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Abstract. We construct geometric models for classifying spaces of linear algebraic groups in G-equivariant
motivic homotopy theory, where G is a tame group scheme. As a consequence, we show that the equivariant

motivic spectrum representing the homotopy K-theory of G-schemes (which we construct as an E∞-ring) is
stable under arbitrary base change, and we deduce that the homotopy K-theory of G-schemes satisfies cdh

descent.
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1. Introduction

Let K(X) and KB(X) denote the connective and nonconnective K-theory spectra of a quasi-compact
quasi-separated scheme X [TT90]. The homotopy K-theory spectrum KH(X) was introduced by Weibel in
[Wei89]: it is the geometric realization of the simplicial spectrum KB(∆• ×X), where

∆n = SpecZ[t0, . . . , tn]/(
∑
i ti − 1)

is the standard algebraic n-simplex. There are natural transformations K → KB → KH, which are equiva-
lences on regular schemes.

Haesemeyer [Hae04] (in characteristic zero) and Cisinski [Cis13] (in general) proved that homotopy K-
theory satisfies descent for Voevodsky’s cdh topology. This was a key ingredient in the proof of Weibel’s van-
ishing conjecture for negative K-theory, established in characteristic zero by Cortiñas, Haesemeyer, Schlicht-
ing, and Weibel [CHSW08], and up to p-torsion in characteristic p > 0 by Kelly [Kel14] (with a simplified
proof by Kerz and Strunk [KS17]). More recently, Kerz, Strunk, and Tamme proved that K-theory satisfies
“pro-cdh descent” and deduced Weibel’s conjecture in complete generality [KST18].

The goal of this paper is to extend the cdh descent result of Cisinski to a suitable class of Artin stacks,
namely, quotients of schemes by linearizable actions of linearly reductive algebraic groups. We will introduce
a reasonable definition of the homotopy K-theory spectrum KH(X) for such a stack X, which agrees with
K(X) when X is regular. The “obvious” extension of Weibel’s definition works well for quotients by finite
or diagonalizable groups, but, for reasons we will explain below, a more complicated definition is preferred
in general. Our main results are summarized in Theorem 1.3 below. In a sequel to this paper, joint with
Amalendu Krishna, we use these results to prove vanishing theorems for the negative K-theory of tame Artin
stacks [HK19].

Let us first introduce some terminology. A morphism of stacks Y → X will be called quasi-projective if
there exists a finitely generated quasi-coherent module E over X and a quasi-compact immersion Y ↪→ P(E)
over X. We say that a stack X has the resolution property if every finitely generated quasi-coherent module
over X is the quotient of a locally free module of finite rank. Throughout this paper, we will work over a
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fixed quasi-compact separated (qcs) base scheme B, and we will say that a morphism of B-stacks Y→ X is
N-quasi-projective if it is quasi-projective Nisnevich-locally on B. We refer to [Hoy17, §2.7] for the precise
definition of a tame group scheme over B. The main examples of interest are:

• finite locally free groups of order invertible on B;
• groups of multiplicative type;
• reductive groups, if B has characteristic 0 (i.e., there exists B → SpecQ).

Let tqStkB denote the 2-category of finitely presented B-stacks that have the resolution property, that
are global quotient stacks [X/G] for some tame affine group scheme G, and such that the resulting map
[X/G]→ BG is N-quasi-projective.1 For X ∈ tqStkB , we let SchX ⊂ (tqStkB)/X be the full subcategory of N-
quasi-projective X-stacks. The Nisnevich (resp. cdh) topology on SchX is as usual the Grothendieck topology
generated by Nisnevich squares (resp. Nisnevich squares and abstract blowup squares). The Nisnevich and
cdh topologies on tqStkB are generated by the corresponding topologies on the slices SchX.

Remark 1.1. If B has characteristic zero, the 2-category tqStkB includes all Artin stacks of finite presen-
tation, with affine stabilizers, and satisfying the resolution property. Indeed, by a theorem of Gross [Gro17,
Theorem 1.1], such stacks have the form [X/GLn], where X is a quasi-affine GLn-scheme.

Remark 1.2. The stacks in tqStkB share many features with the “tame Artin stacks” considered in [AOV08].
There are two essential differences: our stacks are not required to have finite diagonal, but theirs are not
required to have the resolution property.

Theorem 1.3. Let B be a quasi-compact separated base scheme. There exists a cdh sheaf of E∞-ring spectra

KH : tqStkop
B → CAlg(Sp)

and an E∞-map K → KH with the following properties.

(1) If X ∈ tqStkB is regular, the map K(X)→ KH(X) is an equivalence.
(2) KH is homotopy invariant in the following strong sense: if p : Y → X is an fpqc torsor under a

vector bundle, then p∗ : KH(X)→ KH(Y) is an equivalence.
(3) KH satisfies Bott periodicity: for every vector bundle V over X, there is a canonical equivalence of

KH(X)-modules KH(V on X) ' KH(X).
(4) Suppose that X ∈ SchBG where G is an extension of a finite group scheme by a Nisnevich-locally

diagonalizable group scheme. Then KH(X) is the geometric realization of the simplicial spectrum
KB(∆• × X).

From property (1) and the hypercompleteness of the cdh topology, we immediately deduce:

Corollary 1.4. Suppose that B is noetherian of finite Krull dimension and that every stack in tqStkB
admits a cdh cover by regular stacks, e.g., B is essentially of finite type over a field of characteristic zero.
Then the canonical map K → KH exhibits KH as the cdh sheafification of K.

The fact that KH is a cdh sheaf means that it is a Nisnevich sheaf and that, for every cartesian square

W Y

Z X
i

p

in tqStkB such that i is a closed immersion, p is N-projective, and p induces an isomorphism YrW ' XrZ,
the induced square of spectra

KH(X) KH(Z)

KH(Y) KH(W)

1Quasi-projective BG-stacks almost have the resolution property: they admit a schematic Nisnevich cover whose Čech nerve
consists entirely of stacks with the resolution property [Hoy17, Lemma 3.11]. In particular, the requirement that stacks in

tqStkB have the resolution property is immaterial as far as Nisnevich sheaves are concerned. Allowing BG-stacks that are only

Nisnevich-locally quasi-projective is necessary to dispense with isotriviality conditions on G when the base B is not geometrically
unibranch (see [Hoy17, Remark 2.9]).
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is cartesian. For quotients by finite discrete groups, we can improve this result as follows:

Theorem 1.5. Let G be a finite discrete group and let

W Y

Z X
i

p

be a cartesian square of locally affine qcs G-schemes over Z[1/|G|], where i is a closed immersion, p is proper,
and p induces an isomorphism Y rW ' X r Z. Then the induced square of spectra

KH([X/G]) KH([Z/G])

KH([Y/G]) KH([W/G])

is cartesian, where KH(X) denotes the geometric realization of the simplicial spectrum KB(∆• × X).

Remark 1.6. If G is a finite discrete group acting on a qcs scheme X, then X is a locally affine G-scheme if
and only if the coarse moduli space of the Deligne–Mumford stack [X/G] is a scheme [Ryd13, Remark 4.5].

We make a few comments on homotopy invariance. As we observed in [Hoy17], most of the interesting
properties of homotopy invariant Nisnevich sheaves on schemes only extend to stacks if homotopy invariance
is understood in the strong sense of property (2) of Theorem 1.3. A typical example of a homotopy equivalence
in that sense is the quotient map X → X/U where U is a split unipotent group acting on X; this map is
usually not an A1-homotopy equivalence, not even Nisnevich-locally on the target. This explains why our
definition of KH for general stacks is more complicated than it is for schemes. Property (4) of Theorem 1.3
is explained by the fact that vector bundle torsors over such stacks are Nisnevich-locally split.

