ∼= πq(holim←−−−−

E∗)⊗π0(A) π0(B
∗)

and so we must prove that the map

πq(holim←−−−−
E∗)⊗π0(A) π0(B

∗)→ πq(E
∗) (20)

is an isomorphism, for all q ≥ 0. To this end we will use the Bousfield–Kan spectral sequence

Epq2 = πpπq(E
∗)⇒ πq−p(holim←−−−−

E∗).

For any φ : m→ n in ∆ the morphism φ∗ : B
m → Bn is flat and hence, by lemma 17,

πq(E
m ⊗L

Bm Bn) ∼= πq(E
m)⊗π0(Bm) π0(B

n).

Since E∗ is cartesian this means that the cosimplicial π0(B
∗)-module πq(E

∗) is cartesian (in the
underived sense). By faithfully flat descent for k-algebras, we obtain that

lim
←−−

πq(E
∗)⊗π0(A) π0(B

∗)→ πq(E
∗) (21)

is an isomorphism for all q ≥ 0 and that πpπq(E
∗) = 0 if p 6= 0. This implies, on the one hand,

that the Bousfield–Kan spectral sequence converges (by [GJ99, VI, Cor. 2.21]) and, on the other
hand, that it collapses at E2, showing that the canonical map

πq(holim←−−−−
E∗)→ lim

←−−
πq(E

∗) (22)

is an isomorphism. By (21) and (22) we obtain that (20) is an isomorphism, as required.
It remains to prove that the unit is an isomorphism. For this it is enough to show that

the left adjoint is conservative (by the triangular identities). It is clear that i is conservative.
Let us prove that ? ⊗L B∗ : Ho csModA → Ho csModB∗ is conservative. Let f : M∗ → N∗ be
a morphism between cofibrant cosimplicial simplicial A-modules inducing a weak equivalence
M∗ ⊗A B

∗ → N∗ ⊗A B
∗. By Lemma 19, each functor ? ⊗L

A B
m : Ho sModA → Ho sModBm

is conservative, and so each fm is an equivalence. By definition, this means that f is an
equivalence.

Corollary 25. If A→ B∗ is a flat hypercover, then A→ holim
←−−−−

B∗ is an equivalence.

Proof. A→ holim
←−−−−

B∗ is the unit of the equivalence of the theorem for the simplicial A-module
A.

Corollary 26. The flat and étale topologies are subcanonical.
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Proof. Let A ∈ sCommk and W = SpecA. We must prove that RhW has flat (and therefore
étale) hyperdescent. We use Corollary 23. Let Y∗ → X be a representable flat hypercover. Then
by Corollary 25 and the fact that RhW preserves equivalences,

RhW (X) ∼= RhW (holim
−−−−→

Y∗) ∼= RMap(holim
−−−−→

Y∗,W ) ∼= holim
←−−−−

RMap(Y∗,W ) ∼= holim
←−−−−

RhW (Y∗).

If (Zi)i is a family of objects in dAffk, then

RhW (
∐

i

Zi) ∼= RMap(
∐

i

Zi,W ) ∼=
∏

i

RMap(Zi,W ) ∼=
∏

i

RhW (Zi).

Thus, for any A ∈ sCommk, RhSpecA is a stack for the flat and étale topologies; an object
of dStk is called an affine derived stack if it is equivalent in dStk to a derived stack of the form
RhSpecA. The derived Yoneda embedding induces an equivalence between the category Ho dAffk
and the full subcategory of Ho dStk consisting of affine derived stacks.

The tautological stack is A1 = hSpeck[T ] where k[T ] is a constant simplicial algebra. As k[T ] is

cofibrant and ét is subcanonical, A1 is indeed a derived stack. For A ∈ sCommk, since A is fibrant,
A1(A) = Map(k[T ], A) = A. Thus, A1 is isomorphic to the forgetful functor sCommk → sSet.
We let O be the contravariant simplicial functor represented by A1 on the simplicial category
dStk: O (X) = Map(X,A1); since A1 is a k-algebra object in dStk, O underlies a simplicial
functor dStk → dAffk, which we still denote by O . By the properties of mapping spaces O has a
total right derived functor LO = RétMap(?,A1) underlying a morphism of left Ho sSet-modules.
Moreover, the composition LORh is isomorphic to the identity by the derived Yoneda lemma.

3.3 Derived versus underived

In this section we briefly compare classical “underived” stacks to derived stacks. The conclusion
is that the homotopy theory of underived stacks is fully embedded into the homotopy theory of
derived stacks, but that this embedding does not preserve the monoidal structure. We fix τ to
be either the flat or étale model topology on dAffk, and we also write τ for the classical flat or
étale topology on Affk = Commop

k . We endow Affk with the trivial model structure so that it
becomes a model site with the topology τ . The model category Aff∼,τk will be called the model
category of underived stacks. The characterization of derived stacks given in Corollary 23 applies
to underived stacks as well (the proof is indeed the same, except that all the arguments explicitly
involving simplicial commutative k-algebras become simpler for commutative k-algebras).

The inclusion i : Affk → dAffk is right adjoint to the evaluation at zero functor and left adjoint
to the connected component functor π0 : dAffk → Affk. Since the latter obviously preserves
fibrations and equivalences, (i, π0) is a Quillen adjunction. The functor i induces an adjunction

i! : sSet
Commk ⇄ sSetsCommk : i∗,

where i∗(F )(A) = F (i(A)) and i! is given by left Kan extensions. This is a Quillen adjunction for
the projective model structures since i∗ preserves fibrations and equivalences. Moreover, since
i!h = hi and i preserves equivalences, if x → y is an equivalence in C, Li! sends hx → hy to an
isomorphism in Ho dAff∧k . By the universal property of left Bousfield localization, we obtain a
Quillen adjunction

i! : Aff
∧
k ⇄ dAff∧k : i∗. (23)

The functor i∗ also has a right adjoint, namely the functor

π∗0 : Aff
∧
k → dAff∧k , π∗0(F )(A) = F (π0(A)).

It is obvious that π∗0 preserves projective equivalences and fibrations, so it is right Quillen for
the projective model structures. But the model structure on Aff∧k is just the projective model
structure, and by universality we get a Quillen adjunction

i∗ : dAff∧k ⇄ Aff∧k :π∗0 . (24)

Lemma 27. The functor i preserves hypercovers.
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Proposition 28. The adjunctions (23) and (24) are Quillen adjunctions between the model
categories of stacks Aff∼,τk and dAff∼,τk .

Proof. To prove these statements it suffices, by the universal property of left Bousfield localiza-
tion and [Hir03, 3.1.6], to prove that the right adjoints preserve fibrant objects. Let F ∈ dAff∼,τk

and G ∈ Aff∼,τk be fibrant. We already know that i∗(F ) and π∗0(G) are fibrant in Aff∧k and dAff∧k ,
respectively, so it remains to verify that i∗(F ) and π∗0(G) satisfy the two conditions of Corol-
lary 23. Let Y∗ → X be a representable hypercover on the model site (Affk, τ). By the lemma,
i(Y∗)→ i(X) is a hypercover on (dAffk, τ); therefore

i∗(F )(X) = F (i(X)) ∼= holim
←−−−−

F (i(Y∗)) = holim
←−−−−

i∗(F )(Y∗).

If (Zi)i is a family of objects in Affk,

i∗(F )(
∐

i

Zi) = F (i(
∐

i

Zi)) ∼= F (
∐

i

i(Zi)) ∼=
∏

i

F (i(Zi)) =
∏

i

i∗(F )(Zi).

Now let Y∗ → X be a representable hypercover on dAffk. Recall that π0(Y∗) → π0(X) is a
hypercover, so that

π∗0(F )(X) = F (π0(X)) ∼= holim
←−−−−

F (π0(Y∗)) = holim
←−−−−

π∗0(F )(Y∗).

Let (Zi)i be a finite family of objects in dAffk. Since π0 preserves finite coproducts (i.e. finite
products of simplicial algebras), we find

π∗0(F )(
∐

i

Zi) = F (π0(
∐

i

Zi)) ∼= F (
∐

i

π0(Zi)) ∼=
∏

i

F (π0(Zi)) =
∏

i

π∗0(F )(Zi).

Proposition 29. The functor Li! : HoAff∼,étk → Ho dAff∼,étk is fully faithful.

Proof. The derived left adjoint Li! : HoAff∼,étk → Ho dAff∼,étk is fully faithful if and only if for
any F : Commk → sSet the unit F → Ri∗Li!(F ) is an isomorphism. We prove this first when
F = RhSpecA is an affine scheme. Since i!h = hi and since hx is a cofibrant replacement of Rhx,
the functor Li!Rh is induced by the equivalence-preserving functor hi. Thus, Li!(F ) = hSpec i(A).
The canonical map F (B)→ Ri∗Li!(F )(B) is then the composite

Commk(A,B)→ sCommk(i(A), i(B)) = hSpec i(A)(i(B)) = Ri∗Li!(F )(B)

which is obviously an isomorphism. So the unit is an isomorphism in this case. An arbitrary
F ∈ Aff∼,τk may be written as a homotopy colimit of representables in sSetCommk , and since the
identity sSetCommk → Aff∼,τk is left Quillen F is also a homotopy colimit of affine schemes in
Aff∼,τk . A consequence of Proposition 28 is that Ri∗ = Li∗ is the derived functor of a left Quillen
functor. Therefore Ri∗Li! commutes with homotopy colimits and the general case is reduced to
the affine case.

One can thus see any underived stackX (e.g. a scheme) as a derived stack i(X). However, sev-
eral constructions are not preserved by this embedding. For example, since the functor Rh com-
mutes with homotopy limits, for affine underived stacks X = RhSpecA, Y = RhSpecB, and Z =

RhSpecC , one has i(X ×R

Z Y ) = RhSpec i(A⊗CB), while i(X)×R

i(Z) i(Y ) = RhSpec(i(A)⊗L

i(C)
i(B)).

