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Affine representability results in A1–homotopy theory II:
principal bundles and homogeneous spaces

ARAVIND ASOK

MARC HOYOIS

MATTHIAS WENDT

We establish a relative version of the abstract “affine representability” theorem in
A1 –homotopy theory from Part I of this paper. We then prove some A1 –invariance
statements for generically trivial torsors under isotropic reductive groups over
infinite fields analogous to the Bass–Quillen conjecture for vector bundles. Putting
these ingredients together, we deduce representability theorems for generically
trivial torsors under isotropic reductive groups and for associated homogeneous
spaces in A1 –homotopy theory.

14F42; 14L10, 55R15, 20G15

1 Introduction

Suppose k is a fixed commutative unital base ring, and write H (k) for the Morel–
Voevodsky A1 –homotopy category over k [44]. The category H (k) is constructed as
a certain localization of the category of simplicial presheaves on Smk , the category
of smooth k–schemes. Write Smaff

k for the subcategory of Smk consisting of affine
schemes. If X is a simplicial presheaf on Smk , by an “affine representability” result
for X , we will mean, roughly, a description of the presheaf on Smaff

k defined by
U 7→ [U,X ]A1 := HomH (k)(U,X).

Here is a flavor of the description we provide: if X is a simplicial presheaf on
Smk , then for any U ∈ Smaff

k one can consider the simplicial set SingA
1
X (U)

[44, p. 87]. The 0–simplices of this simplicial set are morphisms U → X and
the 1–simplices are “naive” or “elementary” A1 –homotopies U × A1 → X . The
assignment U 7→ π0(SingA

1
X (U)) defines a presheaf π0(SingA

1
X ) of “naive” A1 –

homotopy classes of maps U → X . In [9], we gave conditions that allowed us
to identify π0(SingA

1
X )(U) ∼= [U,X ]A1 , i.e., under which “naive” A1 –homotopy

classes coincide with “true” A1 –homotopy classes.

Published: XX Xxxember 20XX DOI: 10.2140/gt.20XX.XX.1001

http://www.ams.org/mathscinet/search/mscdoc.html?code=14F42,(14L10, 55R15, 20G15)
http://dx.doi.org/10.2140/gt


1002 Aravind Asok, Marc Hoyois and Matthias Wendt

In [9, Theorem 1], building on results of M Schlichting [56, Theorems 6.15 and 6.22],
we simplified and generalized F Morel’s affine representability result for vector bundles;
we encourage the reader to consult the introduction of [9] for a more detailed discussion
of these points. Our goal in this paper is to further extend the scope of these affine
representability results in A1 –homotopy theory. For example, the following result
provides a generalization of the representability result from vector bundles to torsors
under suitable reductive group schemes (the description in terms of naive homotopy
classes is hidden here).

Theorem 1 (See Theorem 4.1.3) Suppose k is an infinite field, and G is an isotropic
reductive k–group (see Definition 3.3.5). For every smooth affine k–scheme X , there is
a bijection

H1
Nis(X,G) ∼= [X,BG]A1

that is functorial in X .

Remark 2 Theorem 1 is essentially the strongest possible representability statement
for which one could hope. First, one cannot expect the functor “isomorphism classes of
Nisnevich locally trivial G–torsors” to be representable on H (k) in general. Indeed, if
we do not restrict attention to the category Smaff

k , then this functor need not even be
A1 –invariant (see, e.g., Ramanathan [55] for a study of failure of homotopy invariance
in case X = P1 or the introduction to [9] for other ways in which A1 –invariance can
fail). Second, at least if k is infinite and perfect, then the hypothesis that G is isotropic
cannot be weakened. Indeed, if G is not an isotropic reductive k–group in the sense
mentioned above, then even affine representability for G–torsors fails in general; see
Remark 3.3.8 and Balwe–Sawant [14, Theorem 1] for more details. We do not know if
Theorem 1 holds if k is finite.

Remark 3 It has been known for some time that an analogue of Morel’s theorem
should hold for torsors under groups like SLn and Sp2n (for SLn this is mentioned,
e.g., in Asok–Fasel [5, Theorem 4.2]). Schlichting observed [56, Remark 6.23] that his
techniques also apply to torsors under groups like SLn or Sp2n . Combined with the
results of [9], one therefore expects affine representability results to hold for torsors
under such groups in the same generality as for vector bundles. For completeness, we
include such results here as Theorems 4.1.1 and 4.1.2.

We also establish affine representability results for various homogeneous spaces under
reductive groups.
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Theorem 4 (See Theorem 4.2.10) Suppose k is an infinite field, and G is an isotropic
reductive k–group. If P ⊂ G is a parabolic k–subgroup possessing an isotropic Levi
k–subgroup, then for any smooth affine k–scheme X , there is a bijection

π0(SingA
1
G/P)(X) ∼−→ [X,G/P]A1

that is functorial in X .

Remark 5 As suggested prior to the statement, we actually establish representability
results with targets that are more general homogeneous spaces. In this direction, observe
that it is often possible to “explicitly” identify sets of naive homotopy classes and
thus, via Theorem 4 true A1 –homotopy classes. Barge and Lannes [15, Chapter 4]
provide such identifications in the case where the target is related to symmetric bilinear
forms. Cazanave [19] provides such identifications in the case where the target is Pn .
In addition, Fasel [26, Theorem 2.1] gives such an identification in the case where the
target is a Stiefel variety (various homogeneous spaces of GLn ).

Building on the ideas of Schlichting and Morel, the proofs of the results above are
established using the framework developed in [9]: affine representability follows from
affine Nisnevich excision and affine homotopy invariance. The restrictions on k that
appear in our results are imposed to guarantee that affine homotopy invariance holds for
Nisnevich locally trivial torsors under G.

While affine homotopy invariance for vector bundles is precisely the Bass–Quillen
conjecture (about which much is known), precise statements regarding affine homotopy
invariance for torsors under other groups are harder to find in the literature (in part
because such results are typically false for étale locally trivial torsors), but see Wendt
[65, Section 3]. The entirety of Section 3 is devoted to studying affine homotopy
invariance for torsors under reductive group schemes over a rather general base.

Theorem 1 is a straightforward consequence of our general representability result
(see Theorem 2.3.5) combined with affine homotopy invariance (see Theorem 3.3.7
for a precise statement of what we mean by this term). Theorem 4 follows from
Theorem 2.4.2 and affine homotopy invariance for isotropic reductive k–groups by
a reduction from P to a Levi factor of P (which by assumption is also an isotropic
reductive k–group). Again, for certain groups, significantly more general statements
can be made; see Theorem 4.2.12.

Our techniques also allow us to establish significant generalizations (with simpler proofs)
of some results of F Morel regarding when classifying spaces for split groups are A1 –
local [42, Theorems 1.3, 1.5 and A.2]. While Morel deduces these results from strong
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A1 –invariance of non-stable K1 –functors, which he establishes by appeal to classical
results regarding elementary matrices, we are, in sharp contrast, able to deduce such
strong A1 –invariance statements as a direct consequence of our general representability
result (see Theorem 4.3.3 for more details). As another sample application of these
results, we adapt some classical ideas of G W Whitehead [66] to establish nilpotence
results for non-stable K1 –functors (see Theorem 4.4.3), along the lines of the results
of Bak [11] and Bak–Hazrat–Vavilov [12]. In particular, we are able to resolve [12,
Problem 6] in a number of new situations (see Remark 4.4.4 for more details).

The representability results for homogeneous spaces are relevant when applying the
methods of obstruction theory to analyze algebraic classification problems. For example,
if the base k is a perfect field, the A1 –fibration sequence

An \ {0} −→ BGLn−1 −→ BGLn

was used by F Morel [43, Chapter 8] to develop an obstruction-theoretic approach to
answering the question of when a vector bundle over a smooth affine variety splits off a
trivial rank 1 summand; this approach was further developed by the first author and
Fasel in [6, 7] to which we refer the interested reader for a more detailed discussion.
The results of this paper (specifically Theorem 2.2.5) open the possibility of studying
such questions over more general base rings, e.g., Z.

Our representability results also broaden the scope of geometric and algebraic applica-
tions of A1 –homotopy theory. We mention a few such directions here (though we do not
develop the applications). First, Theorem 1 allows one to give explicit classifications of
principal G–bundles on certain quadric hypersurfaces, see Asok–Fasel [5] and Asok–
Doran–Fasel [4]. Theorems 4.2.1 and 4.2.2 establish affine representability results for
“split” quadric hypersurfaces. The former result has relevance to questions regarding
unimodular rows (see [5]). Building on the ideas of Fasel [27], affine representability
results for even dimensional quadrics are a key tool in Asok–Fasel [8] to interpret Euler
class groups à la Bhatwadekar–Sridharan in terms of A1 –homotopy theory. In another
direction, since the homogeneous space G2/SL3 is a 6–dimensional “split” smooth
affine quadric, we use our results in [10] to study questions regarding reductions of
structure group for “generically trivial” octonion algebras. In algebraic terms this can
be rephrased as follows: when is an octonion algebra a Zorn (“vector-matrix”) algebra
(see, e.g., Springer and Veldkamp [57, p. 19])?

Dependency of sections/prerequisites

Section 2 is devoted to extending our results from [9]; the proofs rely on ideas from
loc. cit, which we will use rather freely together with some basic properties of torsors
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and homogeneous spaces collected in Sections 2.3 and 2.4. Section 3 is devoted to
establishing affine homotopy invariance results for torsors under reductive groups. The
results of this section rely on the basic properties of torsors and homogeneous spaces
recalled in Section 2 as well as the theory of (reductive) group schemes over a base;
regarding the latter: we review some of the main definitions and basic properties, but
we mainly provide pointers to the literature. At the very end of Section 3.3 we also rely
on the representability results from Section 2. Section 4 contains applications of our
main results and thus relies on all of the preceding sections. We refer the reader to the
beginning of each section for a more detailed description of its contents.
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Preliminaries/Notation

All rings considered in this paper will be assumed unital. We use the symbol S for a
quasi-compact, quasi-separated base scheme, SmS for the category of finitely presented
smooth S–schemes, and Smaff

S ⊂ SmS for the full subcategory of affine schemes (in
the absolute sense). We also reuse some terminology and notation introduced in [9],
e.g., the notion of affine Nisnevich excision [9, Example 2.1.2 and Definition 3.2.1], the
t–localization functor Rt [9, §3.1], the singular construction SingI [9, §4.1], etc.
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2 Some general representability results

The goal of this section is to extend the affine representability results of [9]. In particular,
Theorem 2.2.4 provides a relative version of [9, Theorem 5.1.3]. We then specialize
this result to two cases of particular interest in Theorems 2.3.5 and 2.4.2.

2.1 Naive A1 –homotopy classes

Let F be a simplicial presheaf on SmS . Given X ∈ SmS , there is a canonical map

(2–1) π0(SingA
1
F )(X)→ [X,F ]A1 ,

where the right-hand side is the set of maps in the A1 –homotopy category H (S).
The left-hand side is the set of naive A1 –homotopy classes of maps from X to F :
it is the quotient of the set of maps X → F by the equivalence relation generated
by A1 –homotopies. For presheaves F of “geometric origin”, such as representable
presheaves, it is rare that (2–1) is a bijection for all X ∈ SmS (this happens for example
when F is represented by an A1 –rigid smooth scheme in the sense of Morel–Voevodsky
[44, §3 Example 2.4], e.g., a smooth curve of genus g > 0 or an abelian variety).
However, one of the main themes of this paper is that there are many examples of
presheaves F such that (2–1) is a bijection for every affine X . We formalize this idea
in the following definition.