Properties (1)–(4) of Theorem 1.3 will essentially be enforced by the definition of the homotopy K-theory
presheaf KH and foundational results on equivariant K-theory due to Thomason [Tho87] and Krishna–Ravi
[KR18]. The content of Theorem 1.3 is thus the statement that KH is a cdh sheaf. Its proof uses the
machinery of stable equivariant motivic homotopy theory developed in [Hoy17]. Namely, the fact that
KH is a Nisnevich sheaf satisfying properties (2) and (3) of Theorem 1.3 implies that its restriction to
smooth N-quasi-projective X-stacks is representable by a motivic spectrum KGLX ∈ SH(X). By [Hoy17,
Corollary 6.25], we can then deduce that KH satisfies cdh descent, provided that the family of motivic
spectra {KGLX}X∈tqStkB is stable under N-quasi-projective base change. This base change property is thus
the heart of the proof. We will verify it by adapting Morel and Voevodsky’s geometric construction of
classifying spaces [MV99, §4.2] to the equivariant setting.

Theorem 1.7. For every X ∈ tqStkB, there exists an E∞-algebra KGLX ∈ SH(X) representing the E∞-
ring-valued presheaf KH on smooth N-quasi-projective X-stacks. Moreover, the assignment X 7→ KGLX is a
section of CAlg(SH(−)) over tqStkop

B that is cocartesian over N-quasi-projective morphisms. In particular,
for f : Y→ X N-quasi-projective, f∗(KGLX) ' KGLY.

Finally, we will observe that the Borel–Moore homology theory represented by KGLX on N-quasi-projective
X-stacks, for X regular, is the K-theory of coherent sheaves, also known as G-theory.

Remark 1.8. In the paper [KR18], the authors work over a base field. This assumption is used via [HR15] to
ensure that the∞-category QCoh(X) of quasi-coherent sheaves is compactly generated and that the structure
sheaf OX is compact. We claim that this holds for any X ∈ tqStkB . If G is a linearly reductive affine group
scheme, then OBG is compact in QCoh(BG), by [HR15, Theorem C (3)⇒(1)]. If X is N-quasi-projective
over BG, then p : X → BG is representable, so the functor p∗ : QCoh(BG) → QCoh(X) preserves compact
objects. Hence, locally free modules of finite rank over X are compact, being dualizable. Finally, as X has
the resolution property, QCoh(X) is generated under colimits by shifts of locally free modules of finite rank,
by [Lur18, Proposition 9.3.3.7, Corollary C.2.1.7, and Corollary 9.1.3.2 (4)]. Thus, we shall freely use the
results of [KR18] over a general qcs base scheme B.
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Outline. In §2, we construct geometric models for classifying spaces of linear algebraic group in equivariant
motivic homotopy theory. The main example is a model for the classifying space of GLn in terms of
equivariant Grassmannians.

In §3, we develop some categorical machinery that will be used to equip the motivic spectrum KGLX with
an E∞-ring structure. The results of this section are not otherwise essential for the proof of Theorem 1.3,
but they may be of independent interest.

In §4, we define homotopy K-theory of tame quotient stacks and prove that it satisfies properties (1)–(4)
of Theorem 1.3.

In §5, we construct the motivic E∞-ring spectra KGLX representing homotopy K-theory and prove that
they are stable under N-quasi-projective base change, which implies that KH is a cdh sheaf.

Notation and terminology. This paper is a sequel to [Hoy17] and uses many of the definitions and
constructions introduced there, such as: the notions of homotopy invariance and Nisnevich excision [Hoy17,
Definitions 3.3 and 3.7], the corresponding localization functors Lhtp and LNis, and the combined motivic
localization Lmot [Hoy17, §3.4]; the auxiliary notion of small G-scheme [Hoy17, Definition 3.1]; and the
definitions of the stable equivariant motivic homotopy category as a symmetric monoidal ∞-category and
as an ∞-category of spectrum objects [Hoy17, §6.1]. A notational difference with op. cit. is that we prefer
to work with stacks rather than G-schemes, so that we write, e.g., SH([X/G]) instead of SHG(X).

Given X ∈ tqStkB , recall that SchX ⊂ (tqStkB)/X is the full subcategory of N-quasi-projective X-stacks.
Whenever we write X as [X/G], it is understood that G is a tame affine group scheme and that X ∈
SchBG. If X = [X/G], SchX differs slightly from the category SchGX from [Hoy17, §3.1], but every object

in either category has a Nisnevich cover whose Čech nerve belongs to their intersection, so the difference
does not matter for our purposes. We let SmX ⊂ SchX be the full subcategory spanned by the smooth
X-stacks. We denote by QCoh(X)♥ the abelian category of quasi-coherent sheaves on X (it is the heart of
a t-structure on the stable ∞-category QCoh(X) from Remark 1.8). Given E ∈ QCoh(X)♥, we denote by
V(E) = Spec(Sym(E)) the associated vector bundle and by P(E) = Proj(Sym(E)) the associated projective
bundle. Unless otherwise specified, presheaves and sheaves are valued in ∞-groupoids.

2. Geometric models for equivariant classifying spaces

In this section, we fix a base stack S = [S/G] ∈ tqStkB . If Γ is an fppf sheaf of groups on SchS, we
denote by BfppfΓ = Lfppf(∗/Γ) the presheaf of groupoids classifying Γ-torsors in the fppf topology, which
we will often implicitly regard as a presheaf on SmS (note however that the fppf sheafification must be
performed on the larger category SchS). For example, for X ∈ SmS and n ≥ 0, (BfppfGLn)(X) is the
groupoid of vector bundles of rank n on X. When S is a scheme and Γ is a smooth linear group scheme
over S, Morel and Voevodsky constructed in [MV99, §4.2] a geometric model for Lmot(BfppfΓ), i.e., they
expressed Lmot(BfppfΓ) as a simple colimit of representables in H(S). In this section, we generalize their
result to arbitrary S ∈ tqStkB .

Let U be an fppf sheaf on SchS with an action of Γ. If X is an fppf sheaf and π : T → X is a torsor
under Γ, we denote by Uπ the π-twisted form of U , i.e., the sheaf Lfppf((U × T )/Γ). The Morel–Voevodsky
construction is based on the following tautological lemma:

Lemma 2.1. Let Γ be an fppf sheaf of groups on SchS acting on an fppf sheaf U . Suppose that, for every
X ∈ SmS and every fppf torsor π : T → X under Γ, Uπ → X is a motivic equivalence on SmS. Then the
map

Lfppf(U/Γ)→ BfppfΓ

induced by U → ∗ is a motivic equivalence on SmS.

Proof. By universality of colimits, it suffices to show that, for every X ∈ SmS and every map X→ Lfppf(∗/Γ),
the projection Lfppf(U/Γ×∗/Γ X)→ X is a motivic equivalence on SmS. This is exactly the assumption. �

Recall from [Hoy17, Definition 3.1] that a G-scheme X over B is small if there exists a G-quasi-projective
morphism X → U where U is affine, has trivial G-action, and has the G-resolution property. Every X ∈
tqStkB admits a schematic Nisnevich cover whose Čech nerve consists entirely of stacks of the form [X/G]
where X is small [Hoy17, Lemma 3.11].
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Definition 2.2. A system of vector bundles over S is a diagram of vector bundles (Vi)i∈I over S, where I
is a filtered poset, whose transition maps are vector bundle inclusions. Such a system is called:

• saturated if, for every i ∈ I, there exists 2i ≥ i such that Vi ↪→ V2i is isomorphic under Vi to
(id, 0) : Vi ↪→ Vi ×S Vi.
• complete if, for every X = [X/G] ∈ SchS with X small and affine, and for every vector bundle E on

X, there exists i ∈ I and a vector bundle inclusion E ↪→ Vi ×S X.2

Note that both properties are preserved by any base change T → S in SchS. The following example
shows that complete saturated systems of vector bundles always exist.