3.4 Quasi-coherent modules and vector bundles

A map f : A → B between simplicial commutative k-algebras induces a functor f∗ : sModA →
sModB by extension of scalars, and if g : B → C is another morphism in sCommk there is an
isomorphism of functors (gf)∗ ∼= g∗f∗. We can make this isomorphism into an equality using
the following well-known trick. We define a new category QcohA as follows: an object (M,α) of
QcohA is the data of a simplicial B-module MB for any B ∈ (sCommk ↓A) and of isomorphisms
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αu : MB ⊗B C → MC for any morphism u : B → C in (sCommk ↓ A), subject to the condition
that for any composable pair

B
u
C

v
D

in (sCommk ↓ A) one has the equality αvu = αv(αu ⊗C D). A morphism φ : (M,α) → (N, β)
in QcohA is a family of morphisms φB : MB → NB, B ∈ (sCommk ↓ A), such that φCαu =
βu(φB ⊗B C) for any morphism u : B → C over A. Then the projection (M,α) 7→MA, φ 7→ φA,
is an equivalence of categories QcohA → sModA. We can therefore put a model structure on
QcohA by defining a morphism to be an equivalence (resp. a fibration; a cofibration) if and only
if its image in sModA is an equivalence (resp. a fibration; a cofibration). Let f : A → B be
a morphism in sCommk; it induces a functor f! : (sCommk ↓ B) → (sCommk ↓ A). We define
f∗ : QcohA → QcohB, f∗(M,α) = (f∗(M), f∗(α)), by

f∗(M)C =Mf!(C), f∗(α)u = αf!(u), and f∗(φ)C = φf!(C).

Clearly there is now an equality (gf)∗ = g∗f∗ for any composable pair (f, g) in sCommk. More-
over, the diagram of categories

QcohA
f∗

QcohB

sModA
f∗

sModB

commutes up to natural isomorphism, and so we have “strictified” our original lax functor A 7→
sModA. Since the bottom arrow in the above diagram is a left Quillen functor (its right adjoint
preserves equivalences and fibrations), it follows from the definition of the model structures on
QcohA and QcohB that the top arrow f∗ : QcohA → QcohB is a left Quillen functor. In particular,
it induces a functor

f∗ : Qcoh
cw

A → QcohcwB

between the categories of cofibrant objects and equivalences between them. Taking nerves we
obtain a functor

Qcoh: sCommk → sSet, A 7→ N(QcohcwA ).

Since the inclusion QcohcwA ⊂ QcohwA is an equivalence of categories, it induces a homotopy
equivalence N(QcohcwA ) → N(QcohwA). The object Qcoh ∈ dStk is called the derived stack
of quasi-coherent modules. It is proved in [HAGII, Thm. 1.3.7.2] that Qcoh is indeed a de-
rived stack, i.e., that it preserves equivalences and has étale hyperdescent. That it preserves
equivalences is an easy consequence of the fact that f∗ is a Quillen equivalence when f is a
weak equivalence. That it has hyperdescent is a direct consequence of Theorem 24, modulo a
technical result ([HAGII, Cor. B.0.8]) that we do not reproduce here.

Let A ∈ sCommk. A simplicial A-module M is called perfect if

• it is strong and

• π0(M) is a finitely generated and projective π0(A)-module.

Observe that perfect simplicial modules are flat. If f : A → B is a morphism of simplicial
commutative k-algebras, the derived base change functor ? ⊗L

A B : Ho sModA → Ho sModB
preserves perfect modules. Indeed, by Lemma 17 we have

π0(M ⊗
L

A B) ∼= π0(M)⊗π0(A) π0(B)

which is an f.g.p. π0(B)-module, and

π0(M ⊗
L

A B)⊗π0(B) ⊗π∗(B) ∼= π0(M)⊗π0(A) π0(B)⊗π0(B) π∗(B)

∼= π0(M)⊗π0(A) π∗(B) ∼= π∗(M ⊗
L

A B),

so thatM ⊗L

AB is strong. In particular, the base change functor f∗ : sModA → sModB preserves
cofibrant perfect modules. We denote by VectA the full subcategory of QcohA consisting of those
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objects whose image in sModA is perfect. Then we have a well-defined subfunctor Vect of Qcoh
given by

Vect : sCommk → sSet, A 7→ N(VectcwA ),

where VectcwA is the intersection of VectA and QcohcwA . Again, N(VectcwA ) is homotopy equivalent
to N(VectwA). It is proved in [HAGII, Cor. 1.3.7.4] that Vect is a derived stack (this follows
from the fact that a simplicial module is perfect if and only if it is perfect étale-locally, which
is readily proved by reduction to the underived case). It is called the derived stack of vector
bundles.

In a closed symmetric monoidal category, an object x will be called dualizable when the
canonical map

x⊗ x∨ → Hom(x, x),

adjoint to
(x⊗ x∨)⊗ x ∼= x⊗ (x∨ ⊗ x) ∼= x⊗ (x⊗ x∨)→ x⊗ 1 ∼= x,

is an isomorphism, where by definition x∨ = Hom(x, 1). If x is dualizable, then the natural map
x∨ ⊗ y → Hom(x, y) is an isomorphism for any y.

Lemma 30. In a closed symmetric monoidal category C, a retract of a dualizable object is
dualizable.

Proof. Let y be dualizable and let the composition

x
u
y
v
x

be the identity. Then there is a commutative diagram

x⊗ x∨
u⊗v∨

y ⊗ y∨
v⊗u∨

x⊗ x∨

Hom(x, x)
Hom(v,u)

Hom(y, y)
Hom(u,v)

Hom(x, x)

whose rows are the identity. The lemma follows.

Lemma 31. Let A ∈ sCommk. Let M and N be simplicial A-modules such that N is a retract
of M in Ho sModA. If M is a strong (resp. perfect), then N is strong (resp. perfect).

Proof. This is clear.

Lemma 32. Let A ∈ sCommk. Let M and N be simplicial A-modules such that M is a retract
of An in Ho sModA for some n ≥ 0. Then Lπ0 : [M,N ]→ [π0(M), π0(N)] is a bijection.

Proof. Since π0 commutes with colimits, we may assume M = A. Note that sModA(A,N) is
in bijection with N0, an element x ∈ N0 corresponding to the map fx which in degree n is
a 7→ as(x) where s(x) is the degeneracy of x in degree n. Since A is cofibrant in sModA, [A,N ]
is a set of homotopy classes. We claim that x and y become equal in π0(N) if and only if fx
and fy are homotopic, i.e., if and only if there exists g in the diagram

A⊕A

fx+fy

∆1 ⊗A

g

N .

Here ∆1⊗A is defined using the sSet-module structure of sModA: in degree n it is a direct sum
of n+ 2 copies of An. If g exists, let z = g1(0, 1, 0). Then d0(z) = x and d1(z) = y. Conversely,
suppose that there exists z ∈ N1 such that d0(z) = x and d1(z) = y. Let s1, . . . , sn be the n
degeneracy maps N1 → Nn, si being induced by the surjective map n→ 1 with i zeros. Setting

gn(a0, . . . , an+1) = s(x)a0 + s1(z)a1 + · · ·+ sn(z)an + s(y)an+1
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gives the required homotopy g. Thus, we obtain a bijection [A,N ] ∼= π0(N), [f ] 7→ [f0(1)]; there
is also a bijection [π0(A), π0(N)] ∼= π0(N), g 7→ g([1]). Since Lπ0(f)([1]) = [f0(1)], the map of
the lemma is the composition of these two bijections.

We recall some properties of Postnikov towers. If M ∈ sModA, a Postnikov tower for M is
any tower of simplicial A-modules under M

· · · →M≤k →M≤k−1 → · · · →M≤1 →M≤0

such that

πn(M≤k) =

{

πn(M) if n ≤ k

0 otherwise.

If ∼k is the equivalence relation on M such that, for x, y : ∆i →M two i-simplices ofM , x ∼k y
if and only if the restriction of x and y to skk∆

i are equal, then the simplicial A-modules
M/∼k form a Postnikov tower. Any two Postnikov towers are pointwise equivalent. In fact, the
simplicial A-module M≤k is determined, up to equivalence, by the following universal property:
it is k-truncated, i.e., πn(M≤k) = 0 if n > k, and for any k-truncated simplicial A-module N ,
the map

RMap(M≤k, N)→ RMap(M,N)

is an isomorphism in Ho sSet. This is true for all k ≥ −1 if we set M≤−1 = 0. For any Postnikov
tower, the homotopy fiber of the morphismM≤k →M≤k−1 is an Eilenberg–Mac Lane simplicial
A-module which has homotopy πk(M) concentrated in degree k. In other words, it is equivalent
to Σki(πk(M)) where Σ: Ho sModA → Ho sModA is the suspension functor.

Lemma 33. Let A ∈ sCommk and M,N ∈ sModA. For 0 ≤ n ≤ k,

πn(M ⊗
L

A N≤k)
∼= πn(M ⊗

L

A N).

Proof. Let P be a k-truncated object in sModA. We claim that RHomA(N,P ) is k-truncated.
As a simplicial set, RHomA(N,P ) = RMap(N,P ), so by [Hov99, Lem. 6.1.2],

πn(RHomA(N,P )) = πn(RMap(N,P )) = [N,Ωn(P )].

But if n > k, Ωn(P ) ∼= 0, so πn(RHomA(N,P )) = 0. Thus, if P is k-truncated,

RMap(M ⊗L N≤k, P ) ∼= RMap(N≤k,RHomA(M,P ))

∼= RMap(N,RHomA(M,P )) ∼= RMap(M ⊗L

A N,P ).

This proves that (M ⊗L

A N≤k)≤k
∼= (M ⊗L

A N)≤k.

Lemma 34. Let I be a filtered index category. Then the functor lim
−−→

: sModIA → sModA sends
pointwise equivalences to equivalences.

Proof. This follows from [Hov99, Lem. 7.4.1] and the fact the all objects in sModA are fibrant.

The following lemma is Sous-lemme 3 in [Toë06a] and a detailed proof can be found there.
The proof of Lemma 36 is also adapted from a similar result in [Toë06a].

Lemma 35. Let C be a model category and let N be the poset of natural numbers. The canonical
functor

Ho(CN)→ Ho(C)N

is full, where the equivalences in CN are the pointwise equivalences.

Lemma 36. Let M be a retract of An in Ho sModA for some n ≥ 0. Then any idempotent
p : M →M in Ho sModA splits.
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Proof. We may assume that M is cofibrant. Then p is represented by a morphism q : M → M
in sModA. Let N = holim

−−−−→
Y where Y is the diagram

M
q

M
q

M
q
· · · .

Let also X be the constant N-diagram at M , so that M = holim
−−−−→

X . Define maps u : X → Y
and v : Y → X in (Ho sModA)

N by un = vn = p, for all n ∈ N (here we use that p2 = p). By
Lemma 35, u and v lift to maps u′ and v′ in Ho(sModNA). Define s = holim

−−−−→
u′ and j = holim

−−−−→
v′.

Fix n ≥ 0. The functor πN
n : sModNA → sModNπ0(A) preserves pointwise equivalences and therefore

there is a well-defined functor Ho(sModNA)→ sModNπ0(A), which clearly factors as

Ho(sModNA) ModNπ0(A).