Definition 2.1.1 Let F be a simplicial presheaf on SmS and let F̃ be a Nisnevich-local
A1 –invariant fibrant replacement of F . Then there is a canonical map SingA

1
F → F̃ ,

well-defined up to simplicial homotopy. We will say that F is A1 –naive if the map
SingA

1
F (X)→ F̃ (X) is a weak equivalence for every X ∈ Smaff

S .

Remark 2.1.2 If F is A1 –naive, then in particular (2–1) is a bijection for every
X ∈ Smaff

S . More generally, if F is A1 –naive and pointed, then

πn(SingA
1
F )(X) ∼= [Sn ∧ X+,F ]A1,∗

for every X ∈ Smaff
S and n ≥ 0.

Proposition 2.1.3 If F is a simplicial presheaf on SmS , then F is A1 –naive if
and only if SingA

1
F satisfies affine Nisnevich excision (see [9, §2.1]). In that case,

RZar SingA
1
F is Nisnevich-local and A1 –invariant.
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Proof Let F̃ be a Nisnevich-local A1 –invariant replacement of F . Suppose that
F is A1 –naive. Then the restriction of SingA

1
F to Smaff

S is (objectwise) weakly
equivalent to F̃ , and hence it is Nisnevich-local. But this implies that SingA

1
F satisfies

affine Nisnevich excision, by [9, Theorem 3.2.5].

Conversely, suppose that SingA
1
F satisfies affine Nisnevich excision. By [9, Theorem

3.3.4], the canonical map

SingA
1
F (X)→ RZar SingA

1
F (X)

is a weak equivalence for every X ∈ Smaff
S , and RZar SingA

1
F is Nisnevich-local. By

[9, Lemma 5.1.2], RZar SingA
1
F is also A1 –invariant. Hence, RZar SingA

1
F ' F̃ and

F is A1 –naive.

2.2 The singular construction and homotopy fiber sequences

The notion of representable interval object was formulated in [9, Definition 4.1.1]. By
a homotopy fiber sequence of pointed simplicial presheaves, we mean a homotopy
Cartesian square in which either the top-right or bottom-left corner is a point.

Proposition 2.2.1 Let C be a small category and I a representable interval object in
C. Let

F −→ G −→H

be a homotopy fiber sequence of pointed simplicial presheaves on C. If π0(H ) is
I–invariant, then

SingI F −→ SingI G −→ SingI H

is a homotopy fiber sequence.

Proof For X ∈ C, consider the square of bisimplicial sets

F (X × I•) //

��

G (X × I•)

��
∗ //H (X × I•)

which is degreewise homotopy Cartesian. Since π0(H ) is I–invariant, the simplicial
set π0H (X × I•) is constant. By [9, Lemma 4.2.1], the diagonal of this square is
homotopy Cartesian, i.e.,

SingI F (X) −→ SingI G (X) −→ SingI H (X)

is a homotopy fiber sequence.
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Corollary 2.2.2 Let C be a small category and I a representable interval object in C.
If F is a pointed simplicial presheaf on C such that π0(F ) is I–invariant, then the
canonical map

SingI RΩF −→ RΩ SingI F

is a weak equivalence.

Proof This follows from Proposition 2.2.1 applied to the homotopy fiber sequence
RΩ(F )→ ∗ → F .

Lemma 2.2.3 Suppose C is a small category with an initial object and let P be a
cd-structure on C. If J is a small diagram and F : J→ sPre(C) is a functor such that
F(j) satisfies P–excision for every j ∈ J , then holimJ F satisfies P–excision as well.

Proof This is a straightforward consequence of commutation of homotopy limits.

Theorem 2.2.4 Suppose
F −→ G −→H

is a homotopy fiber sequence of pointed simplicial presheaves on SmS . If the following
conditions hold:

(i) G and H satisfy affine Nisnevich excision, and

(ii) π0(G ) and π0(H ) are A1 –invariant on affine schemes,

then F is A1 –naive.

Proof By Proposition 2.2.1, for every U ∈ Smaff
S , the sequence

(2–2) SingA
1
F (U) −→ SingA

1
G (U) −→ SingA

1
H (U)

is a homotopy fiber sequence. By [9, Corollary 4.2.4], both SingA
1
G and SingA

1
H

satisfy affine Nisnevich excision. Hence by Lemma 2.2.3, SingA
1
F also satisfies affine

Nisnevich excision. In other words, by Proposition 2.1.3, F is A1 –naive.

The following result is not used in the sequel, but it fits the theme of this section. It is a
variant of a result of Morel [43, Theorem 6.53] that holds over arbitrary base schemes.

Theorem 2.2.5 Let F → G →H be a homotopy fiber sequence of pointed simplicial
presheaves on SmS . Assume that:

(i) H satisfies affine Nisnevich excision;
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(ii) π0(H ) is A1 –invariant on affine schemes.

Then F → G → H is an A1 –fiber sequence, i.e., it remains a homotopy fiber
sequence after taking Nisnevich-local A1 –invariant replacements.

Proof As in Theorem 2.2.4, the sequence (2–2) is a homotopy fiber sequence for
every U ∈ Smaff

S . Let i∗ be the restriction functor from SmS to Smaff
S and Ri∗ its

derived right adjoint. By [9, Lemma 3.3.2], there is a natural equivalence of functors
RZar ' Ri∗RZari∗ . Since Ri∗ and RZar preserve homotopy fiber sequences, we deduce
that

RZar SingA
1
F −→ RZar SingA

1
G −→ RZar SingA

1
H

is a homotopy fiber sequence. By [9, Theorem 5.1.3], RZar SingA
1
H is Nisnevich-local

and A1 –invariant. But it follows from the right properness of the Morel–Voevodsky
model structure [44, §2 Theorem 2.7] that every homotopy fiber sequence whose base
is Nisnevich-local and A1 –invariant is an A1 –fiber sequence.

2.3 Application to torsors

In this subsection we specialize the general representability result of [9, §5.1] to
simplicial presheaves classifying G–torsors for some group G. We start by recalling
some general facts about torsors.

Definition 2.3.1 Let C be a small category equipped with a Grothendieck topology
t , let G be a t–sheaf of groups on C, and let X ∈ C. A G–torsor over X is a triple
(P, π, a) where P is a t–sheaf on C, a : P × G→P is a right action of G on P ,
and π : P → X is a morphism that is G–equivariant for the trivial G–action on X ,
such that:

(i) the morphism P ×G→P ×X P of components π1 and a is an isomorphism;

(ii) π is t–locally split, i.e., the collection of morphisms U → X in C such that
P ×X U → U has a section is a t–covering sieve of X .

The collection of G–torsors over various X ∈ C can be assembled into a category
Torst(G) fibered in groupoids over C. We write BTorst(G) for the simplicial presheaf
whose value on U ∈ C is the nerve of the groupoid of sections of Torst(G) over C/U
(this groupoid is canonically equivalent to the groupoid of G–torsors over U , but is
strictly functorial in U , cf. Hollander [33, §3.3]). It is well-known that Torst(G) is
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a stack for the topology t . As shown in [33, Theorem 3.9], this is equivalent to the
statement that BTorst(G) satisfies t–descent.

We denote by BG the pointed simplicial presheaf with n–simplices Gn and with the
usual face and degeneracy maps, and we let

BtG := RtBG

be its t–local replacement (see [9, §3]). There is a morphism BG→ BTorst(G) sending
the unique vertex of BG(U) to the trivial G–torsor over U . Since BTorst(G) is t–local,
we obtain a morphism of simplicial presheaves

(2–3) BtG −→ BTorst(G).

Lemma 2.3.2 Let C be a small category, t a Grothendieck topology on C, and G a
t–sheaf of groups on C. Then:

(i) The map (2–3) is a weak equivalence of simplicial presheaves.

(ii) There is a natural isomorphism

π0(BtG)(−) ∼= H1
t (−,G).

(iii) There is a canonical weak equivalence RΩBtG ' G.

Proof It is clear that the map (2–3) induces an isomorphism on t–sheaves of homotopy
groups, so that it is a weak equivalence in the Jardine model structure. To deduce that it
is a weak equivalence, it therefore suffices to show that the source and target are fibrant
in the Jardine model structure. By Dugger{Hollander{Isaksen [25, Corollary A.8], it
suffices to show that, for every U ∈ C, the simplicial sets BtG(U) and BTorst(G)(U)
have no homotopy in dimensions ≥ 2. This statement is clear for the latter as it is the
nerve of a groupoid. To treat the former case, we recall a fact from simplicial homotopy
theory: if X is a simplicial set, then X has no homotopy in dimensions ≥ k if and
only if the homotopy fibers of the diagonal map X → X ×h X have no homotopy in
dimensions ≥ k− 1; this can be checked by assuming X is a Kan complex and studying
homotopy groups. Thus, a simplicial set X has no homotopy in dimensions ≥ 2 if and
only if its 3-fold diagonal

X −→ X ×h
X×h

X×hX
X X

is a weak equivalence. Since Rt preserves homotopy pullbacks, it also preserves the
property of having no homotopy in dimensions ≥ 2. This proves (i). Assertions (ii)
and (iii) are true essentially by definition if we replace BtG by BTorst(G), so they both
follow from (i).
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Torsors under S–group schemes

Our main interest is to representability results for torsors under group schemes, so we
now discuss that situation in greater detail. Let G be an S–group scheme and let X
be an S–scheme. By a G–torsor over X we will mean a G–torsor in the sense of
Definition 2.3.1, for C the category of S–schemes and t the fppf topology. In the sequel
G will always be affine over S , and in that case a G–torsor over X is automatically
representable by an S–scheme, by Milne [40, Theorem III.4.3 (a)] (note: the implicit
Noetherian hypothesis in Milne’s argument is unnecessary).

If moreover X and G belong to SmS , then taking C to be the category SmS with t the
étale topology one obtains an equivalent notion of torsor. Indeed, if π : P → X is
a G–torsor over X , then π is finitely presented and smooth by the following lemma.
Since smooth morphisms admit sections étale locally, π itself is a cover of X in the
étale topology which trivializes the torsor.

Lemma 2.3.3 Suppose G is an affine S–group scheme, X is an S–scheme, and
π : P → X is a G–torsor over X . If G→ S is finitely presented, flat, or smooth, then
so is π : P → X .

Proof By definition, there exists an fppf cover {Ui → X}i∈I such that P ×X Ui → Ui

is isomorphic to G ×S Ui → Ui , which is finitely presented, flat, or smooth. We
conclude using the fact that each of these properties of a morphism is fppf-local on the
target, by [58, Tag 02L0 Lemma 34.19.11, Tag 02L2 Lemma 34.19.13, and Tag 02VL
Lemma 34.19.25].