Example 2.3.

(1) If G is finite locally free and p : S → S = [S/G] is the quotient map, then (V(p∗O
n
S))n≥0 is a complete

saturated system of vector bundles over S.
(2) Let {Vα}α∈A be a set of representatives of isomorphism classes of vector bundles over S, let I be the

filtered poset of maps A → N with finitely many nonzero values, and for i ∈ I let Vi =
⊕

α∈A V
iα
α .

Then (Vi)i∈I , with the obvious transition maps, is clearly a saturated system of vector bundles over
S. It is also complete, by Lemma 2.4 below.

Lemma 2.4. Let f : T → S be a quasi-affine morphism. For every vector bundle V on T, there exists a
vector bundle W on S and a vector bundle inclusion V ↪→W ×S T.

Proof. Let V = V(E). Since f is quasi-affine, f∗f∗(E) → E is an epimorphism. Since f∗(E) is the union
of its finitely generated quasi-coherent submodules [Hoy17, Lemma 2.10], there exists M ⊂ f∗(E) finitely
generated such that f∗(M) → E is an epimorphism. By the resolution property, we may assume that M is
locally free. Setting W = V(M), we then have a vector bundle inclusion V ↪→W ×S T, as desired. �

Lemma 2.5. Let X = [X/G] ∈ tqStkB with X small and affine, let s : Z ↪→ X be a closed immersion, and
let V be a vector bundle on X. Then any section of V over Z lifts to a section of V over X.

Proof. Let V = V(E). We must show that any map OX → s∗s
∗(E∨) in QCoh(X)♥ lifts to a map OX → E∨.

Since s is a closed immersion, the restriction map E∨ → s∗s
∗(E∨) is an epimorphism in QCoh(X)♥. Moreover,

since X is small and affine and G is linearly reductive, OX is projective in QCoh(X)♥ [Hoy17, Lemma 2.17].
The result follows. �

Lemma 2.6. Let (Vi)i∈I be a saturated system of vector bundles over S. For every i ∈ I, let Ui ⊂ Vi be an
open substack such that Vi ↪→ Vj maps Ui to Uj whenever i ≤ j. Suppose that:

(1) there exists i ∈ I such that Ui → S has a section;
(2) for all i ∈ I, under the isomorphism V2i ' V 2

i , (Ui × Vi) ∪ (Vi × Ui) ⊂ U2i.

Then U∞ = colimi∈I Ui ∈ P(SmS) is motivically contractible.

Proof. By [Hoy17, Proposition 3.16 (2)], it will suffice to show that, for every X = [X/G] ∈ SmS with
X small and affine, the simplicial set Map(A• × X, U∞) is a contractible Kan complex. Consider a lifting
problem

∂∆n Map(A• × X, U∞).

∆n

f

Then f : ∂AnX → U∞ is a morphism from the boundary of the algebraic n-simplex over X to U∞, and it
factors through Ui for some i since ∂AnX is compact as an object of P(SmS). Increasing i if necessary,
we may assume, by (1), that there exists a section x : S → Ui. By Lemma 2.5, there exists a morphism
g : AnX → Vi lifting f . Choose a closed substack Zi ⊂ Vi complementary to Ui, so that g−1(Zi) ∩ ∂AnX = ∅.
Again by Lemma 2.5, the map

g−1(Zi) t ∂AnX → S tS
xt0−−→ Vi

admits an extension h : AnX → Vi. Then the morphism (g, h) : AnX → V 2
i misses Z2

i and hence solves the
lifting problem, by (2). �

2This is similar to the notion of complete G-universe in equivariant homotopy theory.
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If E is a vector bundle over S, we denote by GL(E) the group S-stack of linear automorphisms of E. By
a subgroup of GL(E) we mean a subfunctor of its functor of points (valued in group objects in groupoids).

Theorem 2.7. Let E be a vector bundle over S, ∆ ⊂ GL(E) a closed subgroup, and Γ ⊂ ∆ a subgroup
that is flat and finitely presented over S. Let (Vi)i∈I be a complete saturated system of vector bundles over
S. For each i ∈ I, let Ui ⊂ Hom(E, Vi) be the open substack where the action of ∆ is strictly free, and let
U∞ = colimi∈I Ui. Then the map

Lfppf(U∞/Γ)→ BfppfΓ

induced by U∞ → ∗ is a motivic equivalence on SmS.

Proof. We check that U∞ satisfies the assumption of Lemma 2.1, i.e., that for any X ∈ SmS and any Γ-torsor
π : T → X, the map (U∞)π → X is a motivic equivalence on SmS. By [Hoy17, Proposition 4.6], we can
assume that X = [X/G] with X small and affine. It then suffices to show that the saturated system of vector
bundles Hom(Eπ, Vi ×S X) over X and the open substacks (Ui)π satisfy the conditions of Lemma 2.6 with
S = X. The second condition is clear, by definition of Ui. To verify the first condition, we can assume that
∆ = GL(E). Sections of (Ui)π over X are then vector bundle inclusions Eπ ↪→ Vi ×S X. Since (Vi)i∈I is
complete, there exist such inclusions for large enough i. �

Remark 2.8. Although this is not always true in the generality of Theorem 2.7, the fppf quotients
Lfppf(Ui/Γ) are often representable by (necessarily smooth) quasi-projective S-stacks, so that the presheaf
Lfppf(U∞/Γ) is a filtered colimit of representables. It is in that sense that Lfppf(U∞/Γ) is a geometric model
for Lmot(BfppfΓ).

Corollary 2.9. Under the assumptions of Theorem 2.7, suppose that the fppf quotients Lfppf(Ui/Γ) are uni-
versally representable by N-quasi-projective S-stacks. Then, for every N-quasi-projective morphism f : T→
S, the map

f∗(BfppfΓ)→ Bfppf(f
∗Γ)

in P(SmT) is a motivic equivalence.

Proof. Consider the following commutative square in P(SmT):

f∗Lfppf(U∞/Γ) f∗(BfppfΓ)

Lfppf(f
∗(U∞/Γ)) Bfppf(f

∗Γ).

By Theorem 2.7, the horizontal maps are motivic equivalences. On the other hand, by assumption, the left
vertical arrow is an isomorphism between ind-representable presheaves on SmT. �

Corollary 2.9, applied to Γ = GLn, is all that we will need from this section in the sequel. In that
case, Ui ⊂ Hom(AnS, Vi) is the open substack of vector bundle inclusions, and Lfppf(Ui/GLn) is universally
represented by the Grassmannian Grn(Vi). Let us make Theorem 2.7 more explicit in this special case:

Corollary 2.10. Let (Vi)i∈I be a complete saturated system of vector bundles over S. For any n ≥ 0, the
map

colim
i∈I

Grn(Vi)→ BfppfGLn

in P(SmS) classifying the tautological bundles is a motivic equivalence.

3. Periodic E∞-algebras

Let C ∈ CAlg(PrL) be a presentably symmetric monoidal ∞-category, S a set of objects of C/1, and M a

C-module in PrL. For every x ∈ C, we have the adjunction

x⊗− : M � M : Hom(x,−).