(Ho sModA)
N

By Lemma 34 and the fact that πn commutes with filtered colimits, all faces in the diagram

sModNA
lim
−→

πN

n

sModA
πn

ModNπ0(A)

lim
−→ Modπ0(A)

Ho(sModNA) holim
−−−→

Ho sModA

are commutative up to natural isomorphism, except possibly the bottom parallelogram. But
its commutativity follows from the commutativity of the other faces and the universality of
sModNA → Ho(sModNA). It follows that πn(js) = lim

−−→
πn(vu) = πn(p) : πn(M) → πn(M) since

πn(vu) is πn(p) in each degree. Hence js = p by Lemma 32. Similarly, πn(sj) : πn(N)→ πn(N)
is the result of applying the functor lim

−−→
to the morphism

πn(M)
πn(q)

πn(q)

πn(M)
πn(q)

πn(q)

πn(M)
πn(q)

πn(q)

· · ·

πn(M)
πn(q)

πn(M)
πn(q)

πn(M)
πn(q)

· · ·

in ModNπ0(A), and this is clearly the identity, so πn(sj) = id. In particular, sj is an automorphism

of N in Ho sModA. Setting t = (sj)−1s yields tj = id and π0(jt) = π0(j)π0(sj)
−1π0(s) = π0(js),

so that, again by Lemma 32, jt = js = p. Thus, j and t form a splitting of p.

Theorem 37. Let A ∈ sCommk and let M ∈ sModA. The following are equivalent:

1. M is dualizable in Ho sModA;

2. M is perfect;

3. M is a retract of An in Ho sModA for some n ≥ 0.

Proof. 1 ⇒ 2. Let M be dualizable in Ho sModA. We must prove that M is strong and that
π0(M) is an f.g.p. π0(A)-module, or equivalently, that it is flat and finitely presented. Let
N → P be an injective morphism of π0(A)-modules. Since a map between constant simplicial
k-modules is always a fibration,

0→ i(N)→ i(P )
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is a fiber sequence in Ho sModA. The functor HomA(Q(M∨), ?) is a right Quillen functor and
hence its total derived functor RHomA(M

∨, ?) preserves fiber sequences. Thus

0→ RHomA(M
∨, i(N))→ RHomA(M

∨, i(P ))

is a fiber sequence. Since M is dualizable, this sequence is isomorphic to

0→M ⊗L

A i(N)→M ⊗L

A i(P ),

and so we obtain a long exact sequence

· · · → πn(M ⊗
L

A i(N))→ πn(M ⊗
L

A i(P ))→ 0→ · · · → 0→ π0(M ⊗
L

A i(N))→ π0(M ⊗
L

A i(P )).

In view of (16), the last three terms are isomorphic to 0→ π0(M)⊗π0(A) N → π0(M)⊗π0(A) P
and this shows that π0(M) is a flat π0(A)-module. For N = 0, the long exact sequence says that
πn(M ⊗L

A i(P )) = 0 if n ≥ 1. Thus the unit

M ⊗L

A i(P )→ i(π0(M)⊗π0(A) P )

is an isomorphism in Ho sModA. Since the functorM⊗A? is left Quillen its total derived functor
commutes with the suspension, and we obtain

M ⊗L

A Σki(P ) ∼= Σki(π0(M)⊗π0(A) P ) (25)

for every k ≥ 0. Now let Q be any simplicial A-module and let k ≥ 0. The Postnikov tower of
Q gives us a fiber sequence

Σki(πk(Q))→ Q≤k → Q≤k−1,

and since M is dualizable we find as above that

M ⊗L

A Σki(πk(Q))→M ⊗L

A Q≤k →M ⊗L

A Q≤k−1

is again a fiber sequence. By (25), the associated long exact sequence looks like

· · · → πn+1(M ⊗
L

A Q≤k−1)→ πnΣ
ki(π0(M)⊗π0(A) πk(Q))

→ πn(M ⊗
L

A Q≤k)→ πn(M ⊗
L

A Q≤k−1)→ · · · .

We prove by induction on k ≥ −1 that πn(M ⊗L

A Q≤k) = 0 for all n ≥ k + 1. If k = −1, this is
clear since Q≤−1 = 0. Suppose k ≥ 0. By induction hypothesis, the long exact sequence gives
an isomorphism

πnΣ
ki(π0(M)⊗π0(A) πk(Q)) ∼= πn(M ⊗

L

A Q≤k)

for all n ≥ k. If n ≥ k + 1, the left-hand side vanishes, so our claim is proved. For n = k, we
obtain by Lemma 33 an isomorphism

π0(M)⊗π0(A) πn(Q) ∼= πn(M ⊗
L

A Q).

If we take Q = A, this proves that M is strong.
It remains to prove that π0(M) is finitely presented. Let I be a filtered index category

and d : I → Modπ0(A) a diagram. By Lemma 34 there is an isomorphism lim
−−→

id ∼= holim
−−−−→

id in
Ho sModA. Then there is a sequence of isomorphisms

RMap(π0(M), lim
−−→

d) ∼= RMap(M, lim
−−→

id) ∼= RMap(M, holim
−−−−→

id) ∼=M∨ ⊗L

A holim
−−−−→

id

∼= holim
−−−−→

(M∨ ⊗L

A id)
∼= holim
−−−−→

RMap(M, id) ∼= holim
−−−−→

RMap(π0(M), d)

whose composition is clearly the canonical map

Modπ0(A)(π0(M), lim
−−→

d)→ lim
−−→

Modπ0(A)(π0(M), d).
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Since any module is a filtered colimit of finitely presented modules, π0(M) itself is finitely
presented.

2⇒ 3. We suppose that M is a perfect simplicial A-module. Choose a diagram

π0(M)
i
π0(A

n)
p
π0(M)

such that pi = id. By Lemma 32, p (resp. ip) is the image of a unique morphism q : An → M
(resp. r : An → An) in Ho sModA. Since ipip = ip and pip = p, we have r2 = r and qr = q. By
Lemma 36, the idempotent r splits: there exists a simplicial A-module N and maps s : An → N
and j : N → An in the homotopy category such that sj = id and js = r. In particular N
is a retract of An in Ho sModA. Then we have π0(qj)π0(s)i = π0(qr)i = π0(q)i = pi = id
and π0(s)iπ0(qj) = π0(s)ipπ0(j) = π0(srj) = π0(sjsj) = id, so that π0(qj) : π0(N) → π0(M)
is invertible. But N is strong by Lemma 31 (since An is clearly strong), and M is strong by
hypothesis, so π∗(qj) is an isomorphism, i.e., qj : N → M is an isomorphism. In particular M
is also a retract of An in Ho sModA.

3 ⇒ 1. It is clear that, in a general setting, a biproduct of dualizable objects is dualizable.
This implies that An is dualizable, and Lemma 30 completes the proof.

Corollary 38. Let A ∈ sCommk. The restriction of the functor Lπ0 : Ho sModA → Modπ0(A)

to the full subcategory of dualizable objects is fully faithful.

Proof. This follows from Lemma 32 and Theorem 37.

We end this section with a very informal discussion of the categories of quasi-coherent mod-
ules and vector bundles on a derived stack. A quasi-coherent module on an affine derived stack
should be the same thing as a simplicial module on the corresponding simplicial k-algebra, while
a quasi-coherent module on an arbitrary derived stack X should be an object that restricts to
a simplicial module on every affine derived stack over X . If we write X as a homotopy colimit
holim
−−−−→ iXi of affine derived stacks, this means that a quasi-coherent module on X is constructed
by glueing quasi-coherent modules over each Xi:

{quasi-coherent modules on X} ∼= lim
←−−
{quasi-coherent modules on Xi}.

By the derived Yoneda lemma, a quasi-coherent module on Xi is the same thing as a morphism
Xi → Qcoh in Ho dStk:

{quasi-coherent modules on Xi} ∼= [Xi,Qcoh],

and so

{quasi-coherent modules on X} ∼= lim
←−−

[Xi,Qcoh] = [holim
−−−−→

Xi,Qcoh] = [X,Qcoh].

Thus, whatever a quasi-coherent module on X really is, it should be the same thing as a map
X → Qcoh in Ho dStk. Similarly, vector bundles on derived stacks should be classified by Vect.
It turns out that model categories of quasi-coherent modules and vector bundles can be defined
(in essentially the same was as they are defined for underived stacks) and that they satisfy these
requirements. Since we will not have this construction at out disposal in the sequel, we define
an equivalence class of quasi-coherent modules (resp. of vector bundles) on an object X ∈ dStk
to be an element of [X,Qcoh] (resp. [X,Vect]).
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4.1 Alternative descriptions of Hochschild and cyclic homology

In Chapter 1 have defined HH , HC, HCper, and HC− for cyclic k-modules, but we can define
more generally these functors on the category of mixed complexes. A mixed complex (M, b,B)
over k is at the same time a (Z-graded) chain complex (M, b) and a cochain complex (M,B)
whose differentials satisfy the relation bB + Bb = 0. Equivalently, a mixed complex is a differ-
ential graded (dg) module over the dg k-algebra k[ǫ] which is by definition

· · · 0 k
0
k 0 · · · ,

where the two k’s are in degrees 1 and 0. We write ǫ for the 1 in degree 1. If M is a dg
k[ǫ]-module, then it is a mixed complex where the map b is the differential and the map B
corresponds to the action of ǫ. There is a functor ModΛ

op

k → dgModk[ǫ] sending a cyclic k-
module E to the (nonnegatively graded) mixed complex (M, b,B) where (M, b) is the complex
associated to the underlying simplicial k-module of E and B = (1− t)s−1N . We will prove that
HH , HC, and HC− all factor through dgModk[ǫ]. This point of view presents the advantage that
both cyclic homology and negative cyclic homology arise naturally as simple derived functors.
Before proving this we recall that for any dg algebra A over k, the category of left dg A-modules
has a model structure in which a map is an equivalence (resp. a fibration) if the underlying
map of (unbounded) complexes of k-modules is. In other words, an equivalence is a map that
induces an isomorphism on homology, while a fibration is a map that is surjective in each degree.
The shift automorphism N 7→ N [1] of dgModA is defined by N [1]n = Nn+1, dN [1] = −dN ,

a[1]n = (−1)deg aan where the left-hand side is the scalar multiplication in N [1] and the right-
hand side is the scalar multiplication in N , and f [1]n = fn+1. To simplify we now assume that
A is graded commutative. Then there are bifunctors

⊗A : dgModA × dgModA → dgModA and HomA : dgModopA × dgModA → dgModA

defined as follows. For (M,dM ) and (N, dN ) two dg A-modules, their tensor product over A is
as a graded k-module the usual tensor product of M and N over A (the identification is simply
am⊗ n = m⊗ an), and its dg A-module structure is defined by

d(m⊗ n) = dMm⊗ n+ (−1)degmm⊗ dNn and a(m⊗ n) = am⊗ n.

