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Abstract

We give a streamlined proof of A1-representability for G-torsors under “isotropic” reductive groups,
extending previous results in this sequence of papers to finite fields. We then analyze a collection of
group homomorphisms that yield fiber sequences in A1-homotopy theory, and identify the final examples
of motivic spheres that arise as homogeneous spaces for reductive groups.

1 Introduction/Statement of Results

Suppose k is a field. We study torsors under algebraic groups considered in the following definition.

Definition 1. If G is a reductive algebraic k-group scheme, we will say that G is “isotropic” if each of the
almost k-simple components of the derived group of G contains a k-subgroup scheme isomorphic to Gm.

Remark 2. In the above definition, the word “isotropic” is in quotes to distinguish from the standard defi-
nition of isotropic for reductive groups, which simply requires the existence of a k-subgroup scheme iso-
morphic to Gm (see [Gil10, Définition 9.1.1]. Let us spell out what term “isotropic” as defined above
means. The derived group of Gder := [G,G] is a semi-simple k-subgroup scheme. As such it has a simply-
connected covering group Gsc, which is itself a product of almost k-simple factors. The condition above
implies that each such factor is isotropic in the standard sense.

Write H (k) for the (unstable) Morel–Voevodsky A1-homotopy category [MV99]. Write BG for the
usual bar construction of G (which can be thought of as a simplicial presheaf on the category of smooth k-
schemes). If X is a smooth k-scheme, then write [X,BG]A1 for the set HomH (k)(X,BG). The main goal
of this paper is to establish the following representability result about Nisnevich locally trivial G-torsors.

Theorem 3. Suppose k is a field, and G is an “isotropic” reductive k-group. For every smooth affine
k-scheme X , there is a bijection

H1
Nis(X,G) ∼= [X,BG]A1

that is functorial in X .

In [AHW18, Theorem 4.1.3], Theorem 3 was proved under the more restrictive assumption that k is
infinite. By [AHW18, Theorem 2.3.5], in order to establish Theorem 3, it suffices to prove that the functor
X 7→ H1

Nis(X,G) is A1-invariant on smooth affine schemes, i.e., for every smooth affine k-scheme X , the
pullback along the projection X × A1 → X induces a bijection H1

Nis(X,G)
∼→ H1

Nis(X × A1,G).
Using a recent refinement of the Gabber presentation lemma over finite fields first stated by F. Morel

[Mor12, Lemma 1.15] (where it is attributed to Gabber) and proven by A. Hogadi and G. Kulkarni [HK],
we establish affine homotopy invariance over finite fields in Theorem 2.4.
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2 2 Proofs

Remark 4. Over a finite field, one knows that all reductive k-group schemes are quasi-split by a result of
Lang, cf. [Lan56]. In particular, semi-simple group schemes will automatically be “isotropic” in this case.

As immediate consequences, we may remove the assumption that k is infinite in many of the results
stated in [AHW18]. In particular, we establish the following result.

Theorem 5. Assume k is a field. If H→ G is a closed immersion of “isotropic” reductive k-group schemes,
and the H-torsor G → G /H is Nisnevich locally split, then for any smooth affine k-scheme X , there is a
bijection

π0(SingA
1
G /H)(X) ∼= [X,G /H]A1 .

Theorem 2.7 contains a similar result for certain generalized flag varieties under “isotropic” reductive
k-group schemes and the remainder of the main results (e.g., Theorem 2.15) contain some useful explicit
examples.
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Notation/Preliminaries

Throughout the paper, k will be a field. Following [AHW17, AHW18], we use the following terminology:
• Smk is the category of smooth k-schemes;
• sPre(Smk) is the category of simplicial presheaves on Smk; objects of this category will typically be

denoted by script letters X ,Y , etc.;
• if t is a topology on Smk, we write Rt for the fibrant replacement functor for the injective t-local

model structure on sPre(Smk) (see [AHW17, Section 3.1]);
• SingA

1
is the singular construction (see [AHW17, Section 4.1]);

• H (k) is the Morel–Voevodsky unstable A1-homotopy category (see [AHW17, Section 5]);
• if X and Y are simplicial presheaves on Smk, we write [X ,Y ]A1 := HomH (k)(X ,Y ).