We say that an object E ∈ M is S-periodic if α∗ : E → Hom(x,E) is an equivalence for every α : x → 1 in
S. We denote by PSM ⊂ M the full subcategory spanned by the S-periodic objects. It is clear that this
inclusion is an accessible localization and hence admits a left adjoint PS , called periodization. Note that
E is S-periodic if and only if it is local with respect to idM ⊗ α for every M ∈ M and α ∈ S. If M = C,
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it follows immediately that the localization functor PS is compatible with the monoidal structure in the
sense of [Lur17, Definition 2.2.1.6], and hence that it can be promoted to a symmetric monoidal functor
[Lur17, Proposition 2.2.1.9]. In particular, for every E∞-algebra A in C, PSA is also an E∞-algebra in C

and A→ PSA is an E∞-map.
Let S0 be the set of domains of morphisms in S. Consider the presentably symmetric monoidal ∞-

category C[S−1
0 ] obtained from C by adjoining formal inverses to elements of S0 (see [Hoy17, §6.1]), which is

in particular a C-module. We have an adjunction

C C[S−1
0 ],

Φ

Ψ

where Φ is symmetric monoidal. It follows that Ψ preserves S-periodic objects. Hence, the above adjunction
induces an adjunction

(3.1) PSC PS(C[S−1
0 ]).

PSΦ

Ψ

Proposition 3.2. Let C be a presentably symmetric monoidal ∞-category, S a set of objects of C/1, and S0

the set of domains of morphisms in S. Then the adjunction (3.1) is an equivalence of symmetric monoidal
∞-categories. In particular, every S-periodic E∞-algebra in C lifts uniquely to an S-periodic E∞-algebra in
C[S−1

0 ].

Proof. Indeed, the symmetric monoidal functors PS : C → PSC and PSΦ: C → PS(C[S−1
0 ]) satisfy the same

universal property, since the former sends every x ∈ S0 to an invertible object, namely, the unit of PSC. �

We would like to understand the periodization functor PS more explicitly. Consider the case where S
consists of a single map α : x→ 1. Given E ∈ C, it is tempting to think that PαE is given by the formula

colim
(
E

α−→ Hom(x,E)
α−→ Hom(x⊗2, E)

α−→ · · ·
)
,

at least if we assume that Hom(x,−) preserves filtered colimits (otherwise, we would naturally consider
a transfinite construction). This formula is indeed correct if C is a stable ∞-category and α : 1 → 1 is
multiplication by an integer, but not in general. For example, suppose that C is the symmetric monoidal
∞-category of small stable ∞-categories, and let α be multiplication by a positive integer on the unit Spfin.
Then PαC ⊂ C is the subcategory of zero objects, but the above colimit with E = Spfin is not zero. The
essential difference between these two cases is the following: in the first case, the cylic permutation of α3

is homotopic to the identity (because it is the image of an even element in π1 of the sphere spectrum), but
in the second case, no nontrivial permutation of αn is homotopic to the identity. We will show that there
exists an analogous formula for PS in general, provided that the elements of S are cyclically symmetric in a
suitable sense.

We recall some constructions from [Hoy17, §6.1]. Let X be any set of objects of C. The filtered simplicial
set L(X) is the union over finite subsets F ⊂ X of the simplicial sets LF , where L is the 1-skeleton of the
nerve of the poset N. We view a vertex of L(X) as a formal tensor product of elements of X. The C-module
StabX(C) of X-spectra is then defined as the limit of a diagram L(X)op → ModC taking each vertex of
L(X) to C and each arrow w → w ⊗ x to the functor Hom(x,−). Equivalently, StabX(C) is the ∞-category
of cartesian sections of the cartesian fibration over L(X) classified by L(X)op → Cat∞. A general section

of this cartesian fibration will be called an X-prespectrum in C; we denote by Stablax
X (C) the C-module of

X-prespectra. Thus, StabX(C) is a (left exact) localization of Stablax
X (C). The localization functor is called

spectrification and is denoted by Q : Stablax
X (C)→ StabX(C). If Hom(x,−) preserves filtered colimits for all

x ∈ X, which will be the case in all our applications, spectrification is given by the familiar formula

Q(E)w = colim
v∈L(X)

Hom(v,Ew⊗v).

In general, one can describe spectrification as follows. For every x ∈ X, consider the full subcategory
Ex ⊂ Stablax

X (C) consisting of X-prespectra that are spectra in the x-direction, so that StabX(C) =
⋂
x∈X Ex.

Choose a regular cardinal κ such that Hom(x,−) preserves κ-filtered colimits for all x ∈ X, and let shx be

the pointed endofunctor of Stablax
X (C) given by shx(E)w = Hom(x,Ew⊗x). Then the κth iteration shκx of shx

lands in Ex. Moreover, any map E → F with F ∈ Ex factors uniquely through shx(E). It follows that shκx
is left adjoint to the inclusion Ex ⊂ Stablax

X (C). The total localization functor Q can now be written as an
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appropriate κ-filtered transfinite composition in which each indecomposable map is an instance of id→ shκx
for some x ∈ X (see the proof of [Lur09, Lemma 7.3.2.3]).

To every E ∈ C we can associate a “constant” S0-prespectrum cSE = (E)w∈L(S0) with structure maps
E → Hom(x,E) induced by the maps in S. Let QS : C→ C be the functor defined by

QSE = Ω∞Q(cSE),

where Ω∞ : StabS0
(C) → C is evaluation at the initial vertex of L(S0). There is an obvious natural trans-

formation id → QS . For example, if S consists of a single map α : x → 1 and Hom(x,−) preserves filtered
colimits, we have

QαE = colim
(
E

α−→ Hom(x,E)
α−→ Hom(x⊗2, E)→ · · ·

)
.

Lemma 3.3. Let C be a presentably symmetric monoidal ∞-category, S a set of objects of C/1, and E ∈ C.
If QSE is S-periodic, then the map E → QSE exhibits QSE as the S-periodization of E.

Proof. For x ∈ S0, the functor Hom(x,−) : PSC → PSC is an equivalence of ∞-categories, since PS(x) is
invertible in PSC. Hence, Ω∞ : PS StabS0

(C)→ PSC is an equivalence. Consider the following commutative
diagram of C-modules:

C Stablax
S0

(C) StabS0
(C)

PSC PS Stablax
S0

(C) PS StabS0
(C) PSC.

Σ∞lax Q

Ω∞

'

Σ∞

'

All the vertical arrows are periodization functors, and the lower composition is the identity. This diagram
shows that

PS(E) = Ω∞PSQ(Σ∞laxE).

Here, Σ∞laxE is the free S0-prespectrum (E ⊗ w)w∈L(S0). The obvious map Σ∞laxE → cSE is manifestly a

termwise PS-equivalence. Since the right adjoints to the various evaluation functors Stablax
S0

(C)→ C preserve
S-periodic objects, termwise PS-equivalences of S0-prespectra are in fact PS-equivalences. It follows that

PS(E) = Ω∞PSQ(cSE).

All the terms of the S0-spectrum Q(cSE) are equivalent to QSE. Hence, by the assumption, Q(cSE) is
already S-periodic, and we get PSE = QSE, as desired. �

Example 3.4. Let K denote the presheaf of E∞-ring spectra X 7→ K(X) on qcqs schemes, and let β ∈
K̃1(Gm, 1) be the Bott element, that is, the element induced by the automorphism t of OGm , where Gm =
SpecZ[t±1]. Let γ be the composite

(P1 r 0)
∐
Gm

A1 → Σ(Gm/1)
β−→ K,

where the pushout is taken in presheaves and pointed at 1. By inspecting the definition [TT90, Definition
6.4], we see that the Bass–Thomason–Trobaugh K-theory spectrum KB is the K-module QγK. Since KB

is γ-periodic, Lemma 3.3 implies that KB = PγK. In particular, KB is an E∞-algebra under K. The same
argument applies to K and KB as presheaves on tqStkB (see [KR18, §3.5] for the definition of KB in this
context).