In degree n, HomA(M,N) has the k-module of all A-module maps M → N [n], and for such a
map f ,

d(f) = dNf − (−1)nfdM and (af)(m) = af(m)

(observe that we wrote dN and a, not dN [n] or a[n]). These sign conventions make dgModA
into a closed symmetric monoidal category. In fact, dgModA is a symmetric monoidal model
category. In particular, the bifunctors ⊗A and HomA have total derived functors ⊗L

A and
RHomA. Moreover, the tensor product is left balanced in the sense that M ⊗A ? preserves
equivalences whenever M is cofibrant.

Lemma 39. The mixed complex

Qk = · · · kǫ
0
k

ǫ

ǫ
kǫ

0

0
k

ǫ
0 · · ·

is cofibrant.

Proof. Consider a lifting problem
M

h

Qk
f

g

N

where h is a trivial fibration in dgModk[ǫ]. We construct a lift g inductively. Put gn = 0 for
n < 0. Let n ≥ 0. Suppose that we have defined gi for all i < n such that

44
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1. dgi = gi−1d;

2. ǫgi−1(x) = gi(ǫx) for all x ∈ (Qk)i−1;

3. higi = fi; and

4. if n is even, ǫgn−1(ǫ) = 0.

We consider two cases. Suppose that n is even (if n = 0, we write ǫ for 0 ∈ (Qk)−1). Since
fn−1(ǫ) = dfn(1), the class of fn−1(ǫ) is zero in Hn−1(N). But fn−1(ǫ) = hn−1gn−1(ǫ), and
since h induces an isomorphism in homology, the class of gn−1(ǫ) is zero in Hn−1(M), i.e., there
exists x ∈ Mn such that dx = gn−1(ǫ). Then dhn(x) = hn−1(dx) = hn−1gn−1(ǫ) = fn−1(ǫ) =
fn−1(d1) = dfn(1), and so the difference hn(x) − fn(1) is in the kernel of d. Since h is an
isomorphism in homology, there exists y ∈ Mn such that dy = 0 and hn(y) − hn(x) + fn(1) is
zero in Hn(N); then there exists z ∈ Nn+1 such that dz = hn(y)−hn(x)+fn(1), and since hn+1

is surjective, there exists w ∈Mn+1 such that hn+1(w) = z. Put

gn(1) = x− y + dw.

We must check that this satisfies 1–4:

1. dgn(1) = dx− dy = dx = gn−1(ǫ) = gn−1(d1);

2. ǫgn−1(ǫ) = 0 = gn(0) = gn(ǫ
2);

3. hngn(1) = hn(x) − hn(y) + hn(dw) = hn(x)− hn(y) + dz = fn(1); and

4. does not apply.

If n is odd, define gn(ǫ) = ǫgn−1(1). We check 1–4:

1. dgn(ǫ) = −ǫdgn−1(1) = −ǫgn−2(d1) = gn−1(−ǫd1) = gn−1(dǫ);

2. by definition;

3. hngn(ǫ) = ǫhn−1gn−1(1) = ǫfn−1(1) = fn(ǫ); and

4. ǫgn(ǫ) = ǫ2gn−1(1) = 0.

The “HC” part of the next theorem was proved in [Kas87].

Theorem 40. If M is a nonnegatively graded mixed complex, then HC(M) = H(k⊗L

k[ǫ]M) and

HC−(M) = H(RHomk[ǫ](k,M)), where k is viewed as a dg k[ǫ]-module concentrated in degree
0.

Proof. It is clear that the map Qk → k which is the identity in degree 0 is an equivalence, so
that, by the lemma, Qk is a cofibrant replacement of k in dgModk[ǫ]. Now,

(Qk ⊗k[ǫ] M)n ∼=Mn ⊕Mn−2 ⊕Mn−4 ⊕ · · ·

because ǫ⊗m = 1⊗ǫm, and the differential is given by d(1⊗m) = d1⊗m+1⊗dm= 1⊗ǫm+1⊗dm.
Thus there is an isomorphism between Qk ⊗k[ǫ] M and TotB(M). Any map of k[ǫ]-modules
f : Qk → M [n] is entirely determined by its components f2k that can be chosen arbitrarily, so
we have

Homk[ǫ](Qk,M)n ∼=Mn ×Mn+2 ×Mn+4 × · · · ,

and the definition of the differential reduces to d(mn,mn+2,mn+4, . . . ) = (dmn, dmn+2 −
ǫmn, dmn+4 − ǫmn+2, . . . ). We find that Homk[ǫ](Qk,M) is isomorphic to the total complex
of the bicomplex obtained from B−(M) by changing the sign of the horizontal differentals; but
this bicomplex is isomorphic to B−(M), and so Homk[ǫ](Qk,M) ∼= TotB−(M). We conclude
by noting that Qk ⊗k[ǫ] ? preserves equivalences, so that k ⊗L

k[ǫ] M = Qk ⊗k[ǫ] M , and that all

dg modules are fibrant, so that RHomk[ǫ](k,M) = Homk[ǫ](Qk,M).
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We will now explain how this theorem can be interpreted in a simplicial setting. We first show
that the above theorem remains true if one replaces the category of unbounded dg k[ǫ]-modules
by that of nonnegatively differential graded k[ǫ]-modules. Of course one can only hope to recover
in this way the nonnegative part of negative cyclic homology, but this is the most interesting part
since the negative part has period 2 and coincides with periodic cyclic homology. For a general
nonnegatively differential graded k-algebra A, which we assume to be graded commutative, we
denote by dgMod≥0A the category of nonnegatively differential graded A-modules. The inclusion

i : dgMod≥0A → dgModA

has a right adjoint τ≥0 given by

τ≥0(M)n =

{

Z0(M) if n = 0,

Mn otherwise.

Observe that both i and τ≥0 preserve equivalences as they commute with the homology functors
Hn for all n ≥ 0. Since τ≥0 also preserves fibrations, this is a Quillen adjunction. The result
that we have in mind is a formal consequence of this adjunction, but we first explore a more
general situation since we shall use it again in the sequel.

Suppose that (F,G) is an adjunction between closed symmetric monoidal categories C and
D together with a natural morphism

∇ : G(X)⊗G(Y )→ G(X ⊗ Y ).

From it we deduce by adjunction a natural morphism

F (X ⊗ Y )→ F (X)⊗ F (Y ), (26)

namely the adjoint to ∇(ηX ⊗ ηY ). There is also a natural map

G(Hom(F (X), Y ))→ Hom(X,G(Y )) (27)

adjoint to the composition

G(Hom(F (X), Y ))⊗X
id⊗η

G(Hom(F (X), Y ))⊗GF (X)

∇
G(Hom(F (X), Y )⊗ F (X)) G(Y ).

Lemma 41. (26) is an isomorphism if and only if (27) is an isomorphism.

Proof. Suppose that (26) is an isomorphism. Then postcomposition by (27) is always an isomor-
phism as it is the composition

C(Z,G(Hom(F (X), Y ))) ∼= D(F (Z),Hom(F (X), Y )) ∼= D(F (Z)⊗ F (X), Y )
∼= D(F (Z ⊗X), Y ) ∼= C(Z ⊗X,G(Y )) ∼= C(Z,Hom(X,G(Y ))).

The converse is proved in a similar way.

Under the equivalent conditions of the lemma, if moreover the counit FG(X) → X is an
isomorphism, we obtain that the natural map

G(Hom(X,Y ))→ Hom(G(X), G(Y ))

is an isomorphism, while if the unit Y → GF (Y ) is an isomorphism, there is a natural isomor-
phism

G(Hom(F (X), F (Y ))) ∼= Hom(X,Y )

In particular, if (F,G) is an equivalence of categories, then each of F and G commutes with
both tensor products and internal hom’s.
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The adjunction (i, τ≥0) is a Quillen adjunction between closed monoidal model categories
whose unit is an isomorphism and whose left adjoint is a monoidal functor. Applying Lemma 41
to the derived adjunction (Li,Rτ≥0), we obtain a natural isomorphism

Rτ≥0RHomA(Li(X),Li(Y )) ∼= RHomA(X,Y ) (28)

in Ho dgMod≥0A . In particular, for all n ≥ 0 we have

Hn(RHomA(Li(X),Li(Y ))) ∼= Hn(RHomA(X,Y )),

and hence we obtain the following bounded version of theorem 40.

Corollary 42. If M ∈ dgMod≥0A and if n ≥ 0, then HCn(M) = Hn(k⊗L

k[ǫ]M) and HC−n (M) =

Hn(RHomk[ǫ](k,M)), where k is viewed as a dg k[ǫ]-module concentrated in degree 0.

To obtain a simplicial version of theorem 40, we will now prove that the model category
dgMod≥0k[ǫ] is Quillen equivalent, through the normalization functor, to some model category of

equivariant simplicial k-modules, and moreover that the derived equivalence preserves tensor
products and internal hom’s. For this we need some general results about monoid actions in
enriched categories.

Let V be any of the following closed symmetric monoidal category: sModA, dgModA, or
dgMod≥0A . Let C be a V-module. For G a monoid in V and x an object of C, an action of G on
x is a map of V-monoids G → Map(x, x). By adjunction, a morphism G → Map(x, x) in V is
the same thing as either a map φ : x → xG or a map ψ : G ⊗ x → x. Then the property that
G→ Map(x, x) is a monoid map translates to the commutativity of either one of the diagrams

x xG

φG

xG
xµ

(xG)G,

G⊗ (G⊗ x)
G⊗ψ

µ⊗x

G⊗ x

G⊗ x x,

(29)

where µ : G ⊗ G → G is the monoid structure of G and the associativity isomorphisms of the
V-module structure have been used implicitely. Let x and y be two objects with an action of G.
Then one defines the object MapG(x, y) of G-equivariant maps from x to y as the equalizer

MapG(x, y) Map(x, y) Map(x, yG),

where the two parallel maps come from the two possible ways to go from x to yG, namely
x → y → yG and x → xG → yG. Dually, one defines the G-equivariant tensor product x ⊗G y
by the coequalizer diagram

G⊗ (x⊗ y) x⊗ y x⊗G y

where the two maps correspond to the action of G on either x or y. It can be seen that the
objects MapG(x, y) define a V-enriched category structure on the set of G-equivariant objects
in C; it is denoted by CG (and it can of course be identified with the category of V-enriched
functors from G to C). The above equalizer diagram also defines a V-enriched forgetful functor
CG → C (which is actually the right adjoint of a monoidal adjunction, but we will not use this).
We deduce directly from the definitions that CG becomes a V-module with tensor and cotensor
functors compatible with the forgetful functor CG → C (i.e., K ⊗ x and xK are defined as in C
and endowed with the obvious G-actions).