Throughout the text, we will speak of reductive group schemes; following SGA3 [DG70], by convention
such group schemes have geometrically connected fibers.

2 Proofs

2.1 Homotopy invariance revisited

In [AHW18, Proposition 3.3.4], we developed a formalism for establishing affine homotopy invariance of
certain functors; this method was basically an extension of a formalism developed by Colliot-Thélène and
Ojanguren [CTO92, Théorème 1.1] and relied on a refined Noether normalization result (a “presentation
lemma”) that held over infinite fields [CTO92, Lemma 1.2]. In Theorem 2.1, we recall a version of a
stronger “presentation lemma” due initially to Gabber. Then, in Proposition 2.2, we simplify and generalize
[AHW18, Proposition 3.3.4].

Gabber’s lemma

The following result was initially stated in [Mor12, Lemma 1.15] where it was attributed to private com-
munication with Gabber. In the case k is infinite, a detailed proof of a more general result is given in



3 2.1 Homotopy invariance revisited

[CTHK97, Theorem 3.1.1], while when k is finite the result is established recently by Hogadi and Kulkarni
[HK, Theorem 1.1]. In fact, in what follows we will not need the full strength of this result.

Theorem 2.1. Suppose F is a field, and suppose X is a smooth affine F -variety of dimension d ≥ 1. Let
Z ⊂ X be a principal divisor defined by an element f ∈ OX(X) and p ∈ Z a closed point. There exist
i) a Zariski open neighborhood U of the image of p in X , ii) a morphism Φ : U → AdF , iii) an open
neighborhood V ⊂ Ad−1

F of the composite

Ψ : U
Φ−→ AdF

π−→ Ad−1
F

(where π is the projection onto the first d− 1 coordinates) such that
1. the morphism Φ is étale;
2. setting ZV := Z ∩Ψ−1V , the morphism Ψ|ZV

: ZV → V is finite;
3. the morphism Φ|ZV

: ZV → A1
V = π−1(V ) is a closed immersion;

4. there is an equality ZV = Φ−1Φ(ZV ).
In particular, the morphisms Φ and j : A1

V \ ZV → A1
V yield a Nisnevich distinguished square of the form

U \ ZV //

��

U

��
A1
V \ Φ(ZV ) // A1

V .

A formalism for homotopy invariance

The following result simplifies and generalizes [AHW18, Proposition 3.3.4]. By an essentially smooth k-
scheme we will mean a k-scheme that may be written as a filtered colimit of smooth schemes with affine
étale transition morphisms.

Proposition 2.2. Suppose k is a field. Let F be a presheaf of pointed sets on the category C of essentially
smooth affine k-schemes with the following properties:

1. If SpecA ∈ C and S ⊂ A is a multiplicative subset, the canonical map colimf∈S F(Af ) →
F(S−1A) has trivial kernel.

2. For every finitely generated separable field extension L/k and every integer n ≥ 0, the restriction
map

F(L[t1, . . . , tn]) −→ F(L(t1, . . . , tn))

has trivial kernel.
3. For every Nisnevich square

W �
� //

��

V

��
U �
� // X,

in C where W ⊂ V is the complement of a principal divisor, the map

ker(F(X)→ F(U)) −→ ker(F(V )→ F(W ))

is surjective.
If SpecB ∈ C is local, then, for any integer n ≥ 0, the restriction map

F(B[t1, . . . , tn]) −→ F(Frac(B)(t1, . . . , tn))

has trivial kernel.
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Proof. We proceed by induction on the dimension d of B. The case d = 0 is immediate from (2). Assume
we know the result in dimension ≤ d− 1. Suppose ξ ∈ ker(F(B[t1, . . . , tn])→ F(Frac(B)(t1, . . . , tn))).
By (2), the image of ξ in F(Frac(B)[t1, . . . , tn]) is trivial. By (1), we conclude that there is an element
g ∈ B \ 0 such that ξ restricts to the trivial element in F(Bg[t1, . . . , tn]).