Let C be a symmetric monoidal ∞-category. An object x ∈ C is called n-symmetric if the cyclic per-
mutation σn of x⊗n is homotopic to the identity. We will say that x is symmetric if it is n-symmetric for
some n ≥ 2. If C is presentably symmetric monoidal and X is a set of symmetric objects of C, there is an
equivalence of C-modules C[X−1] ' StabX(C) (see [Rob15, Corollary 2.22] and [Hoy17, §6.1]).

The ∞-category C/1 inherits a symmetric monoidal structure from C such that the forgetful functor
C/1 → C is symmetric monoidal. An n-symmetric object in C/1 is then a morphism α : x→ 1 such that the

cyclic permutation σn of x⊗n is homotopic over 1 to the identity.
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Example 3.5. If C is symmetric monoidal, End(1) is an E∞-space under composition. In particular,
for every α : 1 → 1, the cyclic permutation of n letters induces a self-homotopy σn of αn. Then α is
n-symmetric in C/1 if and only if the homotopy class of σn is in the image of the group homomorphism
π1(End(1), id)→ π1(End(1), αn) induced by End(1)→ End(1), β 7→ αn ◦ β. In particular, if σn vanishes in
π1(End(1), αn), then α is n-symmetric in C/1.

Lemma 3.6. Let C be a symmetric monoidal ∞-category and let α : x → 1 be a symmetric object in C/1.

Let X• be the tower Nop → C/1, k 7→ x⊗k, with transition maps id⊗ α. Then the transformations

α⊗ id, id⊗ α : X•+1 → X•

are homotopic as maps in Pro(C/1).

Proof. Let σk be the cyclic permutation of x⊗k that moves the first factor to the end. The map id ⊗
α : x⊗k+1 → x⊗k is then the composite of σ−1

k+1 and α⊗ id. Define a new tower X̃• : Nop → C with X̃k = x⊗k

and with transition maps σ−1
k ◦ (id⊗α) ◦σk+1 : x⊗k+1 → x⊗k. The permutations σk assemble into a natural

equivalence σ : X̃• → X• such that (id⊗ α) ◦ σ ' α⊗ id. The strategy of the proof is the following: we will

construct an equivalence of pro-objects ζ : X•+1 → X̃•+1 making the diagram

X•+1 X̃•+1 X•+1

X•

ζ σ

α⊗ id

α⊗ id

id⊗ α

commute and such that σ◦ζ is homotopic to the identity. Let us call π and π̃ the morphisms α⊗ id : X•+1 →
X• and α⊗ id : X̃•+1 → X•.

Suppose that α is (n + 1)-symmetric, and let L be the 1-skeleton of the nerve of the poset nN ⊂ N. We
will then construct ζ as a morphism in Fun(Lop,C), and we will prove that π̃ ◦ ζ ' π and σ ◦ ζ ' id in
Fun(Lop,C). The image of an edge of L by either π or π̃ has the form

x⊗nk+1 x⊗n(k−1)+1

x⊗nk x⊗n(k−1),

α⊗ id

id⊗ αn

α⊗ idα⊗ id⊗ αn

but π and π̃ differ on the upper triangle. Let σ′k : x⊗nk+1 → x⊗nk+1 be the cyclic permutation σn+1 applied
to the n+ 1 factors of x⊗nk+1 that are killed by the diagonal. Observe that

(3.7) σnk+1 = (σn(k−1)+1 ⊗ id) ◦ σ′k.

In particular, the transition map x⊗nk+1 → x⊗n(k−1)+1 in X̃•+1 is (id⊗αn)◦σ′k. We define ζ : X•+1 → X̃•+1

to be the identity on each vertex of L and the given homotopy σ′ ' id on each edge. Thus, the image by ζ
of an edge of L is the square

· ·

· · ·

id⊗ αn

σ′ id⊗ αn
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where untipped lines represent identity morphisms and the triangle is the given homotopy σ′ ' id. The
composites π̃ ◦ ζ and σ ◦ ζ are then described by the following pictures:

· ·

· · ·

· ·

id⊗ αn

σ′

α⊗ id α⊗ id

id⊗ αn

· ·

· · ·

·

· ·

id⊗ αn

σ′

σ′

σ

σ ⊗ id

id⊗ αn

In the first picture, the two diagonal arrows are α ⊗ id ⊗ αn. The assumption that the given homotopy
σn+1 ' id is a homotopy over 1 implies that the triangle with median σ′ is homotopic rel its boundary to
an identity 2-cell, showing that π̃ ◦ ζ ' π.

Using (3.7), we inductively construct homotopies σnk+1 ' id for k ≥ 0. The pentagon in the second
picture is the tensor product

x⊗n(k−1)+1 x⊗n(k−1)+1

x⊗n(k−1)+1 x⊗n(k−1)+1

id

σn(k−1)+1

id

σn(k−1)+1

⊗


x⊗n 1

x⊗n 1

αn

id

αn

id

 .

Using the homotopies σn(k−1)+1 ' id and σ′k ' id, we obtain for every edge e : ∆1 → L a homotopy in

Fun(∆1,C) between (σ ◦ ζ)e and the identity. By construction, these homotopies agree on the common
vertex of two consecutive edges of L, and hence they define a homotopy σ ◦ ζ ' id, as desired. �

Theorem 3.8. Let C be a presentably symmetric monoidal ∞-category and S a set of symmetric objects of
C/1. Then PS ' QS. More precisely, for every E ∈ C, the canonical map E → QSE exhibits QSE as the
S-periodization of E.

Proof. By Lemma 3.3, it suffices to show that QSE is S-periodic, i.e., that cSQSE is an S0-spectrum. We use
the following explicit description of the spectrification functor Q, from the proof of [Lur09, Lemma 7.3.2.3].
Choose a regular cardinal κ such that Hom(x,−) preserves κ-filtered colimits for all x ∈ S0, and choose a
bijection f : S0 → λ for some ordinal λ. Then Q = colimµ<λκ Fµ, where Fµ+1 = shκxFµ if µ = λν + f(x).

Note that each S0-prespectrum Fµ(cSE) is “constant” in the sense that all its terms and structure maps in
a given direction are the same. For any α : x→ 1 and β : y → 1 in S with α 6= β, it is clear that the structure
map of shx(cSE) in the y-direction is β∗. Lemma 3.6 shows that the structure map of shωx (cSE) in the x-
direction is naturally homotopic to α∗ under E. Hence, we have an equivalence shωx (cSE) ' cSΩ∞shωx (cSE)
under cSE. By a straightforward transfinite induction, we can identify the towers {Fµ(cSE)}µ≤λκ and
{cSΩ∞Fµ(cSE)}µ≤λκ. In particular, Q(cSE) ' cSQSE and cSQSE is an S0-spectrum. �

4. Homotopy K-theory of tame quotient stacks

The homotopy K-theory spectrum KH(X) of a qcqs scheme X is the geometric realization of the simplicial
spectrum KB(∆• ×X), where KB is the Bass–Thomason–Trobaugh K-theory. Equivalently,

KH = LA1KB ,

where LA1 is the reflection onto the subcategory of A1-homotopy invariant presheaves (often called the naive
A1-localization). There is an alternative point of view on KH due to Cisinski [Cis13]. An important feature
of the Bass construction is that KB is a Nisnevich sheaf, whereas K is not. It is also clear that the naive
A1-localization functor LA1 preserves Nisnevich sheaves of spectra, so that KH is not only A1-invariant but
is also a Nisnevich sheaf. The canonical map K → KH therefore factors through the so-called motivic
localization Lmot(K) = LA1LNis(K). But the resulting map Lmot(K) → KH is not yet an equivalence:

instead, it exhibits KH as the periodization of Lmot(K) with respect to the Bott element β ∈ K̃1(Gm, 1).
Our definition of the homotopy K-theory of a stack X is directly analogous to this construction. The main
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difficulty is that we now have to deal with several Bott elements: one for each vector bundle over X. We also
have to replace LA1 by the more complicated homotopy localization Lhtp [Hoy17, §3.2], which, unlike LA1 ,
need not preserve Nisnevich sheaves of spectra. Nevertheless, we will see that the identity KH = LA1KB

still holds for quotient stacks [X/G] with G finite or diagonalizable.
For X ∈ tqStkB , we will denote by KX and KB

X the restrictions of K and KB to SchX. Let E be a locally
free module of finite rank r over X,3 P(E) the associated projective bundle, and O(1) the universal sheaf on
P(E). By the projective bundle formula [KR18, Theorem 3.6], the functors4

(4.1) Perf(Y)→ Perf(Y×X P(E)), E 7→ E � O(−i),
for Y ∈ SchX and 0 ≤ i ≤ r − 1, induce an equivalence of KX-modules

r−1∏
i=0

KX ' Hom(P(E)+,KX).