Example 2.3.4 Let t be a topology on SmS in between the Zariski topology and the
étale topology and let n ≥ 1. The groupoid of GLn –torsors over a scheme is canonically
equivalent to the groupoid of rank n vector bundles. Since GLn is a smooth special
group, any GLn –torsor is t–locally trivial. In particular, by Lemma 2.3.2 (ii), we have

π0(BtGLn)(X) ∼= Vn(X)

for any X ∈ SmS , where Vn(X) denotes the set of isomorphism classes of rank n vector
bundles on X . Similarly, we have

π0(BtSLn)(X) ∼= V o
n (X) and π0(BtSp2n) ∼= H V 2n(X),

where V o
n (X) (resp. H V 2n(X)) is the set of isomorphism classes of rank n oriented

(resp. rank 2n symplectic) vector bundles (see the beginning of Section 3.3 for reminders
about oriented and symplectic vector bundles).
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Affine representability for Nisnevich locally trivial G–torsors

Theorem 2.3.5 Suppose G is a finitely presented smooth S–group scheme. If
H1

Nis(−,G) is A1 –invariant on Smaff
S , then

(i) The simplicial presheaf RZar SingA
1
BNisG is Nisnevich-local and A1 –invariant.

(ii) For every affine X ∈ Smaff
S , the canonical map

H1
Nis(X,G) −→ [X,BG]A1

is a bijection that is functorial with respect to X .

Proof Since BNisG is Nisnevich-local by definition, it satisfies Nisnevich excision by
[9, Theorem 3.2.5]. Taking into account the identification π0(BNisG) ∼= H1

Nis(−,G)
from point (ii) of Lemma 2.3.2, we can apply [9, Theorem 5.1.3] to BNisG, which
implies (i) and (ii) (note also that [X,BNisG]A1 ∼= [X,BG]A1 since BG → BNisG is a
Nisnevich-local equivalence).

2.4 Application to homogeneous spaces

Let C be a small category equipped with a Grothendieck topology t . Let G and H be
t–sheaves of groups on C with H ⊂ G. We then have a homotopy fiber sequence of
simplicial presheaves

G/H −→ BH −→ BG,

where G/H denotes the presheaf U 7→ G(U)/H(U). Applying the t–localization
functor Rt , we obtain a homotopy fiber sequence of t–local simplicial presheaves

(2–4) at(G/H) −→ BtH −→ BtG.

We now restrict attention to C = SmS with the goal of applying Theorem 2.2.4. For
geometric applications, we need to better understand the sheaf at(G/H).

Homogeneous spaces: topologies and quotient sheaves

Write rX for the presheaf on the category of S–schemes represented by an S–scheme
X , and r′X for the restriction of the presheaf rX to SmS . Suppose that G and H are
finitely presented smooth S–group schemes, and that H is a closed subgroup of G. The
right translation action of H on G is scheme-theoretically free and it follows from a
result of Artin [2, Corollary 6.3] that the sheaf afppf(rG/rH) is representable by an
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S–algebraic space. Two questions naturally present themselves: first, when does the
fppf sheaf quotient coincide with the Zariski or Nisnevich sheaf quotient and second, is
the fppf-sheaf afppf(rG/rH) representable by a smooth scheme? We address the first
question here; we answer the second question in various cases in Section 3.1.

Lemma 2.4.1 Suppose G is a finitely presented S–group scheme and H ⊂ G is a
finitely presented closed S–subgroup scheme. Assume that H is flat over S and that
the quotient G/H exists as an S–scheme. Then G → G/H is an H–torsor, and the
following statements hold.

(i) If t is a subcanonical topology on S–schemes such that the map G→ G/H is
t–locally split, then r(G/H) ∼= at(rG/rH).

(ii) If G is smooth over S , then G/H is smooth over S . Moreover, if t is a
subcanonical topology on SmS such that the map G→ G/H is t–locally split,
then r′(G/H) ∼= at(r′G/r′H).

Proof By a theorem of Anantharaman [1, Appendice I, Théorème 6], we have
r(G/H) ∼= afppf(rG/rH). In particular, G→ G/H is an H–torsor, and hence it is flat
by Lemma 2.3.3. If G is smooth, it follows from [32, Proposition 17.7.7] that G/H is
also smooth. If G→ G/H is t–locally split, then rG→ r(G/H) is an epimorphism of
t–sheaves. By [3, Proposition 4.3 (2)], this implies that r(G/H) is the coequalizer of
the equivalence relation rG×r(G/H) rG ∼= rG× rH ⇒ rG in the category of t–sheaves,
which exactly means that r(G/H) ∼= at(rG/rH). The second statement is proved in the
same way.

Affine representability for homogeneous spaces

Theorem 2.4.2 Suppose G is a finitely presented smooth S–group scheme and H ⊂ G
is a finitely presented smooth closed S–subgroup scheme such that the quotient G/H
exists as an S–scheme. Suppose that G → G/H is Nisnevich locally split and that
H1

Nis(−,G) and H1
Nis(−,H) are A1 –invariant on Smaff

S . Then G/H is A1 –naive. In
particular, for every X ∈ Smaff

S , there is a bijection

π0(SingA
1
G/H)(X) ∼= [X,G/H]A1 .

Proof The assumption on G→ G/H combined with Lemma 2.4.1 allow us to conclude
that r′(G/H) ∼= aNis(r′G/r′H) and thus the homotopy fiber sequence (2–4) has the
form r′(G/H) → BNisH → BNisG. The simplicial presheaves BNisG and BNisH are
Nisnevich-local and hence satisfy Nisnevich excision by [9, Theorem 3.2.5]. The result
is now a direct application of Theorem 2.2.4, taking into account Lemma 2.3.2 (ii).

Geometry & Topology XX (20XX)



1014 Aravind Asok, Marc Hoyois and Matthias Wendt

3 Homotopy invariance for torsors under group schemes

The main goal of this section is to study A1 –invariance of the functors H1
Nis(−,G) for

G a linear group. Section 3.1 reviews basic definitions about group schemes, torsors and
homogeneous spaces; it also collects a number of results that will be used later in the
text. Section 3.2 establishes an analog of the local-to-global principle (a.k.a. “Quillen
patching”) for torsors under linear group schemes under rather general hypotheses; the
main result is Theorem 3.2.5. Finally, Section 3.3 proves general homotopy invariance
results; the main results are Theorems 3.3.3 and 3.3.7. For simplicity, we assume
throughout this section that the base scheme S is the spectrum of a commutative ring R.
In general there is a tradeoff between generality of the group G under consideration
and the base ring R.

3.1 Reductive group schemes and homogeneous spaces: recollections

The goal of this section is to recall some basic definitions and properties of group
schemes, torsors and homogeneous spaces over rather general bases. Rather than
attempting to be exhaustive, we only aim to point the reader to places in the literature
where they can find the required results. The grouping of these results is slightly eclectic:
only a very small portion of the definitions and results established here will be used in
the remainder of Section 3. Many of the results we state here are significantly easier to
establish (or even unnecessary) if the base ring R is a field.

Linear and reductive group schemes

We write GLn,R for the general linear group scheme over R and Gm,R for GL1,R . If R
is clear from context, we will drop it from the notation.

Definition 3.1.1 By a linear R–group scheme, we mean a group scheme G over R
admitting a finitely presented closed immersion group homomorphism G→ GLn,R .

Later, the homotopy invariance results we establish will require much more stringent
hypotheses on G. We use the definition of reductive (resp. semi-simple) R–group
scheme of Demazure–Grothendieck [24, Exposé XIX Definition 2.7]: a reductive (resp.
semi-simple) R–group scheme is a smooth, affine R–group scheme with geometric
fibers that are connected reductive (resp. semi-simple) groups in the usual sense [24,
Exposé XIX 1.6], i.e., have trivial unipotent radical (resp. radical). Recall that a
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reductive R–group scheme G is called split if it contains a split maximal torus [24,
Exposé XXII Définition 1.13]. Any split reductive group scheme is pulled back from a
unique “Chevalley” group scheme over SpecZ.

If R is a field, it is a well-known consequence of the classification of reductive groups
that reductive R–group schemes are linear R–group schemes. If R is no longer a field,
the connection between “reductive” and “linear” becomes more complicated, as the
following example demonstrates.

Example 3.1.2 Groups of multiplicative type need not be linear in general [23, Expose
IX Définition 1.1]. Indeed, [23, Exposé XI Remarque 4.6] explains that if R is
a Noetherian and connected ring, then a group G of multiplicative type admits an
embedding in GLn if and only if it is isotrivial.

Nevertheless, the following result shows that, assuming suitable hypotheses on the base,
reductive R–group schemes are always linear.

Proposition 3.1.3 (Thomason) Suppose G is a reductive R–group scheme. Assume
one of the following additional hypotheses holds:

(i) R is regular and Noetherian; or

(ii) G is split.

Then G is a linear R–group scheme.

Proof If G is split, we can assume that R = Z and in particular that R is regular
Noetherian. In that case, the result follows from Thomason [61, Corollary 3.2 (3)].

Remark 3.1.4 Thomason actually gives a sufficient condition for a group scheme to
admit a closed immersion group homomorphism into the automorphism group scheme
of a vector bundle over an arbitrary base S [61, Theorem 3.1]. Since we have in mind
applications to homotopy invariance, we have restricted attention to spectra of regular
rings.

Homogeneous spaces for reductive groups

Suppose G is a reductive R–group scheme and λ : Gm → G is a homomorphism
of R–group schemes. Via λ, we may consider the Gm –action λ : Gm × G → G
defined pointwise by the formula λ(t, g) := λ(t)gλ(t)−1 . We can define a subfunctor
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PG(λ) ⊂ G consisting of those points g ∈ G such that limt→0 λ(t, g) exists and a
sub-functor UG(λ) ⊂ G consisting of those points g ∈ G such that limt→0 λ(t, g) = 1
(see Conrad [21, Theorem 4.1.7] for precise definitions). By [21, Theorem 4.1.7] both
of these functors are representable by R–subgroup schemes of G; since we assumed
G reductive it follows also that PG(λ) and UG(λ) are smooth and connected. By [21,
Example 5.2.2] PG(λ) is parabolic, and UG(λ) is a closed normal R–subgroup scheme
whose geometric fibers correspond to unipotent radicals of the geometric fibers of PG(λ)
[21, Corollary 5.2.5]; we will abuse terminology and refer to UG(λ) as the unipotent
radical of PG(λ).

If ZG(λ) is the centralizer of λ, then by [21, Definition 5.4.2] and the subsequent
discussion, ZG(λ) is a Levi factor of PG(λ), i.e., ZG(λ) is a smooth reductive R–group
scheme, and there is a semi-direct product decomposition of the form ZG(λ)nUG(λ) ∼=
PG(λ). This description of parabolics, their unipotent radicals and Levi factors is called
a “dynamic” description in [22, 21] (since it arises from a study of “flows” under an
action of Gm ). We use these ideas to establish the following result.

Lemma 3.1.5 Suppose R is a connected ring, G is a reductive R–group scheme,
P ⊂ G is a parabolic R–subgroup scheme and L is a Levi factor of P. The following
statements hold.

(i) The quotients G/L and G/P exist as smooth R–schemes.