By Theorem 2.1 applied to X = SpecB, Z the principal divisor defined by g, and p the closed point in
SpecB, we may find a Nisnevich square

SpecBg
� � //

��

SpecB

��
U �
� // SpecA[x]

with A an essentially smooth local ring of dimension d − 1. It follows immediately from the diagram
above that the base-change of U → SpecA[x] along SpecB → SpecA[x] is affine. Likewise, since
U → SpecA[x] is an open immersion, its base-change along U → SpecA[x] is an isomorphism and
therefore also affine. As a consequence, the base-change of U ⊂ SpecA[x] along the surjective étale
morphism U q SpecB → SpecA[x] is affine, whence the original morphism must be affine as well.

Now, by (3), since ξ lies in the kernel of F(B[t1, . . . , tn])→ F(Bg[t1, . . . , tn]), we may find

ξ′ ∈ ker(F(A[x][t1, . . . , tn])→ F(U [t1, . . . , tn]))

lifting ξ. In particular, the image of the class ξ′ in F(Frac(A)(x, t1, . . . , tn)) must also be trivial. However,
A[x][t1, . . . , tn] = A[x, t1, . . . , tn] and since A has dimension d − 1, we conclude that ξ′ is trivial, which
means that ξ must also be trivial and we are done.

Remark 2.3. The proof of Proposition 2.2 only uses assertions 1, 3, and 4 of Theorem 2.1, and it may be
possible to give a shorter and more self-contained proof of these assertions.

Homotopy invariance for G-torsors over arbitrary fields

We now apply Proposition 2.2 in the case of the functor “isomorphism classes of Nisnevich locally trivial
G-torsors” under an “isotropic” reductive k-group G (see Definition 1).

Theorem 2.4. If k is a field, and G is an “isotropic” reductive k-group scheme, then, for any smooth
k-algebra A and any integer n ≥ 0, the map

H1
Nis(SpecA,G) −→ H1

Nis(SpecA[t1, . . . , tn],G)

is a pointed bijection.

Proof. Repeat the proof of [AHW18, Theorem 3.3.7], replacing appeals to [AHW18, Proposition 3.3.4] with
reference to Proposition 2.2. As the formulation of Proposition 2.2 differs slightly from that of [AHW18,
Proposition 3.3.4], we include the argument here.

We want to show that every Nisnevich locally trivial G-torsor P over the ring A[t1, . . . , tn] is extended
from A. After [AHW18, Corollary 3.2.6], which is a local-to-global principle for torsors under a reductive
group scheme, it suffices to show that for every maximal ideal m of A, the G-torsor Pm over Am[t1, . . . , tn]
is extended from Am. In fact, we will show that Pm is a trivial torsor.

We claim that the functor from k-algebras to pointed sets given by A 7→ H1
Nis(SpecA,G) satisfies

the axioms of Proposition 2.2. The first point is an immediate consequence of the fact that G has finite
presentation by appeal to [AHW18, Lemma 2.3.3]. Recall from [AHW18, Definition 2.3.1] that we write
BTorsNis(G) for the simplicial presheaf whose value on a smooth scheme U is the nerve of the groupoid
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of G-torsors over U . The third point is then a formal consequence of the fact that the functor H1
Nis(−,G)

can be identified with the set of connected components π0(BTorsNis(G)) since BTorsNis(G) satisfies
Nisnevich excision essentially by definition (see [AHW18, §2.3] for more details). Finally, the second
point follows by appeal to results of Raghunathan [Rag78, Rag89], which are conveniently summarized in
[CTO92, Proposition 2.4 and Théorème 2.5]; this is where the assumption that G is “isotropic” is used.

The hypotheses of Proposition 2.2 having been satisfied, to conclude that Pm is trivial, it suffices to
show that it becomes trivial over the field Frac(Am)(t1, . . . , tn), but this follows immediately from the fact
that a field has no nontrivial Nisnevich covering sieves.

Representability results

Granted Theorem 2.4, we can immediately generalize a number of results from [AHW18]. For ease of
reference, we restate the relevant results here. We begin by establishing Theorem 3 from the introduction.

If F is a simplicial presheaf on Smk, and F̃ is a Nisnevich-local and A1-invariant fibrant replacement
of F , then there is a canonical map SingA

1
F → F̃ that is well-defined up to simplicial homotopy. Recall

from [AHW18, Definition 2.1.1] that a simplicial presheaf F on Smk is called A1-naive if for every affine
X ∈ Smk the map SingA

1
F (X) → F̃ (X) is a weak equivalence of simplicial sets. As observed in

[AHW18, Remark 2.1.2], if F is A1-naive, then for every affine X ∈ Smk the map

π0(SingA
1
F (X)) −→ [X,F ]A1

is a bijection.
By [AHW18, Proposition 2.1.3], F is A1-naive if and only if SingA

1
F satisfies affine Nisnevich exci-

sion in the sense of [AHW17, Section 2.1]. In that case, RZar SingA
1
F is Nisnevich-local and A1-invariant.