Suppose now that G comes with an augmentation, i.e., a morphism of monoids G→ 1 where
1 is the unit in V. Then one can define the fixed point functor fixG : CG → C by the equalizer
diagram

fixG(x) x xG
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where the two maps are adjoint to the action G → Map(x, x) and to the composition G →
1→ Map(x, x) pointing at the identity, respectively. Dually, the orbit functor orbG : CG → C is
defined by the coequalizer diagram

G⊗ x x orbG(x).

Since Map(x, ?): C → V preserves limits, we see that fixG is a V-enriched right adjoint to the
“endow with the trivial action” functor C→ CG. Dually, orbG is a V-enriched left adjoint to this
functor.

If G is a simplicial monoid, we put a simplicial model structure on sModGk by declaring a
map to be an equivalence (resp. a fibration) if the underlying map of simplicial k-modules is
an equivalence (resp. a fibration). That this is a simplicial model structure follows from the
following lemma.

Lemma 43. There is an isomorphism of sSet-modules sModGk
∼= sModk[G] where k[G] is the

simplicial monoid algebra of G. This isomorphism induces a bijection between equivalences and
fibrations on both sides.

Proof. We simply define the isomorphism on objects. The category sModk is enriched over itself
in such a way the the underlying simplicial set of the internal hom Hom(X,Y ) is Map(X,Y ).
Therefore a map of simplicial sets G→ Map(X,X) is equivalent to a map of simplicial k-modules
k[G]→ Hom(X,X), which is in turn equivalent to a map of simplicial k-modules k[G]⊗kX → X .
Moreover, G → Map(X,X) is a monoid map if and only if k[G] ⊗k X → X is an action of the
simplicial k-algebra k[G] on X .

Through this isomorphism we have fixG = Homk[G](k, ?) (resp. orbG = k⊗k[G]?), because the
two functors are defined as the equalizers (resp. coequalizers) of isomorphic diagrams. Similarly,
if C = dgModk enriched over itself and A → k an augmented commutative dg k-algebra, the
category dgModAk is isomorphic to dgModA, and through this isomorphism we have fixA =

HomA(k, ?) (resp. orbA = k ⊗A ?). A similar conclusion holds for C = dgMod≥0k . In any
of these situations, we define the homotopy fixed point functor R fixG : HoCG → HoC to be
RHomG(k, ?), and dually the homotopy orbit functor L orbG is by definition k⊗L

G ?. Since k is
cofibrant in C, the natural transformations

fixG → U → orbG,

where U : CG → C is the equivalence-preserving forgetful functor, induce natural transformations

R fixG → RU = LU → L orbG

derived from HomG(x, y)→ Hom(x, y) and x⊗ y → x⊗G y. When A = k[ǫ] we have

Proposition 44. Let n ≥ 0. The diagram of natural transformations

HC−n → HHn → HCn

between functors Ho dgMod≥0k[ǫ] → Modk described in §1.1 is isomorphic to the diagram

Hn(R fixk[ǫ])→ Hn → Hn(L orbk[ǫ]).

Proof. Actually these two diagrams are already isomorphic at the level of the chain complexes
before taking homology. With the notation of Lemma 39, the inclusion k → Qk is inverse
to the projection Qk → k in the homotopy category. Comparing the proof of Theorem 40
and the definitions of §1.1, it is clear that the map TotB0(M) → TotB(M) corresponds to
the map k ⊗k M → Qk ⊗k M → Qk ⊗k[ǫ] M which is M → L orbk[ǫ](M), while the map
TotB−(M) → TotB0(M) corresponds to Homk[ǫ](Qk,M) → Homk(Qk,M) → Homk(k,M)
which is R fixk[ǫ](M)→M .
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Let A be a simplicial commutative k-algebra. By [SS03, Thm. 1.1 (2)], the normalization

functor N : sModA → dgMod≥0N(A) is the right adjoint of a Quillen equivalence. Let Γ be its left

adjoint. Note that N actually preserves and reflects equivalences and fibrations, as these are
defined on the underlying k-module objects. The model categories on both sides are monoidal
categories, and this adjunction is a weak monoidal adjunction for the shuffle map ∇ (which
also defines the algebra structure on N(A)). Moreover, it is proved in [SS03, §4.4] that the
morphism

LΓ(X ⊗L

N(A) Y )→ LΓ(X)⊗L

A LΓ(Y )

derived from the monoidal structure is an isomorphism in Ho sModA. Using Lemma 41, it follows
that (LΓ,RN) is an equivalence of nonunital closed monoidal categories (actually the units are
preserved as well). In particular there is a natural isomorphism

RN(RHomA(X,Y ))→ RHomN(A)(RN(X),RN(Y )).

If A = k[G] and X = k, since RN(k) ∼= k, we obtain that the normalization functor preserves
homotopy fixed points, i.e., that there is a canonical isomorphism

RNR fixG ∼= R fixN(k[G]) RN.

(Dually, if the canonical map LΓ(k)→ k is an isomorphism in Ho sModk[G], the left adjoint LΓ
preserves homotopy orbits; but I do not know if this is true in general.)

Let S1 = ∆1/∂∆1 be the simplicial set obtained from ∆1 by identifying the two endpoints
at each level, and let BZ be the nerve of the abelian group Z, which is a simplicial abelian
group. It is well-known that the inclusion S1 → BZ sending ∂∆1 to 0 and the other points
of (S1)n to the generators of (BZ)n = Zn is an equivalence of simplicial sets. Applying the
equivalence-preserving functor N(k[?]) to this inclusion (here k[?] = ? ⊗ k is the left adjoint
to the forgetful functor Map(k, ?): sModk → sSet), we obtain an equivalence of simplicial k-
modules N(k[S1])→ N(k[BZ]). The normalization of k[S1] can be identified, as a dg k-module,
to k[ǫ], by sending ǫ to (−1, 1) ∈ N(k[S1])2 ⊂ k[S1]2 = k2. The equivalence

f : k[ǫ]→ N(k[BZ])

is actually a morphism of dg k-algebras. This implies that the Quillen adjunction (f∗, f
∗),

where f∗ : dgMod≥0k[ǫ] → dgMod≥0N(k[BZ]) is the extension of scalars, is a Quillen equivalence. Since

extension of scalars is a comonoidal functor, it follows from Lemma 41 that (Lf∗,Rf
∗) is an

equivalence of nonunital closed monoidal categories (again, the units are in fact clearly preserved
as well). In particular, the natural map

Rf∗(RHomN(k[BZ])(X,Y ))→ RHomk[ǫ](Rf
∗(X),Rf∗(Y )) (30)

is an isomorphism. Since Rf∗(k) = k, Rf∗ also commutes with homotopy fixed points. We
summarize what we proved in the next proposition.

Proposition 45. There are two Quillen equivalences

Γ: dgMod≥0N(k[BZ]) ⇄ sModBZ

k :N

f∗ : dgMod≥0k[ǫ] ⇄ dgMod≥0N(k[BZ]) :f
∗

whose derived equivalences preserve the closed monoidal structure. Moreover the derived right
adjoints preserve homotopy fixed points.

4.2 The loop space

In Proposition 45 we have seen that the model categories sModBZ

k of BZ-equivariant simplicial

k-modules and dgMod≥0k[ǫ] of nonnegatively graded mixed complex are Quillen equivalent. The

goal of this section is to prove that the Hochschild complex of an algebra is naturally an object
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in sModBZ

k and that negative cyclic homology identifies with the homotopy fixed points of this
object. We formulate these results from the geometric point of view of derived stacks.

The loop space functor L : dStk → dStk is the functor ?BZ coming from the sSet-module
structure of dStk. This is a right Quillen functor (with left adjoint BZ⊗ ?), and we have

RL = ?RBZ

in the notation of §2.1 (because simplicial sets are always cofibrant). In particular, the isomor-

phism S1 ∼= BZ in Ho sSet induces an isomorphism RL ∼= ?RS
1

.

Suppose that X = RhSpecA is an affine derived stack (A being a simplicial commutative
k-algebra). Since Rh underlies a morphism of right Ho sSet-modules, there is a canonical iso-
morphism

RL(X) ∼= Rh(SpecA)RS1 = RhSpec(S1⊗LA)

in Ho dStk. In particular, RL(X) is an affine derived stack. This is closely related to Hochschild
homology as follows. First note that when A is a commutative k-algebra, its Hochschild complex
is endowed with a structure of simplicial commutative k-algebra. In this context the Hochschild
complex is a functor Commk → sCommk, where Commk is the category of commutative k-algebra.
Recall from (15) that for K a simplicial set, K ⊗ A is just the diagonal of the bisimplicial
commutative k-algebra which in degree (p, q) is the coproduct

⊗

x∈Kp

Aq.

Theorem 46. The Hochschild complex functor Commk → sCommk is isomorphic to the restric-
tion of the functor S1 ⊗ ? : sCommk → sCommk.

Proof. We must explicit the simplicial structure of S1. In degree n, (S1)n has n + 1 elements
xn, y

1
n, . . . , y

n
n : xn is the 0-dimensional point and y1n, . . . , y

n
n are the images of y11 (the loop) by

the n surjective maps n→ 1 in ∆. In particular,

(S1 ⊗A)n = A⊗n+1,

so it remains to see that the face maps and degeneracy maps of S1 induce those of the Hochschild
complex. This is easy because they are induced by those in ∆1: si misses yi, an internal di
collapses yi and yi+1 to yi, d0 collapses xn and y1n to xn−1, and dn collapses ynn and xn to xn−1.
This is exactly as required.

We define the topological Hochschild homology of an arbitrary simplicial commutative k-
algebra A to be the simplicial commutative k-algebra S1 ⊗L A. This defines an endofunctor
of Ho sCommk. When A is a k-algebra, also viewed as a constant simplicial k-algebra, this
definition thus yields, up to equivalence, the classical Hochschild complex whenever A is cofibrant
in sCommk, for instance when A is free. More generally, since S1 is the homotopy pushout of
∆0 and ∆0 along ∂∆1, for any A ∈ sCommk we have

S1 ⊗L A ∼= A⊗L

A⊗LA A,

and we know that the coproducts on the right are also derived tensor products of the underlying
simplicial k-modules; using this formula it is easy to prove that S1⊗LA and S1⊗A are equivalent
whenever A is a flat commutative k-algebra (see [Lod92, Prop. 1.1.13]).