Let V+(E) denote the quotient P(E⊕ OX)/P(E), viewed as a pointed presheaf on SchX. The right square in
the following diagram is then commutative, and we get an equivalence as indicated:

(4.2)

Hom(V+(E),KX) Hom(P(E⊕ OX)+,KX) Hom(P(E)+,KX)

KX

r∏
i=0

KX

r−1∏
i=0

KX.

'
' '

prr

This equivalence is a morphism of KX-modules and is therefore determined by a map βE : V+(E)→ KX. A
standard representative of βE by a perfect complex is given by the Koszul complex of the composition

(4.3) EP(E⊕O)(−1) ↪→ (E⊕ O)P(E⊕O)(−1) � OP(E⊕O),

where the first map is the inclusion of the first summand and the second map is the tautological epimorphism,
tensored with det(E)[r]∨. In particular, the image of βE in K(P(E⊕ OX)) can be written as

r∑
i=0

cr−i(E) � O(−i), where cr−i(E) = (−1)r−i(det(E)∨ ⊗
∧i

E),

and it is trivialized in K(P(E)) via the Koszul complex of the tautological epimorphism EP(E)(−1) � OP(E).

Definition 4.4. A KX-module is called Bott periodic if it is βE-periodic for every locally free module of
finite rank E over X.

In the diagram (4.2), we can replace KX by KB
X [KR18, Theorem 3.12 (3)], and also by LA1KX or LA1KB

X ,
as the projective bundle formula obviously persists after applying the naive A1-localization. As a result, all
these KX-modules are Bott periodic.

We denote by KHX the reflection of KX in the ∞-category of homotopy invariant, Nisnevich excisive,
and Bott periodic KX-modules. Since motivic localization and periodization are both compatible with the
symmetric monoidal structure, KHX is an E∞-algebra under KX.

Definition 4.5. The homotopy K-theory of X ∈ tqStkB is the E∞-ring spectrum KH(X) = KHX(X).

Property (1) of Theorem 1.3 is clear: if X is regular, K-theory is already a homotopy invariant Nisnevich
sheaf on SmX [Tho87, Theorems 2.7, 4.1, and 5.7], and both Lmot and periodization commute with restriction
along SmX ↪→ SchX (since right Kan extension preserves the corresponding local objects).

For any N-quasi-projective morphism f : Y → X, let f∗(KHX) denote the restriction of KHX to SchY.
Then f∗(KHX) is the reflection of KY in the ∞-category of KY-modules that are homotopy invariant,
Nisnevich excisive, and periodic with respect to the maps βf∗(E), where E is a locally free module over X. In
particular, there is a canonical morphism of E∞-algebras f∗(KHX)→ KHY.

3We do not assume that E has constant rank, so r is a locally constant integer on X. Formulas involving r must be interpreted

accordingly.
4Here, Perf(Y) is the stable ∞-category of perfect complexes over Y, i.e., dualizable objects in QCoh(Y).



12 MARC HOYOIS

Proposition 4.6. Let f : Y→ X be an N-quasi-projective morphism in tqStkB. Then the map f∗(KHX)→
KHY is an equivalence. In other words, KHX is the restriction of KH to SchX.

Proposition 4.6 immediately implies properties (2) and (3) of Theorem 1.3, and also thatKH is a Nisnevich
sheaf. Before proving it, we relate the periodization process in the definition of KHX to the Bass construction,
which will also lead to a proof of property (4).

Consider the map βO : P1/∞→ KX. The image of βO in K0(P1) is thus [O(−1)]− [O]. As an element of

K̃0(P1,∞), βO is determined by any choice of trivialization of O(−1) over ∞; we choose the point (1, 0) in
the line [1 : 0]. This trivialization extends to the standard trivialization of O(−1) over P1 r 0, which defines
a lift of βO to P1/(P1 r 0). Moreover, the restriction of the latter to A1 = P1 r∞ ⊂ P1 is nullhomotopic via
the standard trivialization of O(−1) over P1 r∞. Since these two trivializations coincide over 1 ∈ Gm, we
obtain the following commutative diagram of pointed presheaves:

(4.7)

A1/Gm P1/(P1 r 0) P1/∞

Σ(Gm/1) KX.
β

βO

The homotopy class of the lower map is the Bott element β ∈ K̃1(Gm, 1) of Example 3.4 (this identification
depends on a choice of orientation of the loop in Σ(Gm/1): if the left vertical arrow in (4.7) is ∗ tGm A1 →
∗ tGm ∗, we let the loop go from the first to the second vertex). Recall from Example 3.4 that γ is the
composition of the collapse map (P1 r 0)

∐
Gm A1 → Σ(Gm/1) and β.

Lemma 4.8. Let E be a KX-module.

(1) Suppose that E is A1-invariant. Then E is β-periodic if and only if it is γ-periodic.
(2) Suppose that E is a Zariski sheaf. Then E is βO-periodic if and only if it is γ-periodic.

Proof. Assertion (1) follows from the fact that (P1r0)
∐

Gm A1 → Σ(Gm/1) is an LA1-equivalence. By (4.7),
we can identify γ with the composition

(P1 r 0)
∐
Gm

A1 → P1/1 � P1/(P1 r 0)→ KX,

where the first map is a Zariski equivalence. Let φ : P1/1 → P1/∞ be the linear automorphism of P1 that
fixes 0 and exchanges 1 and ∞. Then the square

P1/1 P1/∞

P1/(P1 r 0) KX

φ

βO

commutes up to homotopy, since both compositions classify the same element in K̃0(P1, 1). Assertion (2)
follows. �

Recall from Example 3.4 that KB
X = PγKX. It follows from Lemma 4.8 that KHX is γ-periodic (as well

as β-periodic). Hence, we have morphisms of E∞-algebras

KX → KB
X → LA1KB

X → KHX.

By [KR18, Theorem 3.12], KB
X is Nisnevich excisive and Bott periodic, so KB

X is in fact the reflection of
KX in the subcategory of Nisnevich excisive Bott periodic KX-modules. Similarly, LA1KB

X is the reflection
of KX in the subcategory of A1-invariant, Nisnevich excisive, and Bott periodic KX-modules. If X ∈ SchBG

where G is an extension of a finite group scheme by a Nisnevich-locally diagonalizable group scheme, every
A1-invariant Nisnevich sheaf on SchX is already homotopy invariant [Hoy17, Remark 3.13], and so the map
LA1KB

X → KHX is an equivalence. This proves property (4) of Theorem 1.3.
We observe that the assignment E 7→ βE is a functor from the groupoid of locally free modules of finite

rank over X to the overcategory of KX. This functoriality comes from (4.1) and the fact that the sheaf O(−i)
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on P(E), as E varies in this groupoid, is a cartesian section of the fibered category of quasi-coherent sheaves.
In particular, βE : V+(E)→ KX coequalizes the action of linear automorphisms of E on V+(E).