Theorem 2.5. If G is an “isotropic” reductive k-group scheme, then BNis G is A1-naive. In particular, the
canonical map

H1
Nis(X,G) −→ [X,BG]A1

is a bijection for every affine X ∈ Smk.

Proof. Combine [AHW18, Theorem 2.3.5] with Theorem 2.4.

Suppose H→ G is a closed immersion of “isotropic” reductive k-group schemes. By appeal to [Ana73,
Théorème 4.C], the quotient G /H exists as a k-scheme. Since the map G → G /H is an H-torsor, it
follows that the quotient is smooth since G has the same property. That the quotient is affine follows from
the fact that H is reductive and may be realized as Spec Γ(G,OG)H ([Alp14, Theorems 9.1.4 and 9.7.6]; for
later use, observe that these statements hold over an arbitrary base). Since G and H are reductive, they are
connected by assumption, and the connectness statement for the quotient follows. Granted these fact, we
establish Theorem 5.

Theorem 2.6. If H → G is a closed immersion of “isotropic” reductive k-group schemes, and if the H-
torsor G→ G /H is Nisnevich locally split, then G /H is A1-naive.

Proof. Combine [AHW18, Theorem 2.4.2] with Theorem 2.4.

The following result generalizes [AHW18, Theorem 4].

Theorem 2.7. Assume G is an “isotropic” reductive k-group scheme and P ⊂ G is a parabolic k-subgroup
possessing an isotropic Levi factor (e.g., if G is split), then G /P is A1-naive.
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Proof. Let L be a Levi factor for P. The quotients G /L and G /P exist; see, e.g., [AHW18, Lemma
3.1.5]. Moreover, the map G /L→ G /P induced by the inclusion is a composition of torsors under vector
bundles. Under the assumption that L is “isotropic”, G /L is A1-naive by appeal to Theorem 2.6. The fact
that G /P is A1-naive then follows by appeal to [AHW18, Lemma 4.2.4] using the fact that G /L→ G /P
is a composition of torsors under vector bundles.

2.2 Local triviality of homogeneous spaces

In order to apply Theorem 5, we need a criterion to establish that if H ⊂ G is a group homomorphism, the
quotient map G→ G /H is Nisnevich locally trivial. In this section, we develop some criteria to guarantee
this condition holds.

Criteria for Nisnevich-local triviality

Lemma 2.8. Assume R is a commutative unital ring of finite Krull dimension and suppose that H ⊂ G is
an inclusion of split reductive R-group schemes.

1. The quotient G /H exists as a (connected) smooth affine scheme.
2. The H-torsor G → G /H is Nisnevich-locally trivial if for any field K, the map H1

fppf(K,H) →
H1

fppf(K,G) has trivial kernel.
If R is a field, the same results hold without the splitness assumptions.

Proof. We first treat the case with splitness assumptions in place. In that case, split reductive group schemes
are pulled back from Z-group schemes. For both claims, it suffices to prove the result withR = Z: formation
of quotients commutes with base-change, affineness and Nisnevich local triviality will be preserved by base-
change as well. Assuming R = Z, the existence of the quotient and the relevant properties are established
before the statement of Theorem 2.6

Now we establish the second statement. To show the relevant torsor is Nisnevich locally trivial, it
suffices, by appeal to [BB70, Proposition 2], to show that the H-torsor in question is rationally trivial, i.e.,
trivial over the generic point of G /H (which is an integral affine Z-scheme). To that end, the generic point
is the spectrum of the fraction fieldK of the ring Γ(G /H,OG /H) and it suffices to show that the restriction
of G→ G /H admits a section upon restriction to K. However, the pullback of G→ G /H along the map
SpecK → G /H is an H-torsor on SpecK whose associated G-torsor is trivial. The condition that the map
H1

fppf(K,H)→ H1
fppf(K,G) has trivial kernel precisely guarantees that this H-torsor over SpecK is trivial,

i.e., admits a section.
When R is a field, one proceeds in an analogous fashion: the existence of and properties of the quotient

follow exactly as above. To establish Nisnevich local triviality, one replaces the reference to [BB70, Propo-
sition 2] above with a reference to [Nis84, Theorem 4.5] (note Nisnevich’s result is stated for semi-simple
groups, but the argument works for reductive group schemes; this is mentioned, e.g., in [FP15, §1.1]).