(ii) The morphism G→ G/L is a generically trivial L–torsor.

(iii) The morphism G/L→ G/P is a composition of torsors under vector bundles.

Proof For later use, we observe that since R is assumed connected and L is presumed
to exist, by Gille [30, Théorème 9.3.1], there is a cocharacter λ : Gm → G such that
P = PG(λ) and L = ZG(λ). If S is the spectrum of a field, which is the case we will
use later, the fact that all pairs (P,L) consisting of a parabolic together with a Levi
factor, are of the form (PG(λ),ZG(λ)) for a suitable cocharacter λ is contained in [22,
Proposition 2.2.9].

For Point (i), begin by observing that since P is a parabolic subgroup of G it is a
self-normalizing subgroup [21, Corollary 5.2.8]. The quotients G/L and G/P exist
as smooth R–schemes by [21, Theorems 2.3.1 and 2.3.6] (and, by Lemma 2.4.1, the
morphisms G→ G/L and G→ G/P are an L–torsor and a P–torsor, respectively).

For Point (ii), set U− = UG(−λ), i.e., the “unipotent radical” of an opposite parabolic.
We know that there is a dense open subscheme of G isomorphic to U−×P [21, Theorem
4.1.7] (here and below, we will refer to this as the “big cell”). The image of this open
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subscheme in G/L , which is isomorphic to U− × P/L , is again open and dense since
G→ G/L is smooth and surjective. The Levi decomposition yields an isomorphism of
schemes P ∼= L× U , and thus an identification P/L ∼= U . Under these identifications,
the unit map U → P provides a morphism U− × U → U− × L× U , which yields the
required generic trivialization.

For Point (iii), let U be the unique smooth closed normal R–subgroup scheme of P
whose geometric fibers coincide with the unipotent radicals of the geometric fibers of
P, which is guaranteed to exist by [21, Corollary 5.2.5]. By the uniqueness assertion,
U ∼= UG(λ) for the character whose existence we observed in the first paragraph. By [21,
Theorem 5.4.3], U admits a finite descending filtration by AutP/R –stable closed normal
smooth R–subgroup schemes Ui with successive subquotients Ui/Ui+1 isomorphic to
P–equivariant vector bundles over R. Moreover, the isomorphism P/L ∼= U described
in Point (ii) is actually P–equivariant.

Now, the morphism G/L −→ G/P is G–equivariant by definition. The scheme-
theoretic fiber over the identity coset in G/P is isomorphic to the quotient P/L and
there is an induced G–equivariant isomorphism G×P P/L ∼→ G/L under which the
morphism G/L → G/P is sent to the projection onto the first factor. In particular,
since P/L ∼= U is smooth, G× P/L→ G is smooth and since smoothness is fppf local
on the base [58, Tag 02VL Lemma 34.19.25], we conclude that G/L→ G/P is also
smooth. By discussion of the previous paragraph, the morphism G/L → G/P thus
factors successively through morphisms of the form

(3–1) G×P U/Ui+1 −→ G×P U/Ui.

To finish the proof, it suffices to inductively establish that each morphism in (3–1) is a
torsor under a vector bundle.

Each morphism U/Ui+1 → U/Ui is, by construction, a torsor under the vector bundle
Ui/Ui+1 and, as we observed above, provided with a P–equivariant structure. If E

is a quasi-coherent sheaf on a scheme X , then H1
fppf(X,E ) = H1

Zar(X,E ) by [58, Tag
03DR Proposition 34.7.10]. Since H1

fppf(X,E ) parameterizes fppf-torsors under the
quasi-coherent sheaf E , the P–equivariant structure on Ui/Ui+1 allows us to conclude,
by fppf-descent, that G×P Ui/Ui+1 is a torsor under a vector bundle on G/P. In other
words, each morphism in (3–1) is again a torsor under the vector bundle Ui/Ui+1 .

Remark 3.1.6 A number of remarks are in order.

(1) Since R a connected ring, it is not necessary to assume in the statement above
that L exists; this follows from Conrad [21, Corollary 5.4.8]. If we were to
work over a non-affine base scheme, parabolics need not have Levi factors (see
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[21, Example 5.4.9] for more details). By reorganizing the proof, the argument
presented in Point (iii) actually shows that the quotient G/L exists assuming we
know G/P to exist and the relevant results on the structure of U .

(2) By Lemma 2.3.3, since L is a smooth R–group scheme by assumption, G→ G/L
is étale locally trivial. If R is Noetherian and regular, then the morphism
G→ G/L being generically trivial is tantamount to G→ G/L being Nisnevich
locally trivial. To prove this, it suffices to show that generically trivial L–torsors
over Henselian local rings are trivial. If G is split reductive, then L is as well,
and the asserted triviality follows from Białynicki-Birula [17, Proposition 2]. If
G is not necessarily split, then L can be an arbitrary reductive group and one can
appeal to Nisnevich [47, Théorème 4.5] to deduce the required triviality result
(Nisnevich makes a statement for semi-simple group schemes, but it is true more
generally, see Fedorov and Panin [28, §1.1]).

(3) If G is split, it is possible to use translation of the big cell by elements of the
Weyl group to produce an explicit Zariski local trivialization of G→ G/L. In
fact, even if G is not split, to establish Zariski local triviality of G→ G/L (or,
equivalently, G → G/P), it suffices to know that the G(R)–translates of the
big-cell form an open cover of G/L (or G/P). If R is an infinite field, this kind
of result follows from the fact that the image of G(R) in G/P(R) is Zariski dense
(via the unirationality of G).

(4) In contrast, if R is a finite field (and G is non-split), it is a priori not obvious
that G(R) translates of the big cell cover G/L (or G/P). Nevertheless, assuming
the Grothendick–Serre conjecture, one knows that G→ G/L is Zariski locally
trivial. If R is the spectrum of a finite field, the Grothendieck–Serre conjecture
was established by Gabber for reductive groups coming from the ground field
(unpublished), but another proof of a more general case was recently given by
Panin [48] (see also [28]).

Write SOn for the split special orthogonal group over R. We restrict attention to the
case where 2 is a unit in R so we can view SOn as the R–subgroup scheme of GLn

consisting of automorphisms of the standard hyperbolic form qn with trivial determinant
(see, e.g., Conrad [21, Definition C.1.2]); for more details on special orthogonal groups,
see [21, Appendix C]).

Lemma 3.1.7 If R is a ring in which 2 is invertible, then the following statements
hold.

(i) If n ≥ 3, the quotient SOn/SOn−1 exists and is isomorphic to a quadric
hypersurface in An

R defined by the equation qn = 1.
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(ii) If n ≥ 3, the projection morphism SOn → SOn/SOn−1 makes SOn into a Zariski
locally trivial SOn−1 –torsor over the quotient.

Proof Without loss of generality, we can take R = Z[1/2], which is Noetherian of
dimension ≤ 1. Since SOn−1 is a closed R–subgroup scheme of SOn , the quotient
SOn/SOn−1 exists as a scheme [1, Théorème 4.C].

To identify this quotient with the quadric in the statement, we proceed as follows.
Since SOn−1 = SOn ∩ SLn−1 inside of SLn , the inclusion SOn ⊂ SLn induces a
monomorphism SOn/SOn−1 ↪→ SLn/SLn−1 . Note that if A is an R–algebra, the map
sending X ∈ SLn(A) to its first row and the first column of its inverse determines an
isomorphism SLn/SLn−1 ∼= Spec R[x1, . . . , x2n]/(q2n − 1). If we restrict X ∈ SOn(A)
and if J is the symmetric matrix corresponding to the bilinear form associated with
qn , then the orthogonality condition imposes the relation X−1 = JXT . Using this
observation, it is straightforward to check that the image is isomorphic, in suitable
coordinates, to a sub-quadric given by the equation qn = 1.

For the second statement, observe that morphisms X → SOn/SOn−1 classify SOn−1 –
torsors which are trivial after stabilization to SOn –torsors. The Witt cancellation
theorem (see Milnor and Husemoller [41, Lemma 6.3]) implies that, over a local ring in
which 2 is invertible, such an SOn−1 –torsor is already trivial.

3.2 The local-to-global principle for torsors under linear group schemes

In this section we establish a local-to-global principle or “Quillen patching” for torsors
under linear R–group schemes in the sense of Definition 3.1.1. The main result of this
section is Theorem 3.2.5, which is a multi-variable analog of a result of Quillen [53,
Theorem 1] along the lines of Lam [38, Theorem V.1.6]. As will be clear from the
presentation, the argument follows quite closely that for projective modules given in
[38, Chapter V.1].

That the local-to-global principle holds for torsors under linear group schemes is certainly
“well-known to experts”, under suitable hypotheses. For example, Raghunathan [54]
states (without proof) that Quillen’s local-to-global principle holds for linear algebraic
groups over a field and Bass–Connell–Wright developed an axiomatic method to
establish such results [16, Proposition 3.1]; in particular, the latter approach applies for
various classical groups [16, Remark 4.15.4] over a general base ring. Nevertheless,
since we could not find a suitable published reference for precisely what we needed, in
the interest of completeness, we decided to collect the necessary results here.
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Modifying automorphisms

We begin by generalizing [53, Lemma 1] (also [38, Corollary V.1.2]) and [38, Corollary
V.1.3] to linear R–group schemes over an arbitrary commutative ring R. The following
pair of results are due to Moser [45, Lemmas 3.5.3–3.5.5] (though our hypotheses differ
slightly); we include them here for the convenience of the reader.

Lemma 3.2.1 Let R be a commutative ring, let G be a linear R–group scheme, let
f ∈ R, and let θ(t) ∈ G(Rf [t]) be such that θ(0) = 1 ∈ G(Rf ). There exists an integer
s ≥ 0 such that for any a, b ∈ R with a − b ∈ f sR, there exists ψ ∈ G(R[t]) with
ψ(0) = 1 and such that ψf (t) = θ(at)θ(bt)−1 ∈ G(Rf [t]).

Proof Since G is a linear R–group scheme, by definition there is a finitely presented
closed immersion G → GLn . For s ∈ N, set ψs(t, x, y) := θ((x + f sy)t)θ(xt)−1 ∈
G(Rf [t, x, y]). It suffices to show that there exists s such that ψs can be lifted to an
element ψs ∈ G(R[t, x, y]). Indeed, in that case, by specializing with x = b, a = b+f sα ,
we see that θ(at)θ(bt)−1 = ψs(t, b, α) lifts as well. By the proof of [53, Lemma 1], we
know that there exists s such that ψs(t, x, y) lifts to an element of GLn(R[t, x, y]) and
such that ψs(0, x, y) = 1 (see also [38, Theorem V.1.1]). Observe that, by definition,
ψs(t, x, 0) = 1 and thus ψs(t, x, 0) ∈ G(R[x, t]).

It remains to show that there exists i ≥ 0 such that ψs(t, x, f iy) ∈ G(R[t, x, y]). We
first recast this in ring-theoretic terms. Set A := R[t, x], let B be the coordinate ring
of GLn , and let I ⊂ B be the finitely generated ideal defining G. The lift of ψs is
given by a homomorphism ϕ : B→ A[y], and we want to show that, for some i ≥ 0,
ϕ(−)(f iy) vanishes on I . We claim that, for every r ∈ I , there exists an integer ir such
that ϕ(r)(f iy) = 0 for i ≥ ir . If J ⊂ I is a finite generating set and i = maxr∈J ir , then
i will have the desired property.