Write V0(E) and V+
0 (E) for the pointed presheaves V(E)/(V(E) r 0) and P(E⊕ OX)/(P(E⊕ OX) r 0) on

SchX. As in (4.7), we have a zig-zag

V0(E) ↪→ V+
0 (E) � V+(E),

where the first map is a Zariski equivalence and the second map is an LA1-equivalence. The map βE : V+(E)→
KX extends to V+

0 (E) because the morphism (4.3) is an epimorphism away from the zero section, and hence
it induces

β′E : V0(E)→ KX.

Explicitly, β′E is represented by the Koszul complex of the tautological morphism EV(E) → OV(E) tensored
with det(E)[r]∨, viewed as an object of Perf(V(E) on X).

Note that the assignment E 7→ V0(E) is right-lax symmetric monoidal, with the monoidal structure maps
V0(E)⊗V0(F)→ V0(E⊕ F) being Zariski equivalences. Using the Koszul complex representative of β′E and
the multiplicative properties of Koszul complexes, we can promote the assignment E 7→ β′E to a right-lax
symmetric monoidal functor from the groupoid of locally free modules of finite rank over X (under direct
sum) to the ∞-category of presheaves of spectra on SchX over KX. In particular, if E and F are locally free
modules of finite rank over X, we have a commutative square

V0(E)⊗ V0(F) KX ⊗KX

V0(E⊕ F) KX,

β′E ⊗ β
′
F

β′E⊕F

where the right vertical map is multiplication.

Proof of Proposition 4.6. We must show that the map f∗(KHX) → Hom(V+(E), f∗(KHX)) induced by βE
is an equivalence for every locally free module E over Y. Since f∗(KHX) is a homotopy invariant Nisnevich
sheaf, we can assume that Y→ X is quasi-affine [Hoy17, Proposition 4.6]. By Lemma 2.4, we can then write
E as a quotient of f∗(G) for some locally free module of finite rank G over X. Replacing Y by an appropriate
vector bundle torsor, we can assume that f∗(G) ' E ⊕ F for some F. Hence, β′E⊕F ' β′Eβ

′
F acts invertibly

on f∗(KHX). In the sequence

f∗(KHX)
β′E−−→ Hom(V0(E), f∗(KHX))

β′F−−→ Hom(V0(E⊕ F), f∗(KHX))
β′E−−→ Hom(V0(E⊕ F ⊕ E), f∗(KHX)),

the composites β′Fβ
′
E and β′Eβ

′
F are thus both equivalences. It then follows from the 2-out-of-6 property that

all three maps are equivalences. �

This concludes the verification of properties (1)–(4) of Theorem 1.3. Finally, we would like to obtain a
more concrete description of KH using Theorem 3.8. In the following lemma, Sp(PA1,Zar(SchX)) denotes the
∞-category of A1-invariant Zariski sheaves of spectra on SchX.

Lemma 4.9. Let E be a locally free module of finite rank over X. Then LA1,Zarβ
′
E : LA1,ZarV0(E) →

LA1,ZarKX, viewed as an object of Sp(PA1,Zar(SchX))/LA1,ZarKX
, is 3-symmetric.

Proof. Since E 7→ LA1,Zarβ
′
E is symmetric monoidal, it suffices to show that LA1σ3 : LA1V0(E3)→ LA1V0(E3)

is homotopic to the identity over LA1KX. The identity and σ3 are both induced by matrices in SL3(Z) acting
on E3, and any two such matrices are A1-homotopic. Thus, it will suffice to prove the following statement:
for any locally free module of finite rank E over X and any automorphism φ of p∗(E), where p : A1 ×X→ X
is the projection, the automorphisms of V0(E) induced by φ0 and φ1 are A1-homotopic over LA1KX. Since
β′E is functorial in E, the automorphism φ induces a commutative triangle

V0(p∗(E)) V0(p∗(E))

LA1KA1×X

φ

β′p∗(E) β′p∗(E)
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of presheaves of spectra on SchA1×X. By adjunction, this is equivalent to a triangle

A1
+ ⊗ V0(E) V0(E)

LA1KX,

β′E β′E

which is an A1-homotopy between φ0 and φ1 over LA1KX, as desired. �

Proposition 4.10. Let X ∈ tqStkB and let E be a KX-module. Then the canonical map E → Q{βE}LmotE is
the universal map to a homotopy invariant, Nisnevich excisive, and Bott periodic KX-module. In particular,

KHX ' Q{βE}LmotKX.

Proof. Combining Lemma 4.9 and Theorem 3.8, we deduce that

P{β′
E
}LmotE ' Q{β′

E
}LmotE.

As LmotE is in particular a Zariski sheaf, we can replace β′E with βE without changing either side. Hence,
we have

P{βE}LmotE ' Q{βE}LmotE.

We conclude by noting that Q{βE} preserves homotopy invariant Nisnevich sheaves. �

In other words, KHX is the Bott spectrification of the motivic localization of KX.

5. The equivariant motivic K-theory spectrum

In this final section, we prove that KH is a cdh sheaf on tqStkB . By definition of the cdh topology, this
is the case if and only if the restriction of KH to SchX is a cdh sheaf for every X ∈ tqStkB . Moreover, as
we already know that KH is a Nisnevich sheaf, we can assume without loss of generality that X = [X/G]
with X a small G-scheme. By definition of smallness, we may as well assume that B has the G-resolution
property and that X = BG. Thus, we are now in the setting of [Hoy17, §6].

Let H•(X) be the pointed motivic homotopy category over X ∈ SchBG, i.e., the ∞-category of pointed
presheaves on SmX that are homotopy invariant and Nisnevich excisive. The stable motivic homotopy
category over X is by definition

SH(X) = H•(X)[Sph−1
BG],

where SphBG is the collection of one-point compactifications V+(E) of vector bundles over BG (pulled back
to X); this forces the invertibility of the one-point compactifications of all vector bundles over X [Hoy17,
Corollary 6.7]. Let Sp(H(X)) be the∞-category of homotopy invariant Nisnevich sheaves of spectra on SmX,
or equivalently the stabilization of H(X). As a symmetric monoidal ∞-category, it is H•(X)[(S1)−1]. Since
S1 is invertible in SH(X), we have

SH(X) ' Sp(H(X))[Sph−1
BG].

We also consider “big” variants of these ∞-categories: Sp(H) is the ∞-category of homotopy invariant
Nisnevich sheaves of spectra on SchBG, and SH = Sp(H)[Sph−1

BG]. These ∞-categories have the following
interpretation. Any presheaf on SchBG can be restricted to SmX for every X ∈ SchBG; this gives rise to a
section of the cocartesian fibration classified by X 7→ P(SmX), which sends smooth morphisms to cocartesian
edges. It is clear that this construction is an equivalence of ∞-categories between presheaves on SchBG and
such sections. From this we deduce that Sp(H) and SH can be identified with ∞-categories of sections of
Sp(H(−)) and SH(−) over Schop

BG that are cocartesian over smooth morphisms.
In §4, we constructed the E∞-algebra KHBG in Sp(H) as a Bott periodic KBG-module. By Proposition 3.2,

there is a unique Bott periodic E∞-algebra KGL in SH such that Ω∞KGL ' KHBG, namely

KGL = P{βE}Σ
∞KHBG.