The Rost invariant and Nisnevich-local triviality

Assume G is a simple, simply-connected algebraic group over a field F . The Rost invariant of G is a natural
transformation of functors on the category of field extensions of F :

H1
ét(−,G)

rG−→ H3
ét(−,Q/Z(2));

see [GMS03, Appendix A] for more details regarding the group on the right (it will not be important here).
What is important is that the Rost invariant is functorial for homomorphisms of simply connected groups
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[GMS03, Proposition 9.4]. In other words, if ϕ : G1 → G2 is a homomorphism of simply-connected
reductive algebraic groups, then there is a commutative diagram of the form

(2.1) H1(F,G1)
rG1 //

��

H3(F,Q/Z(2))

nϕ

��
H1(F,G2) rG2

// H3(F,Q/Z(2))

where nϕ is an integer called the Dynkin index of the homomorphism ϕ or the Rost multiplier of ϕ.
If G is semi-simple and simply-connected, then an n-dimensional k-rational representation ρ of G yields

an embedding ρ : G → SLn; we refer to the Dynkin index of this homomorphism as the Dynkin index of
the representation. The Dynkin index then has the following properties:

1. it is a non-negative integer that is 0 if and only if the homomorphism is trivial;
2. the Rost multiplier of a composite is the product of the Rost multipliers ([GMS03, Proposition 7.9]);
3. if ρ1 and ρ2 are two representations of G, then nρ1⊕ρ2 = nρ1 + nρ2 ;
4. the Dynkin index of the adjoint representation is the dual Coxeter number.

One then deduces the following criterion for detecting Nisnevich local triviality.

Lemma 2.9. Assume ϕ : H ⊂ G is a closed immersion group homomorphism of simply-connected semi-
simple k-group schemes. If (i) the Dynkin index for ϕ is 1, and (ii) for every extension K/k, the kernel of
the Rost invariant for HK is trivial, then the torsor G→ G /H is Nisnevich locally trivial.

Proof. By Lemma 2.8, it suffices to prove: for every extension K/k, if given an H-torsor P over SpecK
such that the associated G-torsor P ′ over SpecK (obtained by extending the structure group via ϕ) is trivial,
then P is already trivial.

Assume the kernel of the Rost invariant for H is trivial for every extension K/k. Suppose P is an
HK-torsor over SpecK, and the associated associated GK-torsor P ′ over SpecK is trivial. Since the Rost
invariant of P ′ is necessarily trivial, the assumption that ϕ has Rost multiplier 1 implies P has trivial Rost
invariant. However, since the Rost invariant for HK was assumed to be injective, we conclude that P is
trivial, which is precisely what we wanted to show.

For quasi-split groups of low rank, the Rost invariant is frequently injective [Gar01a]. Indeed, Garibaldi
shows [Gar01a, Theorems 0.1 and 0.5] that the Rost invariant is trivial in the following cases:

1. quasi-split groups of absolute rank ≤ 5;
2. quasi-split groups of type B6,D6 or E6;
3. quasi-split groups of type E7 or split groups of type D7.

Thus we obtain a number of Nisnevich local triviality results by computation of Dynkin indices.

Example 2.10. The Rost multiplier of the inclusion of split groups Spin9 ↪→ F4 is 1, so Lemma 2.9 com-
bined with [Gar01a, Theorems 0.1 and 0.5] imply that the Spin9-torsor F4 → F4 /Spin9 is Nisnevich
locally trivial. Similar results hold for F4 ⊂ E6 and E6 ⊂ E7 (see [Gar01a] for more details). Thus, in each
of these case, Theorem 2.6 applies and guarantees that the relevant homogeneous space is A1-naive.