Note that ϕ has the following properties: if ev0 : A[y] → A is the evaluation
homomorphism, then the composites ev0 ◦ ϕ : B → A and B → A[y] → Af [y] both
vanish on I . If r ∈ I and P := φ(r) ∈ A[y], these properties imply that P = yQ for
some Q ∈ A[y] and that f ir P = 0 for some ir ≥ 0. Combining these two observations,
we have 0 = f ir P = f ir yQ. Therefore, f ir Q = 0 as well. Thus, P(f iy) = f iyQ(f iy) = 0
for all i ≥ ir , which is what we wanted to show.

Lemma 3.2.2 Let R be a commutative ring and G a linear R–group scheme. Given
f0, f1 ∈ R such that f0R + f1R = R, and θ ∈ G(Rf0f1[t]) with θ(0) = 1, then we can find
τi ∈ G(Rfi[t]) with τi(0) = 1 such that θ = τ0τ

−1
1 .
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Proof Let θ(t) ∈ G(Rf0f1[t]). We can apply Lemma 3.2.1 to the localizations Rf0 → Rf0f1
and Rf1 → Rf1f0 : pick an integer s that suffices for both localizations. For any b ∈ R,
we can write

θ(t) = [θ(t)θ(bt)−1]θ(bt).

If f0R + f1R = R, then the same thing is true for f s
0 and f s

1 . Thus, we can pick b ∈ f s
1 R

such that 1− b ∈ f s
0 R. In that case, θ(t)θ(bt)−1 ∈ G(Rf1[t])f0 and θ(bt) ∈ G(Rf0[t])f1

lift to elements τ1 and τ0 with the stated properties.

Remark 3.2.3 Lemma 3.2.1 implies “Axiom Q” (in the sense of Bass, Connell, and
Wright [16, §1.1]) holds for the functor on R–algebras determined by G. Lemma 3.2.2
essentially corresponds to [16, Theorem 2.4].

The local-to-global principle

Let R be a commutative ring and suppose G is a linear R–group scheme. If A is a
commutative R–algebra, by a G–torsor over A we will mean a G–torsor over Spec A;
by assumption our G–torsors are locally trivial in the fppf-topology (see Definition 2.3.1
and the discussion just prior to Lemma 2.3.3 for more details). A G–torsor over
A[t1, . . . , tn] that is pulled back from a G–torsor over A will be called extended from A .
For the remainder of this section, we will essentially confine our attention to a fixed
G–torsor P , which will be important for subsequent applications.

Proposition 3.2.4 Let R be a commutative ring. If P is a G–torsor over R[t], then
the set Q(P) consisting of g ∈ R such that P|Spec Rg[t] is extended from Rg is an ideal
in R.

Proof It is immediate that Q(P) is closed under multiplication by elements in R.
Thus, we have to show that if f0, f1 ∈ Q(P), then f = f0 + f1 lies in Q(P) as well.
After replacing R by Rf , we can assume that f0R + f1R = R.

Write 0 : Spec R→ A1
R , and pr : A1

R → Spec R for the zero section and the structure
morphism. Thus, suppose P is a G–torsor over R[t] and assume that the restrictions
Pi := P|Spec Rfi [t] are extended. We want to show that P ∼= pr∗0∗P .

By assumption, there are isomorphisms ui : Pi ∼= pr∗0∗Pi over Rfi[t]. By modifying
ui if necessary, we may assume that 0∗ui = 1. Let P01 be the restriction of P to Rf0f1[t].
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Then u0 and u1 restrict to give two isomorphisms (u0)f1 , (u1)f0 : P01 ∼= pr∗0∗P01 . If
we set θ = (u1)f0(u0)−1

f1 ∈ G(Rf0f1[t]), then there is a commutative diagram of the form

P0

u0

��

P01oo //

(u0)f1yy

(u1)f0

%%

P1

u1

��
pr∗0∗P0 pr∗0∗P01oo θ // pr∗0∗P01 // pr∗0∗P1.

If θ is the identity, then by fppf descent for G–torsors, the isomorphisms u0 and u1 glue
to give an isomorphism P ∼= pr∗0∗P , as desired. If not, since 0∗ui = 1, we see that
θ restricts along t = 0 to the identity. Then, Lemma 3.2.2 guarantees that we can find
τi ∈ G(Rfi[t]) such that τi(0) = 1 and such that θ = τ0τ

−1
1 . Thus, (τ0u0)f1 = (τ1u1)f0

and replacing u0 by τ0u0 and u1 by τ1u1 , we can glue these isomorphisms to conclude
that P is extended.

Theorem 3.2.5 (Local-to-global principle) Let R be a commutative ring and suppose
G is a linear R–group scheme. If P is a G–torsor over R[t1, . . . , tn], then

(An) the set Q(P) consisting of g ∈ R such that P|Spec Rg[t1,...,tn] is extended from
Rg is an ideal in R.

(Bn) If P|Spec Rm[t1,...,tn] is extended for every maximal ideal m ⊂ R, then P is
extended.

Proof We know that (A1) holds by Proposition 3.2.4.

We show (An) =⇒ (Bn). It suffices to check that for P satisfying the conditions in
(Bn) that the ideal Q(P) is the unit ideal in R. To this end, let P|0 be the pullback of
P along the zero section Spec R→ Spec R[t1, . . . , tn] and let P ′ be the pullback of
P|0 along the structure map Spec R[t1, . . . , tn]→ Spec R.

For any maximal ideal m ⊂ R, since P|Spec Rm[t1,...,tn] is by assumption extended, we
know there is an isomorphism ϕ : P|Spec Rm[t1,...,tn]

∼→P ′|Spec Rm[t1,...,tn] . Since G–
torsors over affine bases are of finite presentation under our hypotheses by Lemma 2.3.3,
there exists g ∈ R \ m such that ϕ is the localization of an isomorphism of torsors
over Spec Rg[t1, . . . , tn]. It follows that g ∈ Q(P) \m and therefore that Q(P) is not
contained in m, i.e., Q(P) = R.

We show (A1) =⇒ (An). We proceed by induction on n. Assume therefore that (An−1)
holds. By the conclusion of the previous step, this means (Bn−1) holds as well. Form
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the set Q(P) as in (An). It is straightforward to check that R · Q(P) ⊂ Q(P) and
therefore it suffices to show that if f0, f1 ∈ Q(P), then f0 + f1 ∈ Q(P) as well.

Write f = f0 + f1 . Consider the quotient map R[t1, . . . , tn] → R[t1, . . . , tn−1] and
set P|tn=0 to be the restriction of P under the corresponding morphism of schemes.
Likewise, write P|0 for the restriction of P along the zero section as in the previous
step. Applying (A1) to the map R[t1, . . . , tn−1]→ R[t1, . . . , tn−1][tn], we conclude that
Pf is extended from (P|tn=0)f .

We claim that (P|tn=0)f is itself extended from Rf . If that is the case, then Pf is
extended and so f ∈ Q(P). Since (Bn−1) holds, it suffices to show that (P|tn=0)f is
extended upon restriction to every maximal ideal m ∈ Rf . Write m = pf where p is
the pre-image of m under the localization map R → Rf . Since f /∈ p it follows that
either f0 or f1 is not in p; without loss of generality, we can assume that f0 /∈ p. By
assumption, however, Pf0 is extended from (P0)f0 so we conclude that the restriction
of (P|tn=0)f to the maximal ideal m is extended from (P0)p , which is what we wanted
to show.

Corollary 3.2.6 Let G be a reductive R–group scheme. If R is regular Noetherian
or G is split, then the local-to-global principle holds for G–torsors, i.e., a G–torsor
over R[t1, . . . , tn] is extended from R if and only if for every maximal ideal m ⊂ R, the
G–torsor on Rm[t1, . . . , tn] obtained by restriction is extended from Rm .

Proof Combine Proposition 3.1.3 and Theorem 3.2.5.

3.3 Affine homotopy invariance for G–torsors

Let G be a smooth linear R–group scheme. In this section, we analyze when the
pullback map

H1
Nis(X,G) −→ H1

Nis(X × A1,G)

is a bijection for X a smooth affine R–scheme.

Special linear groups

We begin by recalling some facts about oriented vector bundles over schemes. If X is a
scheme, then recall that an oriented vector bundle on X is a pair (E , ϕ) consisting of
a vector bundle E on X equipped with an isomorphism ϕ : det E ∼→ OX . There is a
standard equivalence between the groupoid of oriented vector bundles on X and that of

Geometry & Topology XX (20XX)



1024 Aravind Asok, Marc Hoyois and Matthias Wendt

SLn –torsors over X . Write V o
n (X) for the set of isomorphism classes of rank n oriented

vector bundles on X .

Theorem 3.3.1 (Special linear homotopy invariance) Fix an integer n ≥ 1 and
suppose R is a ring such that, for every maximal ideal m ⊂ R, Rm is ind-smooth over a
Dedekind ring with perfect residue fields (for example, Rm is Noetherian and regular
over such a Dedekind ring). For every integer m ≥ 0, the map

V o
n (Spec R) −→ V o

n (Spec R[t1, . . . , tm])

is a bijection.

Proof By [9, Theorem 5.2.1], every vector bundle on Spec R[t1, . . . , tm] is pulled
back from a vector bundle on Spec R. In particular, every oriented vector bundle
on Spec R[t1, . . . , tm] is pulled back from a vector bundle on Spec R with trivial
determinant. It remains to show that every automorphism of the trivial line bundle on
Spec R[t1, . . . , tm] is extended from Spec R. In other words, we must show that the
inclusion map R→ R[t1, . . . , tm] induces an isomorphism on unit groups.

Observe that our assumptions guarantee that Rm is reduced for every maximal ideal
m ⊂ R, and therefore R must itself be reduced. Since R is reduced, the fact that
R→ R[t1, . . . , tm] induces an isomorphism on unit groups follows from a straightforward
induction argument, using the elementary observation that if A is a reduced commutative
ring, then the map A→ A[t] induces an isomorphism A× → A[t]× .

Remark 3.3.2 In [43, Definition 4.3], Morel defines an orientation on a vector bundle
E to be an isomorphism between det E and the square of a line bundle. Oriented vector
bundles in this sense correspond to torsors under the metalinear group MLn defined by
the pullback square

MLn //

��

Gm

2
��

GLn det
// Gm.

This more general notion of orientation is very natural in Morel’s theory of the Euler
class, since the latter only depends on an orientation in this sense. Theorem 3.3.1 is
also true for MLn –torsors instead of SLn –torsors, with a very similar proof.
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Symplectic groups

We refer the reader to Knus [36, §I.4] for more details about symplectic spaces over
rings; we briefly fix notations in the scheme-theoretic context. If X is a scheme and B is
a quasi-coherent sheaf on X , an alternating bilinear form on B is a morphism of quasi-
coherent sheaves ϕ : B ⊗OX B → OX such that ϕ ◦∆ = 0, where ∆ : B → B ⊗OX B
is the (nonlinear) diagonal map. If (B, ϕ) is a quasi-coherent sheaf equipped with
an alternating bilinear form, then we will say that ϕ is non-degenerate if ϕ induces
an isomorphism B → B∨ := HomOX (B,OX). By a symplectic bundle (of rank 2n)
we will mean a pair (B, ϕ) consisting of a (rank 2n) vector bundle B on X equipped
with a non-degenerate alternating bilinear form ϕ. Write H V 2n(X) for the set of
isomorphism classes of rank 2n symplectic bundles on X .