We have proved above that for X = RhSpecA an affine derived stack, RL(X) is the affine
derived stack associated to the topological Hochschild homology of A. More generally, since LO
commutes with the left Ho sSet-module structures, we have:

Theorem 47. Let X ∈ dStk. Then LORL(X) is naturally isomorphic to the topological
Hochschild homology of LO (X).
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Thus, Hochschild homology has a geometric interpretation as functions on the loop space.
The next step is to relate negative cyclic homology to S1-equivariant functions on the loop space.

The loop space LX is endowed with an action of the simplicial group BZ, that is, a map of
simplicial monoids BZ→ Map(LX,LX). It is defined as the adjoint to the composition

LX = XBZ → X(BZ×BZ) ∼= (XBZ)BZ = LXBZ

where the first map is restriction along the multiplication BZ×BZ→ BZ and the isomorphism
is the associativity isomorphism of the sSet-module structure of dStk. The commutativity of the
first diagram of (29) then follows from the associativity of the multiplication on BZ. Composing
with the monoid map O : Map(LX,LX)→ Map(O (LX), O (LX)), we obtain a group action of
BZ on the simplicial k-algebra O (LX).

Let us denote by U : sAlgk → sModk the forgetful functor. If K is a simplicial set, U does
not commute with K ⊗ ?, but it does commute with its right adjoint ?K . This is a trivial
consequence of the fact that U has a left adjoint which commutes with colimits and hence with
K⊗?. (The same argument applied to the forgetful functor to sSet shows that in both categories
AK is MapsSet(K,A) with the algebraic structure coming from the target.) It follows that U has
a structure of simplicial functor given by

Map(A,B)n = sCommk(A,B
∆n

)→ sModk(UA,UB
∆n

) = Map(UA,UB)n.

Therefore we also obtain a group action of BZ on the simplicial k-module U(O (LX)). This
action is readily made explicit. For x ∈ Z

n a generator of k[BZ]n and ⊗y∈Znay is an element of
O (LX)n = (BZ⊗ O (X))n, then

x(⊗y∈Znay) = ⊗y∈Znay−x.

The main observation is that this structure corresponds to the cyclic structure of the Hochschild
complex.

Theorem 48. Let X ∈ dStk and let n ≥ 0. Then there is a natural isomorphism of k-modules

HC−n (LO (X)) ∼= πn(R fixBZ LORL(X)).

It fits into a commutative square

HC−n (LO (?))

∼=

HHn(LO (?))

∼=

πn(R fixBZ LORL(?)) πn(LORL(?))

of functors Ho dStk → Modk in which: the top arrow is the canonical map of §1.1; the right
arrow is the isomorphism of Theorem 47; and the bottom arrow is induced by inclusion of fixed
points.

4.3 The Chern character revisited

In this section we shall explain how to define the Chern character of a vector bundle on a derived
stack, as sketched in [TV08, §3], and we shall prove that this new construction coincides through
the identifications of the previous section with that of Chapter 1 when applied to a commutative
k-algebra that is cofibrant as a constant simplicial commutative k-algebra (or more generally
whose underlying k-module is flat). We shall only make the construction precise for affine
derived stacks, but the same construction will define the Chern character of a vector bundle on
an arbitrary derived stack X once we know the existence of a monoidal model category of vector
bundles VectX that

• the canonical map N(VectcwX )→ RMap(X,Vect) is an isomorphism in Ho sSet;

• every object of HoVectX is dualizable.
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The idea of the construction is the following. Start with a vector bundle V on a derived stack X ,
and pull back V through the evaluation at zero p : RL(X)→ X . Then the vector bundle p∗(V )
comes equipped with a canonical “monodromy” automorphism, and its trace is by definition the
Chern character of V .

Let X ∈ dStk. The natural adjunction map

BZ⊗L RL(X)→ X

induces

RétMap(X,Vect)→ RétMap(BZ⊗L RL(X),Vect) ∼= RMap(BZ,RétMap(RL(X),Vect)).

Taking connected components we obtain a map of sets

[X,Vect]→ [BZ,RétMap(RL(X),Vect)] (31)

natural for X ∈ Ho dStk (the square brackets on the left are the hom sets of Ho dStk). From
now on we assume that X = RhSpecA is an affine derived stack. Let Ã = BZ ⊗L A be the
topological Hochschild homology of A. Although it is not necessary, we will assume throughout
that A is cofibrant so that we need not worry about taking cofibrant replacements to compute
Ã. Thus Ã = BZ⊗A. By the derived Yoneda lemma, RétMap(X,Vect) is naturally equivalent
to (RétVect)(A). Recall that Vect is a derived stack and hence that RétVect is just a pointwise
fibrant replacement; we simply write RVect(A) for (RétVect)(A). In particular, πn(RVect(A)) =
πn(Vect(A)). Therefore (31) becomes a natural map

π0(Vect(A))→ [BZ, RVect(Ã)].

An element on the left is an isomorphism class in Ho sModA of some perfect A-module M . Its
image on the right is a homotopy class of maps of simplicial sets BZ→ RVect(Ã). In particular
it induces a well-defined map of sets

π0(BZ) = {∗} → π0(Vect(Ã)), (32)

pointing to the isomorphism class in Ho sModÃ of some perfect Ã-module M̃ , and a well-defined
map of groups

π1(BZ, ∗) ∼= Z→ π1(Vect(Ã), M̃). (33)

We are going to identify (32) and (33).
The inclusion ∗ → BZ induces for any X a map RL(X)→ BZ⊗L RL(X) in Ho dStk, and

therefore a map RL(X)→ X . For X = RhSpecA this is the map

e : A→ BZ⊗A (34)

which in level n is the inclusion of An into the tensor component of
⊗

y∈Zn An indexed by 0.

Lemma 49. M̃ is obtained from M by extension of scalars along (34).

Proof. Consider the diagram

π0(Vect(A))

e∗

[BZ⊗L RL(X),Vect]
∼=

[BZ, RVect(Ã)]

π0(Vect(Ã))
∼=

[∗, RVect(Ã)].

Here e∗ = π0(Vect(e)) and the vertical maps are induced by ∗ → BZ. The triangle is obtained
from a commutative triangle by applying the functor [?,Vect] and so it is commutative. The
square is also commutative by naturality of the horizontal adjunction isomorphisms. Travelling
along the bottom path, the connected component of M goes to the homotopy class of maps
∗ → RVect(Ã) pointing to the connected component of e∗(M). The commutativity of the
diagram says that the homotopy class of ∗ → RVect(Ã) factors through the homotopy class of
BZ → RVect(Ã) and so the π0 of the latter also points to the connected component of e∗(M),
i.e., M̃ ∼= e∗(M).
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Thus M̃ = M ⊗A (BZ ⊗ A). This tensor product is formed by replacing in (BZ ⊗ A)n the
factor An indexed by 0 by Mn:

M̃n =Mn ⊗k
⊗

y∈Zn−{0}

An.

The identification of (33) requires more work. We begin with a description of the first
homotopy group of Vect(A) (that applies to the nerve of any category). It is proved in [DK80,
5.5 (ii)] that ΩMVect(A) is equivalent to the subsimplicial set Aut(M) ofRMap(M,M) spanned
by the connected components corresponding to isomorphisms in Ho sModA. In particular, we
have

π1(Vect(A),M) = π0(ΩMVect(A)) ∼= π0(Aut(M)) = AutHo sModA(M).

This bijection is induced by sending a self-equivalence ofM to its image in the homotopy category.
Thus, (33) becomes a map of groups

Z→ π1(Vect(Ã), M̃) ∼= AutHo sModÃ
(M̃), (35)

i.e., an action of Z on M̃ in the homotopy category. Consider now the functor Vect′ : sCommk →
sSet defined as Vect except that we apply the groupoid completion functor to VectcwA be-
fore taking the nerve. There is a canonical natural transformation γ : Vect → Vect′. The
same result from [DK80] tells us that ΩMVect′(A) is equivalent to the constant simplicial set
AutHo sModA(M), and it follows that the map Vect(A) → Vect′(A) induces an isomorphism on
π1 for every choice of base point (and it is of course the identity in degree 0). Being the nerve
of a groupoid, Vect′(A) is a fibrant simplicial set. Since RétVect is just a pointwise fibrant
replacement of Vect, we can choose RétVect by applying a functorial factorization in sSet to the
natural transformation γ, i.e., γ factors as

Vect→ RétVect→ Vect′

where the first map is a pointwise trivial cofibration and the second map is a pointwise fibration.
Let us now fix a cofibrant and perfect simplicial A-module M representing an element of

π0(Vect(A)) (always assuming that A itself is cofibrant). It corresponds by the simplicial Yoneda
lemma to a map f : hSpecA → Vect. We will prove below that f has a lift g : hSpecA → Vect′ as
in the diagram

hSpecA
f

Vect

γ

hSpecA g Vect′.

Once g has been defined we can work explicitly at the level of representatives: a representative
of the homotopy class of maps BZ → RVect(Ã) → Vect′(Ã) corresponding to M will be the
image of g through the composition

dStk(hSpecA,Vect
′)→ dStk(BZ ⊗ hSpec Ã,Vect

′) ∼= sSet(BZ,Map(hSpec Ã,Vect
′)),

where the first map is precomposition by

BZ⊗ hSpec Ã → BZ⊗ hSpec Ã
∼= BZ⊗ hBZ

SpecA → hSpecA.

A computation yields the following formula. An element z ∈ Z will be sent to the equivalence
class in π1(Vect

′(Ã), M̃) ∼= π1(Vect(Ã), M̃) of the 1-simplex

gÃ,1(ω(z)) ∈ Vect′(Ã)1 (36)

where ω(z) : ∆1⊗A→ Ã is the morphism in sCommk induced by the classifying map ∆1 → BZ

of z. Note that ω(z) is a homotopy from (34) to itself.
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Lemma 50. Let K be a simplicial set and C a category. Then the map

sSet(K,NC)→ s1Set(i
∗
1(K), i∗1(NC))

is injective and its image consists of those morphisms g : i∗1(K)→ i∗1(NC) satisfying g1(d1x) =
g1(d0x) ◦ g1(d2x) for all x ∈ K2.

Proof. The map sSet(K,NC)→ s2Set(i
∗
2(K), i∗2(NC)) is a bijection because nerves of categories

are 2-coskeletons. Let g : i∗2(K) → i∗2(NC). Clearly g2 is determined by g1 since a 2-simplex
in NC is determined by its two external faces. This proves injectivity. Explicitly one has
g2(x) = (g1(d2x), g1(d0x)). It is then easy to check that if g0 and g1 are given forming a map
in s1Set and if g2 is defined by this formula, then g2si = sig1 for i = 0, 1 and g1di = dig2 for
i = 0, 2, so a necessary and sufficient condition for g0 and g1 to extend to a map in s2Set is
g1d1 = d1g2. This is precisely the condition of the lemma.