Remark 2.11. Following [AHW19], one can use the A1-fiber sequences associated with inclusions appear-
ing in Example 2.10 to deduce results about reduction of the corresponding structure groups for (Nisnevich
locally trivial) torsors over smooth affine schemes. Moreover, torsors under the various group schemes
above are related to classical algebraic invariants (e.g., F4-torsors correspond to Albert algebras, E6- and
E7-torsors correspond to certain structurable algebras [Gar01b]). In light of these applications, we pose
the following question, which would be especially interesting to analyze in the cases mentioned in Exam-
ple 2.10.
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Question 2.12. Suppose H→ G is a closed immersion of “isotropic” reductive k-group schemes such that
G→ G /H is Nisnevich locally trivial.
• What is the A1-connectivity of G /H?
• What is the structure of the first non-vanishing A1-homotopy sheaf of G /H?

Motivic spheres as homogeneous spaces

In [Bor50], Borel completed the classification of homogeneous spaces that are spheres. We now establish
a similar result for motivic spheres. To this end, we write Q2n−1 for the split smooth affine quadric de-
fined by the equation

∑n
i=1 xiyi = 1, and Q2n for the split smooth affine quadric defined by the equation∑n

i=1 xiyi = z(1− z). In [ADF17, Theorem 2], we showed that Q2n is A1-weakly equivalent to Sn∧G∧nm ,
and it is well known that Q2n−1 is A1-weakly equivalent to Sn−1∧G∧nm .

Theorem 2.13. Suppose R is a commutative base ring. The following homogeneous spaces are isomorphic
to odd-dimensional motivic spheres:

1. the quotients SLn /SLn−1, SO2n / SO2n−1, and Sp2m / Sp2m−1 (with n = 2m) are isomorphic to
Q2n−1;

2. the quotient Spin7 /G2 is isomorphic to Q7; and
3. the quotient Spin9 / Spin7 is isomorphic to Q15.

Furthermore, for each pair (G,H) as above, the torsor G→ G /H is Zariski locally trivial.

Proof. All of these results are presumably well-known. The first three appear in [AHW18, §4.2] while the
last one appears in [AHW19, Theorem 2.3.5]. It remains to identify Spin9 /Spin7

∼= Q15; this is essentially
classical, so we provide an outline.

We use the notation of [AHW19, §2]. LetO be the split octonion algebra over Z, and consider the closed
subscheme in the scheme O × O defined by NO(x) − NO(y) = 1 (see [AHW19, Definition 2.1.9] for an
explicit formula for the norm); this scheme is isomorphic to Q15 by definition. The space O × O carries
the split quadratic form of rank 16. However, there is an induced action of Spin9 on Q15 coming from the
spinor representation.

We now repeat the arguments at the beginning of the proof of [AHW19, Theorem 2.3.5]. We may first
assume without loss of generality that R = Z and the result in general follows by base-change. In that case,
the relevant quotient exists by appeal to [Ana73, Théorème 4.C].

The action of Spin9 on Q15 described above gives a morphism Spin9 → Q15 by choice of a point. It
remains to show that this map induces an isomorphism of quotients. As in the proof of [AHW19, Theorem
2.3.5] we may reduce to the case of geometric points. Having reduced to geometric points, transitivity may
be established and the stabilizer identified by a straightforward (and classical) computation using Clifford
algebras (see [Con14, C.4] for a discussion of the relevant groups).

For Zariski local triviality, it suffices to show that if given a local ring R and P a Spin7-torsor over
R, triviality of the associated Spin9-torsor implies triviality of P . Equivalently, if the quadratic space
associated with the Spin9-torsor is split, then the initial quadratic space must also be split; this follows from
Witt’s cancellation theorem [EKM08, Theorem 8.4].

Remark 2.14. Following [Bor50, Théorème 3], it seems reasonable to expect that the list above should be a
complete list of homogeneous spaces that are isomorphic to odd-dimensional motivic spheres, at least over
an algebraically closed field.

Theorem 2.15. If k is a field having characteristic unequal to 2, then Q2n is A1-naive.

Proof. By [AHW18, Lemma 3.1.7], we know that under the hypotheses Q2n
∼= SO2n+1 / SO2n and that the

torsor SO2n+1 → SO2n+1 /SO2n is Zariski locally trivial. Since SOm is split, the result follows by appeal
to Theorem 2.6.
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