We briefly recall the standard equivalence between the groupoid of symplectic vector
bundles and that of Sp2n –torsors on X . In one direction, send a symplectic vector bundle
(B, ϕ) to its bundle of “symplectic frames”; by [36, Proposition I.4.1.4] this construction
yields an fppf torsor under Sp2n . In the other direction, given an Sp2n –torsor P on X ,
consider the vector bundle associated with the standard 2n–dimensional representation
of Sp2n , which comes equipped with a reduction of structure group to Sp2n , i.e., an
alternating form on the bundle. By [36, Corollary 4.1.2] any symplectic bundle on a
scheme X is Zariski locally on X isometric to the hyperbolic space of a trivial vector
bundle [36, I.3.5]. Combining these observations, we see that Sp2n –torsors are Zariski
locally trivial and that there is an equivalence between the groupoid of symplectic vector
bundles over X and that of Nisnevich locally trivial Sp2n –torsors (as mentioned in
Example 2.3.4).

Theorem 3.3.3 (Symplectic homotopy invariance) Fix an integer n ≥ 1 and suppose
R is a ring such that, for every maximal ideal m ⊂ R, Rm is ind-smooth over a Dedekind
ring with perfect residue fields (for example, Rm is Noetherian and regular over such a
Dedekind ring). For every integer m ≥ 0, the map

H V 2n(Spec R) −→H V 2n(Spec R[t1, . . . , tm])

is a bijection.

Proof For any integer n ≥ 1, the group Sp2n is a split reductive R–group scheme (and,
by definition, linear). Therefore, applying Theorem 3.2.5, it suffices to demonstrate the
result with R replaced by Rm . Since Rm is local, every finitely generated projective
module over Rm is free. By the assumption on R and [9, Theorem 5.2.1], we know
that, for any integer m, every finitely generated projective Rm[t1, . . . , tm]–module is
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free. Applying [36, Corollary I.4.1.2], we conclude that every symplectic space over
Rm[t1, . . . , tm] is isometric to the hyperbolic space of a free module. In particular, every
symplectic space over Rm[t1, . . . , tm] is extended from Rm .

A formalism for homotopy invariance

We recall a formalism introduced by Colliot-Thélène–Ojanguren; the following result is
a slight extension of [20, Théorème 1.1].

Proposition 3.3.4 Fix an infinite base field k . Suppose F is a functor from the category
of k–algebras to the category of pointed sets with the following properties:

P1 The functor F commutes with filtered inductive limits of rings with flat transition
morphisms.

P2 For every extension field L/k and every integer n ≥ 0, the restriction map

F(L[t1, . . . , tn]) −→ F(L(t1, . . . , tn))

has trivial kernel.

P3 The functor F has weak affine Nisnevich excision, i.e., for any smooth k–algebra
A, any étale A–algebra B, and any element f ∈ A such that A/fA ∼= B/fB the
map

ker(F(A)→ F(Af )) −→ ker(F(B) −→ F(Bf ))

is a surjection.

If B is the localization of a smooth k–algebra at a maximal ideal, then, setting
KB = Frac(B), for any integer n ≥ 0 the restriction map

F(B[t1, . . . , tn]) −→ F(KB(t1, . . . , tn))

has trivial kernel.

Proof Set d := dim B and write m for the maximal ideal of B. Suppose that

ξ0 ∈ ker(F(B[t1, . . . , tn]) −→ F(KB(t1, . . . , tn))).

Let ξ be the image of ξ0 in F(KB[t1, . . . , tn]). Then, by assumption, ξ lies in the kernel
of F(KB[t1, . . . , tn])→ F(KB(t1, . . . , tn)). By P2, we conclude that ξ is trivial.

By using P1, we conclude that there is an element g ∈ m\0 such that ξ0 restricts trivially
to F(Bg[t1, . . . , tn]). Then, by Knus [36, Corollary VIII.3.2.5], there exist a polynomial
ring L[x1, . . . , xd], a maximal ideal n ⊂ L[x1, . . . , xd], a local essentially étale morphism
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ϕ : A→ B (where A = L[x1, . . . , xd]n ), and an element f ∈ m such that ϕ(f ) = ug for
u a unit in Bm and ϕ induces an isomorphism A/fA ∼→ B/gB. By P3, we conclude
that there exists an element ξ′0 ∈ ker(F(A[t1, . . . , tn])→ F(Af [t1, . . . , tn])) mapping to
ξ0 . However, ξ′0 is also evidently in ker(F(A[t1, . . . , tn])→ F(KA(t1, . . . , tn))). Thus, it
suffices to establish the result in the case where B is the localization of a polynomial
ring at a maximal ideal, which is precisely [20, Proposition 1.5].

Isotropic reductive groups

If k is a field, a reductive k–group scheme will be called anisotropic if it contains
no k–subgroup isomorphic to Gm . We take the following definition for isotropic
reductive k–group, but we caution the reader that our definition differs from that of
Borel [18, Definition V.20.1]; we choose this definition because it better suits our
eventual applications.

Definition 3.3.5 If k is a field, a reductive k–group scheme G will be called isotropic
if each of the almost k–simple components of the derived group of G contains a
k–subgroup scheme isomorphic to Gm .

Remark 3.3.6 See Borel [18, §V.20] or Gille [30, §9.1] for further discussion of
isotropic reductive groups. In general, the existence of a non-central split multiplicative
k–subgroup is equivalent to the existence of a parabolic k–subgroup by the dynamic
construction described just before Lemma 3.1.5. In particular, isotropic reductive
k–groups admit proper parabolic subgroups.

Theorem 3.3.7 If k is an infinite field, and G is an isotropic reductive k–group (see
Definition 3.3.5), then for any smooth k–algebra A and any integer n ≥ 0, the map

H1
Nis(Spec A,G) −→ H1

Nis(Spec A[t1, . . . , tn],G)

is a bijection.

Proof We have to show that every Nisnevich locally trivial G–torsor P over
A[t1, . . . , tn] is extended from A. After Corollary 3.2.6, it suffices to show that,
for every maximal ideal m of A, the G–torsor Pm over Am[t1, . . . , tn] is extended
from Am ; we will show that in fact Pm is trivial.

We claim that the functor A 7→ H1
Nis(Spec A,G) from k–algebras to pointed sets satisfies

the axioms P1 − P3 of Proposition 3.3.4. Axiom P1 is a consequence of our finite
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presentation hypotheses by way of Lemma 2.3.3. Axiom P2 uses the hypothesis that
G is isotropic and follows from [20, Proposition 2.4 and Theorem 2.5] (note that our
definition of isotropic reductive k–group coincides with that used in [20, §2 p. 103]).
Axiom P3 is a formal consequence of the fact that H1

Nis(−,G) ∼= π0(BTorsNis(G)) where
BTorsNis(G) satisfies affine Nisnevich excision (see Section 2.3). By the conclusion of
Proposition 3.3.4, it suffices to show Pm becomes trivial over Frac(Am)(t1, . . . , tn), but
this follows immediately from the fact that a field has no nontrivial Nisnevich covering
sieves.

Remark 3.3.8 At least if k is an infinite perfect field, Theorem 3.3.7 admits a converse:
if G is a reductive k–group such that H1

Nis(−,G) is A1 –invariant on Smaff
k , then G is

isotropic, see Balwe and Sawant [14, Theorem 1]. In fact, for G reductive, the following
three conditions are equivalent:

(i) G is isotropic (in the sense of Definition 3.3.5);

(ii) H1
Nis(−,G) is A1 –invariant on smooth affine k–schemes;

(iii) RNis SingA
1
G is A1 –invariant.

The implication (i)⇒ (ii) is Theorem 3.3.7, (ii)⇒ (iii) is a special case of Theorem 2.4.2,
and (iii) ⇒ (i) is [14, Theorem 4.7].

4 Applications

In this section, we collect a number of applications of the results established so far.
Section 4.1 discusses representability results for Nisnevich locally trivial torsors. As
mentioned in Remark 3, that representability results should hold for torsors under
SLn and Sp2n was observed by Schlichting [56, Remark 6.23]; we simply observe
in these cases that the expected classical geometric objects yield models for the
representing spaces. In Section 4.2 we establish that for various classes of homogeneous
spaces for reductive groups applying the singular construction produces an A1 –local
space. Section 4.3 establishes strong A1 –invariance of homotopy sheaves of the
singular construction of a reductive group under suitable additional hypotheses. Finally,
Section 4.4 studies a purely algebraic problem using our techniques, namely nilpotence
of non-stable K1 –functors.
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4.1 Affine representability results for torsors

Let Grn,n+N be the usual Grassmannian parameterizing n–dimensional subspaces
of an (n + N)–dimensional vector space. Let G̃rn,n+N be the complement of the
zero section in the total space of the determinant of the tautological vector bundle
on Grn,n+N . The space G̃rn,n+N parameterizes rank n subspaces of the (n + N)–
dimensional vector space equipped with a specified trivialization of their determinant.
We set G̃rn := colimN G̃rn,n+N where the transition maps are the same as those in the
definition Grn . With these definitions, we can establish a geometric representability
result for oriented vector bundles.

Theorem 4.1.1 Suppose k is ind-smooth over a Dedekind ring with perfect residue
fields. Then, for any X ∈ Smaff

k , and any integer n ≥ 1, there is a bijection

V o
n (X) ∼= [X, G̃rn]A1

that is functorial in X .

Proof Recall from Example 2.3.4 and the discussion preceding Theorem 3.3.1 that,
for any integer n ≥ 1, there is a functorial bijection of the form V o

n (X) ∼= H1
Nis(X, SLn).

Combining Theorems 2.3.5 and 3.3.1, we conclude that, under the stated hypotheses on
k , for any smooth affine k–scheme X , H1

Nis(X, SLn) ∼= [X,BSLn]A1 .

Using the notation of Morel and Voevodsky [44, §4.2], the space Bgm(SLn, i) (attached
to the defining inclusion i : SLn ↪→ GLn ) is precisely the space G̃rn . Therefore
combining the results of [44, §4.2], and using the fact that all SLn –torsors are Zariski
(and thus Nisnevich) locally trivial we conclude that the map G̃rn → BSLn classifying
the universal SLn –torsor over G̃rn is an A1 –weak equivalence.

If we let H be the standard 2–dimensional hyperbolic space, then we can con-
sider the symplectic vector space H⊕N . Panin and Walter construct a scheme
HGrn,n+N that parameterizes rank 2n symplectic subspaces of H⊕(n+N) and we set
HGrn := colimN HGrn,n+N [50]. Alternatively, HGr can be described as the colimit
colimN Sp2(n+N)/(Sp2n × Sp2N). Using these definitions, we are now able to establish a
geometric representability theorem for symplectic vector bundles.