We now define the lift g. Since hSpecA takes values in constant simplicial sets, for g to extend
f it is necessary and sufficient that g0 = γ0f0 = f0, so it remains to define g1 such that g0 and
g1 form a map in s1Set and to check the additional condition of Lemma 50. Let B ∈ sCommk
and H ∈ hSpecA(B)1, i.e., H is a homotopy ∆1 ⊗A → B between its two faces f : A→ B and
g : A→ B. We consider the commutative diagram in sCommk

A

d0
id

∆1 ⊗A
p

A

A

d1
id

in which all maps are weak equivalences. It induces a diagram of functors

Ho sModA

id
Ld0

∗

Lf∗

Ho sModA Ho sMod∆1⊗A
Lp∗ LH∗

Ho sModB

Ho sModA

id
Ld1

∗
Lg∗

which is commutative up to natural isomorphism and in which Lp∗, Ld
0
∗, and Ld1∗ are equiva-

lences of categories. It shows that the functors Lf∗, LH∗Rp
∗, and Lg∗ are all naturally isomor-

phic, explicit isomorphisms being given by

ǫ0 : Lf∗ = LH∗Ld
0
∗ = LH∗Ld

0
∗R(d0)∗Rp∗ → LH∗Rp

∗,

ǫ1 : Lg∗ = LH∗Ld
1
∗ = LH∗Ld

1
∗R(d1)∗Rp∗ → LH∗Rp

∗,

where the nonidentity maps are induced by the counits of the equivalences (Ld0∗,R(d0)∗) and
(Ld1∗,R(d1)∗). We define g1(H) to be ǫ−11,Mǫ0,M : M ⊗f B → M ⊗g B. Then g0 and g1 are

compatible with d0, d1, and s0 by construction. It remains to prove that for Θ: ∆2 ⊗A→ B a
2-simplex of hSpecA(B), we have g1(K) = g1(J) ◦ g1(H), where

h

Θ

f

K

H
g.

J
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Let ǫ0 and ǫ1 be the natural isomorphisms induced by H as above, and let ζ0 and ζ1 (resp. η0
and η1) be the ones induced by J (resp. by K). Then we must check that

ζ−11,Mζ0,M ǫ
−1
1,Mǫ0,M = η−11,Mη0,M .

The proof proceeds by observing that each of these natural isomorphisms factors through
LΘ∗Rq

∗ where q : ∆2 ⊗A։ A is the projection: there is a diagram of natural isomorphisms

Lh∗

η1 ζ1

LK∗Rp
∗ LJ∗Rp

∗

LΘ∗Rq
∗

Lf∗

η0

ǫ0
LH∗Rp

∗ Lg∗

ζ0

ǫ1

in which all three squares are commutative.
Applying the formula (36), we find that the automorphism of M̃ image of z ∈ Z by (35) is

the composition

M̃ =M ⊗L

ω(z)d0 Ã→ Rp∗(M)⊗L

ω(z) Ã←M ⊗L

ω(z)d1 Ã = M̃. (37)

Everything we have done so far would work as well with Qcoh in place of Vect, and only
now do we use that M is perfect. Recall that perfect simplicial A-modules are the dualizable
objects in the closed symmetric monoidal category Ho sModA. Therefore we can consider for
any M ∈ sModA the trace map

tr : [M,M ]→ [A,A]

which is the composition

[M,M ] ∼= [A⊗L

AM,M ] ∼= [A,RHom(M,M)] ∼= [A,M ⊗L

A RHomA(M,A)]→ [A,A].

Let uM : M̃ → M̃ denote the image of 1 ∈ Z by (35). The Chern character of M is
tr(uM ) ∈ [A,A]. We must prove that it does not depend on the choice of the representative M̃ .
If f : M̃ → M̃ ′ is an equivalence between cofibrant objects in sModÃ, i.e. a 1-simplex of Vect(Ã),

and u′M : M̃ ′ → M̃ ′ is the image of 1 ∈ Z by (35), the isomorphism

π1(Vect(Ã), M̃)→ π1(Vect(Ã), M̃
′)

induced by f corresponds to the isomorphism

f ◦ ? ◦ f−1 : AutHo sModÃ
(M̃)→ AutHo sModÃ

(M̃ ′)

and so there is a commutative diagram

M̃
uM

f ∼=

M̃

f∼=

M̃ ′
u′

M

M̃ ′

which implies that tr(uM ) = tr(u′M ).
Recall that for A ∈ sCommk there is a Quillen adjunction

π0 : sModA ⇄ Modπ0(A) : i.

By definition of perfect simplicial modules, M perfect implies π0(M) finitely generated and
projective. In other words, the total derived functor Lπ0 preserves dualizable objects.
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Proposition 51. Let A ∈ sCommk and let M ∈ sModA be perfect. Then the square

[M,M ]
tr

Lπ0
∼=

[A,A]

Lπ0
∼=

[π0(M), π0(M)]
tr

[π0(A), π0(A)]

is commutative.

Proof. Recall that the (nonunital) monoidal structure gives us a canonical map

π0(M ⊗
L

A N)→ π0(M)⊗π0(A) π0(N)

that coincides with the edge morphism of the Künneth spectral sequence. It follows from
Lemma 17 that this map is an isomorphism ifM is perfect. By adjunction, we obtain a canonical
map

π0(RHomA(M,N))→ Homπ0(A)(π0(M), π0(N)),

which on the underlying sets is the bijection of Lemma 32. We consider the diagram

[M,M ]
∼=

∼=

[A,RHom(M,M)]

∼=

[A,M ⊗L M∨]

∼=

∼=
[A,A]

∼=

[π0(A), π0(RHom(M,M))]

∼=

[π0(A), π0(M ⊗
L M∨)]

∼=

∼=
[π0(A), π0(A)]

[π0(A), π0(M)⊗ π0(M
∨)]

∼=

[π0(M), π0(M)]
∼=

[π0(A),Hom(π0(M), π0(M))] [π0(A), π0(M)⊗ π0(M)∨]
∼=

[π0(A), π0(A)]

in which the top and bottom rows are the trace maps. The commutativity of the two small rect-
angles is clear by functoriality of π0. We check the commutativity of the other three rectangles on
elements, and we can assume thatM is cofibrant. Let [f ] ∈ [M,M ]; its image in [A,Hom(M,M)]
has a representative sending 1 ∈ A0 to f , so its image in [π0(A),Hom(π0(M), π0(M))] sends [1]
to π0(f). This is obviously what the other image of [f ] does as well. The last two rectangles
come from the diagram

π0(Hom(M,M))

∼=

π0(M ⊗M
∨)

∼=

∼=

π0(A)

π0(M)⊗ π0(M
∨)

∼=

Hom(π0(M), π0(M)) π0(M)⊗ π0(M)∨
∼=

π0(A)

by applying the functor [π0(A), ?]. Let [x ⊗ ξ] ∈ π0(M ⊗ M∨). Both images of [x ⊗ ξ] in
Hom(π0(M), π0(M)) are then π0(f) where fn(y) = ξn(y)s(x) ∈ Mn (s(x) is the degeneracy of
x in degree n). The commutativity of the second rectangle is equally clear.

Theorem 52. Let A be a flat commutative k-algebra and let M be an f.g.p. A-module. Then
the Chern character of M in HH0(A) = π0(Ã) = A as defined in §1.3 coincides with the Chern
character of M defined above.
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Proof. Both maps in (37) agree on π0. Therefore the automorphism uM : M̃ → M̃ is such that
π0(uM ) = id. Since π0(M̃) =M , Proposition 51 implies that tr(uM ) is the trace of the identity
on M . This is the same thing as the trace of an idempotent representing M .

The next step would be to prove that the Chern character is “S1-equivariant”, i.e., that it
lifts to the negative cyclic homology HC−0 (A). There could be many such lifts, so we would
also need a way to select a natural one. This is expected to be a nontrivial result. We have
already solved it for constant simplicial k-algebras in Chapter 1 using Morita naturality, but we
do not know if this is true for arbitrary simplicial commutative k-algebra, let alone for arbitrary
derived stacks. It is possible however that the proof of Chapter 1 can be adapted to simplicial
commutative k-algebras using a homotopical generalization of the category Mork (defined in the
next chapter) and derived Morita theory.
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5.1 The homotopy theory of simplicial categories

Fix a commutative ring k. A simplicial k-category is a category enriched in the closed symmetric
monoidal category sModk of simplicial k-modules. A morphism of simplicial k-categories is an
sModk-enriched functor. Let sCatk denote the category of (small) simplicial k-categories. Since
the monoidal category sModk is closed, it is itself a simplicial k-category (although it is not an
object of sCatk). For a simplicial k-category C, the category of sModk-enriched functor from
C to sModk with sModk-enriched natural transformations as morphisms is called the category
of simplicial C-modules and is denoted by sModC ; it is in fact an sModk-module with tensor
and cotensor defined objectwise. Observe that a simplicial k-category A with a single object is
nothing else than a simplicial k-algebra, and a simplicial A-module as just defined is the same
thing as a left simplicial A-module.

Let Catk denote the category of small Modk-enriched categories (also called k-categories).
There is a functor π0 : sCatk → Catk that sends a simplicial k-category C to the k-category
π0(C) with the same objects as C and with π0(C)(x, y) = π0(C(x, y)). Composition in π0(C) is
defined using the canonical map of k-modules π0(C(x, y))⊗kπ0(C(y, z))→ π0(C(x, y)⊗kC(y, z)).
If f is a morphism of simplicial k-categories, π0(f) is such that π0(f)x,y = π0(fx,y). It is clear
that π0 is left adjoint to the obvious fully faithful functor Catk → sCatk. This functor also has
a right adjoint C 7→ C0 defined by C0(x, y) = C(x, y)0, and there is a natural transformation
?0 → π0. A morphism of C0 is a homotopy equivalence if its image in π0(C) is invertible. We
shall occasionnaly view π0(C) or C0 as mere categories using the forgetful functor Catk → Cat,
and we observe that this forgetful functor reflects equivalences (because the forgetful functor
Modk → Set reflects isomorphisms).

Theorem 53. 1. There is a cofibrantly generated model structure on sCatk in which a map
f : C → D of simplicial k-categories is

• an equivalence if for every objects x and y in C, fx,y is an equivalence of simplicial
k-modules, and if π0(f) is an equivalence of k-categories;

• a fibration if for every objects x and y of C, fx,y is a fibration and if for every x ∈ C,
every y′ ∈ D, and every homotopy equivalence u ∈ D0(f(x), y

′), there exists y ∈ C
and a homotopy equivalence u ∈ C0(x, y) such that f0(u) = v.