By Proposition 4.10, we can write KGL more explicitly as an SphBG-spectrum in Sp(H): it is the image,
under the localization functor

QLmot : Stablax
SphBG

Sp(P(SchBG))→ StabSphBG
Sp(H) ' SH,

of the “constant” SphBG-spectrum c{βE}KBG.
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Definition 5.1. For X ∈ SchBG, we denote by KGLX ∈ CAlg(SH(X)) the restriction of KGL to SmX.

By Proposition 4.6, the motivic spectrum KGLX represents homotopy K-theory: for Y a smooth N-quasi-
projective X-stack, there is a natural equivalence

KH(Y) ' MapSp(Σ∞Y+,KGLX),

where MapSp denotes a mapping spectrum in the stable ∞-category SH(X).
We now prove that X 7→ KGLX is a cocartesian section of SH(−) over Schop

BG, i.e., that for every f : Y→ X
in SchBG, the restriction map

f∗(KGLX)→ KGLY

in SH(Y) is an equivalence. By [Hoy17, Corollary 6.25], this implies that KH is a cdh sheaf on SchBG and
concludes the proof of Theorem 1.3. Since KGL = QLmotc{βE}KBG, the above restriction map is

f∗(QLmotc{βE}(K|SmX))→ QLmotc{βE}(K|SmY)

The localization functor QLmot is compatible with the base change functor f∗, as f∗ preserves local objects,
so it will suffice to show that the restriction map

(5.2) f∗(K|SmX)→ K|SmY

is a motivic equivalence in Sp(P(SmY)).
Sending vector bundles over X to their classes in K-theory induces a map of grouplike E∞-spaces

(5.3) Vect(X)+ → Ω∞K(X),

where Vect(X) is the E∞-space of vector bundles over X and (−)+ denotes group completion. If X = [X/G]
with X a small affine G-scheme, it follows from [Hoy17, Lemma 2.17] that every short exact sequence of
vector bundles over X splits. In that case, the map (5.3) is an equivalence. By [Hoy17, Proposition 3.16 (2)],
it follows that the map

Vect+ → Ω∞K|SmX

is a motivic equivalence in P(SmX). Note also that the inclusion∐
n≥0

BfppfGLn ↪→ Vect

exhibits Vect as the Zariski sheafification of the subgroupoid of vector bundles of constant rank. By
Lemma 5.5 below, it remains a Zariski equivalence after group completion. We therefore obtain a motivic
equivalence

(5.4)

(∐
n≥0

BfppfGLn

)+

→ Ω∞K|SmX.

Lemma 5.5. Let F : C→ D be a colimit-preserving functor between presentable ∞-categories. Suppose that
finite products distribute over colimits in C and D and that F preserves finite products. Then, for every
E∞-monoid M in C, the canonical map F (M)+ → F (M+) is an equivalence.

Proof. The assumption on C implies that the∞-category CMon(C) of E∞-monoids in C is presentable [Lur17,
Corollary 3.2.3.5] and hence that group completion exists. Since both F and its right adjoint preserve finite
products, they lift to a pair of adjoint functors between CMon(C) and CMon(D), as well as between the
subcategories of grouplike objects. This immediately implies that F commutes with group completion. �

For any f : Y→ X in SchBG, the pullback functor f∗ : P(SmX)→ P(SmY) preserves finite products and
hence commutes with group completion of E∞-monoids, by Lemma 5.5. Similarly, since Lmot : P(SmX) →
H(X) preserves finite products [Hoy17, Proposition 3.15], it commutes with group completion of E∞-monoids.
Hence, by (5.4) and Corollary 2.9 (with Γ = GLn), we deduce that the restriction map

f∗(Ω∞K|SmX)→ Ω∞K|SmY

is a motivic equivalence in the ∞-category of grouplike E∞-monoids in P(SmY). Equivalently, (5.2) is a
motivic equivalence in Sp≥0(P(SmY)), whence in Sp(P(SmY)), as was to be shown.
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Remark 5.6. If f : Y → X is a morphism of schemes, it is easy to show that the map (5.2) is a Zariski
equivalence, because BfppfGLn = BZarGLn and GLn is smooth. The proof of cdh descent in this case does
not need the geometric model for the classifying space of GLn.

Comments on Theorem 1.5. We discuss the minor modifications needed for the proof of Theorem 1.5. If X
is a locally affine qcs G-schemes such that |G| is invertible on X, then [X/G] is a qcs tame Deligne–Mumford
stack with coarse moduli scheme. By [KØ12, Corollary 3.8] and a noetherian approximation argument,
nonconnective K-theory is a Nisnevich sheaf on such stacks, whence also KH (defined as the naive A1-
localization of KB). The projective bundle formula holds for general stacks [KR18, Theorem 3.6]. Hence,
the restriction of KH to the category of smooth quasi-projective G-schemes over X is a homotopy invariant
Nisnevich sheaf as well as a Bott periodic E∞-algebra. By Proposition 3.2, it deloops uniquely to a Bott
periodic E∞-algebra KGL[X/G] ∈ SH([X/G]). Since [X/G] is Nisnevich-locally of the form [U/G] with U
affine, the proof of Theorem 2.7 and the above arguments go through (with some simplifications) and show
that, for every G-equivariant morphism f : Y → X with Y a locally affine qcs G-scheme, f∗(KGL[X/G]) '
KGL[Y/G]. By [Hoy17, Remark 6.26], we conclude that KH satisfies cdh descent on the category of locally
affine qcs G-schemes. �

Comments on Theorem 1.7. Because of the reductions done at the beginning of this section, we have only
proved Theorem 1.7 with tqStkB replaced by the subcategory of stacks X admitting an N-quasi-projective
map X → BUG for some B-scheme U such that BUG has the resolution property. In fact, SH(X) is only
defined for such X in [Hoy17, §6]. As indicated in loc. cit., however, SH(−) extends uniquely, by right Kan
extension, to a Nisnevich sheaf on tqStkB . Hence, the section X 7→ KGLX constructed above also extends
uniquely to a section of CAlg(SH(−)) on all of tqStkop

B that is cocartesian over N-quasi-projective morphisms,
and Theorem 1.7 holds in the stated generality. �

Remark 5.7. Suppose that X ∈ tqStkB is regular noetherian. Then the Borel–Moore homology theory on
SchX represented by KGLX is the K-theory of coherent sheaves. More precisely, for every quasi-projective
morphism f : Z→ X, there is an equivalence of spectra

MapSp(1Z, f
!KGLX) ' K(Coh(Z)),

where the left-hand side is a mapping spectrum in SH(Z). To prove this, write f = p ◦ i where i : Z ↪→ Y
is a closed immersion and p : Y → X is smooth quasi-projective. By [Hoy17, Theorem 6.18 (2)] and Bott
periodicity, p!KGLX ' ΣΩpKGLY ' KGLY. Let j : U ↪→ Y be the open immersion complementary to i. By
[Hoy17, Theorem 6.18 (4)], we have a fiber sequence

i∗i
!KGLY → KGLY → j∗j

∗KGLY

in SH(Y), whence a fiber sequence of spectra

MapSp(1Z, f
!KGLX)→ MapSp(1Y,KGLY)→ MapSp(1U,KGLU).

Since Y and U are regular, the second map is identified with the restriction K(Y) → K(U), whose fiber is
K(Coh(Z)).
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[Tho87] R. W. Thomason, Algebraic K-theory of group scheme actions, Algebraic Topology and Algebraic K-theory
(W. Browder, ed.), Annals of Mathematical Studies, vol. 113, Princeton University Press, 1987

[Wei89] C. A. Weibel, Homotopy algebraic K-theory, Algebraic K-Theory and Number Theory, Contemp. Math., vol. 83,

AMS, 1989, pp. 461–488

Fakultät für Mathematik, Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
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