Theorem 4.1.2 Suppose k is ind-smooth over a Dedekind ring with perfect residue
fields. Then, for any X ∈ Smaff

k , there is a bijection

H V 2n(X) ∼= [X,HGrn]A1

that is functorial in X .
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Proof Proceeding as in the proof of Theorem 4.1.1, we combine Example 2.3.4 and
the discussion preceding Theorem 3.3.3 to conclude that there is a functorial bijection
of the form H V 2n(X) ∼= H1

Nis(X, Sp2n). Combining Theorems 2.3.5 and 3.3.3, we
conclude that, under the stated hypotheses on k , for any smooth affine k–scheme
X , H1

Nis(X, Sp2n) ∼= [X,BSp2n]A1 . Finally, by the proof of [49, Theorem 8.2], we
can conclude that HGrn is A1 –weakly equivalent to BSp2n , and thus for any smooth
k–scheme X , [X,HGrn]A1 ∼= [X,BSp2n]A1 .

We now establish Theorem 1.

Theorem 4.1.3 Suppose k is an infinite field, and G is an isotropic reductive k–group
(see Definition 3.3.5). For any smooth affine k–scheme X , there is a functorial bijection

H1
Nis(X,G) ∼= [X,BG]A1 .

Proof Combine Theorems 2.3.5 and 3.3.7.

Remark 4.1.4 In Theorem 4.1.3, the isotropy condition on G cannot be weakened, cf.
Remark 3.3.8.

4.2 Affine representability results for some homogeneous spaces

Let Q2n−1 be the smooth affine quadric over Z defined by
∑

i xiyi = 1. There is a
standard identification SLn/SLn−1

∼→ Q2n−1 . Let Q2n be the smooth affine quadric
over Z defined by

∑
i xiyi = z(z + 1) (in Asok–Doran–Fasel [4], it is shown that Q2n

is A1 –weakly equivalent to P1∧n over SpecZ). In particular, there are isomorphisms
Q2 ∼= SL2/Gm and Q4 ∼= Sp4/(Sp2 × Sp2) over SpecZ. If R is a ring in which 2
is invertible, then Q2n is isomorphic over R to the quadric defined by the standard
hyperbolic form

∑
i xiyi + z2 = 1. It then follows from Lemma 3.1.7 that Q2n is

isomorphic over R to the homogeneous space SO2n+1/SO2n .

Theorem 4.2.1 If R is a ring that is ind-smooth over a Dedekind ring with perfect
residue fields, then Q2n−1 is A1 –naive. In particular, for any smooth affine R–scheme
X , there is a functorial bijection

π0(SingA
1
Q2n−1)(X) ∼−→ [X,Q2n−1]A1 .

Proof The scheme Q2n−1 is isomorphic over SpecZ to the homogeneous space
GLn/GLn−1 . Since all torsors for GLn−1 are Zariski locally trivial, it follows that
GLn → Q2n−1 is Zariski locally trivial (in fact, one can just write down an explicit
trivialization). Using [9, Theorem 5.2.1] we may apply Theorem 2.4.2 to conclude.
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Theorem 4.2.2 If either (a) n ≤ 2, and R is a ring that is ind-smooth over a Dedekind
ring with perfect residue fields, or (b) n ≥ 3 and R is an infinite field having characteristic
unequal to 2, then Q2n is A1 –naive. In particular, under either set of hypotheses, for
any smooth affine R–scheme X , there is a functorial bijection

π0(SingA
1
Q2n)(X) ∼−→ [X,Q2n]A1 .

Proof For n = 1 consider the identification Q2 ∼= SL2/Gm . Affine homotopy
invariance holds for Gm –torsors over an arbitrary regular base, and for torsors under
SL2 ∼= Sp2 by assumption. The result follows immediately from Theorem 2.4.2.
Similarly, for n = 2 consider the identification Q4 ∼= Sp4/(Sp2 × Sp2). Again, by
assumption we may combine Theorems 3.3.3 and 2.4.2 to conclude.

For n ≥ 3 we proceed slightly differently. The SO2n –torsor SO2n+1 → Q2n is still
Zariski locally trivial by Lemma 3.1.7. Since SOm is split for m ≥ 3, we may apply
Theorem 3.3.7 to conclude that H1

Nis(−, SOm) is A1 –invariant on Smaff
R for any integer

m ≥ 3. Then, we apply Theorem 2.4.2 to conclude.

Remark 4.2.3 If X = Spec A, then a map f : X → Q2n yields an ideal I ⊂ A and
a surjection ω : (A/I)⊕n → I/I2 ; the ideal I is the ideal generated by the images
of x1, . . . , xn, z in the coordinate presentation of the quadric. The class of f in
π0(SingA

1
Q2n)(X) depends only on the pair (I, ω) and is called the “Segre class” of

(I, ω), see Fasel [27, Theorem 2.0.2]. When X is smooth over an infinite field, the Segre
class provides an obstruction to lifting ω to a surjection A⊕n → I [27, Theorem 3.2.8].

Zariski fiber bundles with affine space fibers

If F is a fixed S–scheme, we will say that an S–morphism π : E → B is a Zariski
fiber bundle of S–schemes with fibers isomorphic to F if there exist an S–scheme U , a
Zariski covering morphism U → B and an isomorphism ϕ : U ×B E ∼→ U ×S F over
U . The following result, which generalizes a result of Morel [43, Theorem 8.9(2)],
applies to affine vector bundle torsors (a.k.a. Jouanolou–Thomason devices, see Weibel
[63, Definition 4.2 and Proposition 4.4]).

Lemma 4.2.4 Suppose B ∈ SmS , and π : E → B is a Zariski fiber bundle of S–
schemes with fibers isomorphic to An

S . For any X = Spec R ∈ Smaff
S , the induced

map
SingA

1
E(X) −→ SingA

1
B(X)

is an acyclic Kan fibration. Moreover, E is A1 –naive if and only if B is A1 –naive.
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Proof By Goerss and Jardine [31, Theorem I.11.2], it suffices to show that for any
integer n ≥ 0, given a diagram of the form

∂∆n
R

//

��

E

π

��
∆n

R
// B

there is a morphism ∆n
R → E making both resulting triangles commute.

Given a diagram as above, there is an induced map ∂∆n
R → ∆n

R×B E . By the assumption
on π , the pullback π′ : ∆n

R ×B E → ∆n
R makes the ring of functions on ∆n

R ×B E into
a locally polynomial algebra over R[t1, . . . , tn] in the sense of Bass–Connell–Wright
[16, Theorem 4.4]. Therefore, by [16, Theorem 4.4] we conclude that π′ is a geometric
vector bundle over ∆n

R , i.e., the spectrum of a symmetric algebra over ∆n
R . Now, if

E → ∆n
R is a geometric vector bundle, then the inclusion map ∂∆n

R → ∆n
R induces

a surjective map Hom(∆n
R,E ) → Hom(∂∆n

R,E ). Therefore, the lift we hoped to
construct is guaranteed to exist.

For the second statement, let Ẽ and B̃ be Nisnevich-local A1 –invariant replacements of
E and B, respectively, and consider the commutative square of simplicial presheaves

SingA
1
E //

��

Ẽ

��
SingA

1
B // B̃.

Since the left vertical map is a weak equivalence on affines, the right vertical map is a
weak equivalence. It follows that the upper horizontal map is a weak equivalence on
affines if and only if the lower horizontal map is.

Example 4.2.5 If X ∈ Smaff
S is an affine scheme, then any finitely presented Zariski

fiber bundle of S–schemes π : E → X with fibers isomorphic to affine spaces is actually
a vector bundle by the result of Bass–Connell–Wright mentioned above [16]; this result
was obtained independently by Suslin [60]. On the other hand, if X is not affine, then
even if π admits a section, it may not be isomorphic to a vector bundle: see Iarrobino
[34, Theorem 1] for an example with X = P1 .

Homogeneous spaces with non-reductive stabilizers

The following result extends and simplifies the proof of a theorem of Morel [43, Theorem
8.9] (in particular, we allow the case n = 2).
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Corollary 4.2.6 If R is a ring that is ind-smooth over a Dedekind ring with perfect
residue fields, then An \ 0 is A1 –naive. In particular, for any smooth affine R–scheme
X , there is a canonical bijection

π0 SingA
1
(An \ 0)(X) ∼−→ [X,An \ 0]A1 .

Proof The map SLn → An \ 0 given by “projection onto the first column” factors
through a map SLn/SLn−1 → An \ 0; this map is a Zariski fiber bundle with fibers
isomorphic to affine spaces. By Lemma 4.2.4, it suffices to show that SLn/SLn−1 is
A1 –naive. This follows from Theorem 4.2.1 via the standard isomorphism SLn/SLn−1 ∼=
Q2n−1 (send a matrix in SLn to the first row and first column of its inverse).

Lemma 4.2.7 Let X be a simplicial set and k ≥ 0. If X has the right lifting property
with respect to the inclusion ∂∆m ⊂ ∆m for every m ≤ k + 1, then X is k–connected.

Proof A simplicial set X is k–connected if and only if the Kan complex coskk+1Ex∞X
is contractible, or equivalently has the right lifting property with respect to ∂∆m ⊂ ∆m

for all m. By adjunction, this is the case if and only if Ex∞X has the right lifting
property with respect to ∂∆m ⊂ ∆m for m ≤ k + 1. By definition of Ex∞ , it suffices
to show that X itself has the right lifting property with respect to sdr(∂∆m) ⊂ sdr(∆m)
for all r and all m ≤ k + 1. In fact, X has the right lifting property with respect to any
monomorphism between (k + 1)–skeletal simplicial sets, since such a monomorphism
is a transfinite composition of pushouts of ∂∆m ⊂ ∆m for m ≤ k + 1.

Proposition 4.2.8 Let n, k ≥ 0 and let R be a commutative ring such that the Bass
stable range of R[t0, . . . , tk] is at most n. Then the simplicial set SingA

1
(An \0)(R) is k–

connected. In particular, if R is Noetherian of Krull dimension d , then SingA
1
(An\0)(R)

is (n− d − 2)–connected.

Proof By Lemma 4.2.7, it suffices to show that the map

Umn(∆m
R )→ Umn(∂∆m

R )

is surjective for all m ≤ k+1, where Umn(X) = Hom(X,An\0) is the set of unimodular
rows of length n in O(X). By assumption, the Bass stable range of ∆k+1

R is at most n. It
follows that the Bass stable range of ∆m

R is at most n, for all m ≤ k + 1. Now the result
is a special case of the following more general statement, which follows easily from the
definition of Bass stable range: if X is an affine scheme of Bass stable range ≤ n and
Y ⊂ X is a finitely presented closed subscheme, then the map Umn(X)→ Umn(Y) is
surjective.
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Remark 4.2.9 Under the assumption of Corollary 4.2.6, if n ≥ 3, the set π0 SingA
1
(An\

0)(X) has a concrete description due to Fasel [26, Theorem 2.1]. Indeed, it is the
quotient of the set Umn(X) of unimodular rows of length n by the action of the subgroup
En(X) ⊂ SLn(X) generated by elementary shearing matrices. In loc. cit., it is assumed
that R is a field, but the proof works more generally using a result of Lindel–Popescu
[52, Proposition 2.1]. Taking X = Q2n−1 , we obtain a bijection

[An \ 0,An \ 0]A1 ∼= Umn(Q2n−1)/En(Q2n−1).