2. Let C be a simplicial k-category. There is a cofibrantly generated model structure on sModC
in which a map f : M → N of simplicial C-modules is an equivalence (resp. a fibration)
if it is a pointwise equivalence (resp. a pointwise fibration) in sModk. With this structure,
sModC is an sModk-model category.

Proof. For 1, see [Ber04] or [Tab07a]. Since sModk is cofibrantly generated, 2 follows from an
sModk-enriched version of [Hir03, 11.6.1].

There is a duality automorphism C 7→ Cop of sCatk defined by Ob(Cop) = ObC, Cop(x, y) =
C(y, x) and (fop)x,y = fy,x. It clearly preserves the model structure of the theorem.

Conjecture 54. There exists a cofibrant replacement functor Q on sCatk such that QC → C
is the identity on objects and such that Q(Cop) = (QC)op.

Conjecture 55. If C is a cofibrant simplicial k-category, then

1. for every objects x and y, C(x, y) is cofibrant in sModk;

2. any cofibration in sModC is a pointwise cofibration.

There are several other model structures of interest on sCatk with larger sets of equivalences.
For instance, there is a left Bousfield localization of the above structure in which the equivalences
are the Morita equivalences, i.e., the simplicial k-functors C → D inducing by precomposition
(see below) an equivalence of categories Ho sModD → Ho sModC . To any simplicial k-category

58
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one can associate a mixed complex from which one can define various homology theories, and
these turn out to be Morita invariant in the obvious sense. An interesting fact is that for any
simplicial commutative k-algebra A there is a Morita equivalence between A and the simplicial k-
category of perfect simplicial A-modules, and hence that one can define the Hochschild homology
and cyclic homologies of A using this simplicial category.

Let f : C → D be a simplicial k-functor. It induces an adjunction

f∗ : sModC ⇄ sModD :f∗ (38)

where f∗(M) = Mf and f∗ exists by the theory of enriched Kan extensions. Since f∗ clearly
preserves equivalences and fibrations, this is a Quillen adjunction.

Conjecture 56. If f : C → D is an equivalence in sCatk, then (38) is a Quillen equivalence.

The tensor product of two simplicial k-categories C and D is defined by

• Ob(C ⊗D) = ObC ×ObD and

• (C ⊗D)((x, y), (x′, y′)) = C(x, x′)⊗k D(y, y′)

with the obvious compositions. This clearly defines a symmetric monoidal structure on sCatk
whose unit is the simplicial k-algebra k. Note that (C ⊗D)op = Cop ⊗Dop.

There is also a tensor product of bimodules defined as follows. Let C, D, and E be simplicial
k-categories. Let M be a simplicial C ⊗Dop-module and N a simplicial D ⊗ Eop-module. One
defines a simplicial C ⊗ Eop-module M ⊗D N by the formula

(M ⊗D N)(x, z) =M(x, ?)⊗D N(?, z)

where the right-hand side is an sModk-enriched coend. Any simplicial k-category C can be seen
as a simplicial C ⊗ Cop-module defined by its sModk-enriched hom’s.

Conjecture 57. 1. Let Q be a cofibrant replacement functor on sCatk. Then the functor

sCatk × sCatk → sCatk, (C,D) 7→ QC ⊗D

preserves equivalences.

2. Let C, D, and E be cofibrant simplicial k-categories. The tensor product of simplicial
bimodules ⊗D : sModC⊗Dop × sModD⊗Eop → sModC⊗Eop has a total left derived functor.

A consequence of 1 is that the functor ⊗ : sCatk × sCatk → sCatk has a total left derived
functor induced by any of the equivalence-preserving functors (C,D) 7→ QC ⊗ D, (C,D) 7→
C ⊗QD, and (C,D) 7→ QC ⊗QD.

Let C be a simplicial k-category. A simplicial C-module M is called perfect if it is homo-
topically finitely presented in the model category sModC , i.e., if for any filtered index category
I and any functor d : I→ sModC , the canonical map

RMap(M, holim
−−−−→

d)→ holim
−−−−→

RMap(M,d)

is an isomorphism in Ho sSet. A C ⊗ Dop-module M is called right perfect if for every x ∈ C
the Dop-module M(x, ?) is perfect. This notion of perfect simplicial module extends the one
encountered in §3.4.

Conjecture 58. Let C be the simplicial k-module k viewed as a simplicial k-category. Then a
simplicial C-module is perfect if and only if it is perfect as a simplicial k-module.

Using bimodules on can enhance the category sCatk into a category sCatck. The definition of
sCatck is completely analogous to that of the category Mork studied in Chapter 1. Its objects are
small simplicial k-categories, and the set of morphisms from C to D is the set of isomorphism
classes of right perfect C⊗LDop-modules in Ho sModC⊗LDop . For definiteness we fix a cofibrant
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replacement functor Q on sCatk satisfying Conjecture 54, and C⊗LDop is short for QC⊗QDop.
Composition is given by the derived tensor product of bimodules

⊗L

QD : Ho sModC⊗LDop ×Ho sModD⊗LEop → Ho sModC⊗LEop .

There is a functor I : sCatk → sCatck that is the identity on objects and sends a morphism
f : C → D to the isomorphism class of the C ⊗L Dop-module I(f) defined by (I(f))(x, y) =
(QD)(y, (Qf)(x)). It is “fully faithful” in the following sense: if I(f) = I(g), the Ho sModk-
enriched Yoneda lemma implies that f and g are naturally isomorphic as Ho sModk-enriched
functors.†

The category sCatck has a symmetric monoidal structure ⊗L defined on objects by C⊗LD =
QC ⊗QD. On morphisms it is induced by the functor

Ho sModC⊗LDop ×Ho sModE⊗LF op → Ho sMod(C⊗LE)⊗L(D⊗LF )op ,

(M,N) 7→ P, P (x, z, y, w) =M(x, y)⊗k N(z, w).

It is straightforward to check that I(f ⊗ g) = I(f)⊗ I(g), so that I is a monoidal functor.
In the next section we shall use the following generalization of the notion of simplicial k-

category. If A is a simplicial commutative k-algebra, the category sModA of simplicial modules
over A is a closed symmetric monoidal category. We define an simplicial A-category to be a
category enriched in sModA. All the definitions and results of this section extend to simplicial
categories over simplicial commutative k-algebras. In particular, we can define the category
sCatcA. A morphism f : A→ B in sCommk induces an obvious adjunction

f∗ : sCatA ⇄ sCatB :f∗

with f∗(C)(x, y) = f∗(C(x, y)) and f∗(D)(x, y) = f∗(D(x, y)), which is manifestly a Quillen
adjunction. This adjunction extends to an adjunction

f∗ : sCat
c
A ⇄ sCatcB :f∗

in which f∗ acts on bimodules by extending the scalars. More precisely, if C and D are two
cofibrant simplicial A-categories and if M is a simplicial C ⊗Dop-module, then

f∗(M) : f∗(C)⊗B f∗(D)op → sModB

is defined on objects by f∗(M)(x, y) = f∗(M(x, y)) and on the simplicial B-module of morphisms
from (x, y) to (x′, y′) by

f∗C(x, x
′)⊗B f∗D(y′, y) ∼= f∗(C(x, x

′)⊗A D(y′, y))

→ f∗(HomA(M(x, y),M(x′, y′)))→ HomB(f∗M(x, y), f∗M(x′, y′)).

5.2 The Chern character of a categorical sheaf

Let f : A→ B be a morphism of simplicial commutative k-algebras. It induces a functor

f∗ : sCat
c
A → sCatcB.

If g : B → C is another morphism in sCommk, there is a canonical isomorphism (gf)∗ ∼= g∗f∗.
Using the same trick as in §3.4 we can define for every A ∈ sCommk a new category CQcohA
varying functorially with A, together with an equivalence of categories CQcohA → sCatA such
that for every f : A→ B the diagram

CQcohA
f∗

CQcohB

sCatcA f∗
sCatcB

†There is obviously some 2-categorical stuff going on here. In fact, sCats
k
can be viewed as a (∞, 2)-category

since its categories of morphisms are connected components of simplicial categories, so the simplifications adopted
here are quite extreme.
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commutes up to a natural isomorphism. Composing with the nerve, we obtain a functor

CQcoh: sCommk → sSet, A 7→ N(CQcoh
∼=
A)

where CQcoh
∼=
A is the subcategory of isomorphisms in CQcohA.

A simplicial A-category is called saturated if it is Morita equivalent to a cofibrant simplicial
k-category C with a single object such that

• C is perfect as a simplicial k-module and

• C is perfect as a simplicial C ⊗ Cop-module.

Conjecture 59. A simplicial A-category C is saturated if and only if it is dualizable in the
monoidal category sCatcA.

The full subcategory of sCatcA consisting of saturated objects will be denoted by sCatsA.

Conjecture 60. If f : A → B is a morphism in sCommk, then f∗ : sCat
c
A → sCatcB preserves

saturated objects.

Therefore CQcoh has a subfunctor

CVect : sCommk → sSet, A 7→ N(CVect
∼=
A)

where CVectA is the full subcategory of CQcohA consisting of objects whose image in sCatcA is
saturated.

Conjecture 61. CQcoh and CVect are derived stacks.

Assuming this one can proceed in exactly the same way as in §4.3. Given a simplicial k-
category C over a cofibrant simplicial commutative k-algebra A, we obtain a well-defined map
of sets

π0(BZ) = {∗} → π0(CVect(Ã)),

where Ã = BZ ⊗ A, pointing to the saturated simplicial k-category C̃ obtained from C by
extending the scalars along the inclusion A→ Ã, and a well-defined group action

π1(BZ, ∗) ∼= Z→ π1(CVect(Ã), C̃) ∼= AutsCats
Ã
(C̃).

The image of 1 ∈ Z is the isomorphism class of an invertible simplicial C̃ ⊗ C̃op-module. As a
morphism in sCats

Ã
, it has a trace which is an element of sCats

Ã
(Ã, Ã), i.e., an isomorphism class

in Ho sModÃ of a perfect simplicial Ã-module. This perfect simplicial module on the topological
Hochschild homology of A is by definition the Chern character of the simplicial k-category C.

Finally, it is expected that CQcoh and CVect classify a notion of categorical sheaf on derived
stacks, so that the above construction extends to arbitrary derived stacks. The Chern character
of a categorical sheaf on a derived stack X is thus a vector bundle on its derived loop space
RL(X).
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[Toë06a] Bertrand Toën, Anneaux de définition des dg-algèbres propres et lisses, 2006, arXiv:
math/0611546v2 [math.AT]
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