By Corollary 4.2.6, we have [S1,An \ 0]A1,∗
∼= π1 SingA

1
(An \ 0)(R), and Proposi-

tion 4.2.8 shows that this group is trivial if n is at least the Bass stable range of R[t0, t1].
In that case, we may therefore identify [An \ 0,An \ 0]A1 with the set of maps in the
pointed A1 –homotopy category. Note that colimn[An \ 0,An \ 0]A1,∗ is the set of
endomorphisms of the motivic sphere spectrum over the ring R.

The following result is Theorem 4.

Theorem 4.2.10 If k is an infinite field, G is an isotropic reductive k–group (see
Definition 3.3.5) and P ⊂ G is a parabolic k–subgroup possessing an isotropic Levi
factor (e.g., if G is split), then G/P is A1 –naive. In particular, for any smooth affine
k–scheme X , there is a functorial bijection

π0(SingA
1
G/P)(X) ∼−→ [X,G/P]A1 .

Remark 4.2.11 Given a reductive k–group and a non-trivial parabolic subgroup
P ⊂ G, it is not obvious that P has a Levi factor. Nevertheless, as mentioned in
Remark 3.1.6, our hypotheses guarantee that P has a Levi factor. If L is a Levi factor
for P, then L may itself be anisotropic.

Proof Lemma 3.1.5(ii) implies that G → G/L is generically trivial. Since k is
assumed infinite and L is reductive, we claim G → G/L is actually Zariski locally
trivial. An elementary argument for Zariski local triviality of G→ G/L sketched in
Remark 3.1.6(2), but alternatively we can use [20, Théorème 2.1], to which, momentarily,
implicit appeal will be made.

By Theorem 2.4.2, whose hypotheses hold by Theorem 3.3.7, we conclude that G/L is
A1 –naive. By Lemma 3.1.5(iii), G/L→ G/P is a composition of Zariski fiber bundles
with affine space fibers. Hence, G/P is also A1 –naive by Lemma 4.2.4.

The above result can be significantly strengthened at the expense of further restrictions
on the groups under consideration.
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Theorem 4.2.12 Suppose R is ind-smooth over a Dedekind ring with perfect residue
fields (for example, R is Noetherian and regular over such a Dedekind ring). If G ∼= GLn

or Sp2n , and if P ⊂ G is a standard parabolic subgroup, then G/P is A1 –naive. In
particular, for any smooth affine R–scheme X , there is a functorial bijection

π0(SingA
1
G/P)(X) ∼−→ [X,G/P]A1 .

Proof Assume first that R = Z. If P ⊂ G is a standard parabolic with Levi factor L ,
then L is itself a special group in the sense of Grothendieck–Serre, i.e., all étale locally
trivial torsors are Zariski locally trivial. Thus, the map G→ G/L in Lemma 3.1.5(ii) is
automatically Zariski locally trivial. One sees that the map G/L→ G/P is a Zariski
fiber bundle with affine space fibers by combining Lemma 3.1.5(iii) with the fact that all
finitely generated projective Z–modules are free. By extending scalars to R, it follows
that corresponding statements hold for the resulting group scheme over R.

With these modifications, the proof is essentially identical to that of Theorem 4.2.10;
however, instead of appealing to Theorem 3.3.7, we use Theorem 3.3.3 or [9, Theorem
5.2.1] to establish the necessary homotopy invariance statement.

Example 4.2.13 Theorem 4.2.12 applies if P ⊂ GLn is a maximal parabolic subgroup,
in which case G/P ∼= Grm,n for some integer m ≤ n.

4.3 Affine representability for non-stable K-theory and strong A1 –invariance
results

Suppose G is a smooth linear R–group scheme. For any integer i ≥ 1, one can define
Karoubi–Villamayor-style non-stable K-theory functors attached to G by means of the
formula:

KVG
i+1(U) := πi(SingA

1
G)(U)

In this form, the definition goes back to Jardine [35, Theorem 3.8], but had precursors
in the work of Krusemeyer [37, §3]; see Wendt [64] for a more detailed analysis of
such functors in the context of A1 –homotopy theory. As a straightforward application
of our results, we obtain A1 –representability results for non-stable KV –functors.

Theorem 4.3.1 If k is an infinite field, and G is an isotropic reductive k–group (in the
sense of Definition 3.3.5), then G is A1 –naive. In particular, for any smooth affine
k–scheme U , there are canonical isomorphisms

KVG
i+1(U) ∼= [Si ∧ U+,G]A1,∗.
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Proof Apply Theorem 2.4.2 with H = e (hypotheses being satisfied by Theorem 3.3.7).

Remark 4.3.2 Results such as the above were studied initially by Morel [43, Theorem
8.1] and Moser [46] (see also [65, Theorem 5.3]) for G a general split group, and
by the third author and K Völkel in the isotropic reductive case [62]. These results
depend crucially on first establishing homotopy invariance for non-stable K1 –functors
via “elementary matrix” techniques. As a consequence these proofs do not easily extend
to the important case where G has semi-simple rank 1, which was treated separately
by Moser. Our proof above makes no such assumption on the homotopy invariance of
non-stable K1 –functors. As a consequence, Theorem 4.3.1 can also be used to slightly
uniformize the proof of [13, Theorem 3.4].

We can also establish the strong A1 –invariance of the sheafifications of the non-stable
K1 –presheaves attached to arbitrary isotropic reductive k–groups with k infinite.

Theorem 4.3.3 Suppose k is an infinite field, and G is an isotropic reductive k–group
(in the sense of Definition 3.3.5). For any integer n ≥ 0, the following statements hold.

(i) The Zariski sheaf aZarπn(SingA
1
G) is a Nisnevich sheaf.

(ii) The sheaf aZarπn(SingA
1
G) is strongly A1 –invariant.

Proof We begin by recalling some key results of Morel [43, Chapter 6]. If X is
a Nisnevich-local and A1 –invariant pointed simplicial presheaf on Smk , the sheaf
aNisπ1(X ) is strongly A1 –invariant by [43, Theorem 6.1]. Moreover, the map
aZarπ1(X ) → aNisπ1(X ) is an isomorphism by [43, Corollary 6.9(2)] (the standing
assumption that aNisπ0(X ) is trivial is not used in the proof).

By Theorems 2.3.5(i) and 3.3.7, under the stated hypotheses on k , the simplicial presheaf
RZar SingA

1
BNisG is Nisnevich-local and A1 –invariant. Applying the results of the

previous paragraph to the simplicial presheaf

X = RΩnRZar SingA
1
BNisG,

we conclude that
aZarπn+1(SingA

1
BNisG)

is a strongly A1 –invariant Nisnevich sheaf of groups for any n ≥ 0. By Corollary 2.2.2,
the map

πn(SingA
1
RΩBNisG) −→ πn+1(SingA

1
BNisG)
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is an isomorphism on affines, and hence it becomes an isomorphism after Zariski
sheafification. Finally, we conclude the proof by observing that G ' RΩBNisG by
Lemma 2.3.2 (iii).

Remark 4.3.4 We note that the results from [43, Chapter 6] used in the proof of
Theorem 4.3.3 do not require k to be perfect. If the base field k is in addition perfect,
then, provided aZarπn(SingA

1
G) is abelian, we can use [43, Theorem 5.46] to conclude

that it is strictly A1 –invariant. The assumption that k is infinite in the above statement
only appears because of our appeal to Theorem 3.3.7. To remove this restriction, we
would need homotopy invariance for torsors under isotropic reductive groups over finite
fields.

If G is a reductive k–group, we can define G(k)+ to be the normal subgroup of G(k)
generated by the k–points of subgroups of G isomorphic to Ga . The Whitehead group
of G is defined by the formula

W(k,G) := G(k)/G(k)+;

we refer the reader to P Gille’s survey [29] for more details about Whitehead groups. In
particular, Tits showed that W(k,G) detects whether G(k) is projectively simple. Results
of Margaux allow us to connect non-stable K1 –functors (as above) with Whitehead
groups. More precisely, one has the following result.

Proposition 4.3.5 Suppose k is an infinite field, and G is an isotropic reductive k–
group (in the sense of Definition 3.3.5). For any finitely generated separable extension
L/k , there are canonical isomorphisms

π0(SingA
1
G)(L) ∼= W(L,G).

functorial with respect to field extensions. Moreover, the assignment L 7→ W(L,G)
extends to a strongly A1 –invariant sheaf on Smk .

Proof The first statement follows from Margaux [39, Theorem 3.10] (see also Gille [29,
§4.3]) and only requires G to be isotropic in the sense of Borel [18, Definition V.20.1].
The second statement follows from the strong A1 –invariance of aZarπ0(SingA

1
G)

established in Theorem 4.3.3(2).

Whitehead groups are also related to arithmetic questions, e.g., regarding R–equivalence
in G(k) (see Gille [29, §7] for a discussion of R–equivalence in the context under
consideration).
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Corollary 4.3.6 Let k be an infinite field and G a semisimple simply-connected
absolutely almost simple isotropic k–group, and set G := aZarπ0(SingA

1
G). The

following statements hold:

(i) for any finitely generated separable extension L/k , there is an isomorphism of
the form G(L) ∼= G(L)/R,

(ii) the contracted sheaf G−1 is trivial, and

(iii) if k is furthermore perfect, and G has classical type, then G is strictly A1 –
invariant.

Proof The first statement follows from Proposition 4.3.5 and [29, Théorème 7.2].

For the second statement, recall that G−1(U) = ker((id, 1)∗ : G(U ×Gm) → G(U)).
As G is strongly A1 –invariant by Theorem 4.3.3, G−1 is also strongly A1 –invariant by
Morel [43, Lemma 2.32]. In particular, it is an unramified sheaf, which implies that
the map G(X)→ G(k(X)) is injective for any irreducible smooth scheme X . By [29,
Theorem 5.8], we conclude that G(k(U))→ G(k(U ×Gm)) is a bijection and thus that
G−1(U) is trivial, for any U ∈ Smk .

For the final statement, if k is furthermore perfect, it suffices by [43, Theorem 5.46] to
show that G is an abelian group valued functor. Because G is unramified, it suffices
to check abelianness on sections over extensions of the base field. By Point (i), if G
has classical type, this follows from a result of Chernousov–Merkurjev [29, Théorème
7.7].

Remark 4.3.7 The statement G−1 = 0 of Corollary 4.3.6(ii) is equivalent to the
assertion that G is a birational sheaf. If G is not simply-connected, then the sheaf G is
not, in general, birational. For example suppose G is a split semisimple group having
non-trivial algebraic fundamental group Π (in the sense of Chevalley groups). If we
let H 1

ét (Π) be the Nisnevich sheaf associated with the presheaf U 7→ H1
ét(U,Π), then

G ∼= H 1
ét (Π), which is not birational.

4.4 Nilpotence for non-stable K1 functors

In this section, we include one more sample application of our results: we give a
uniform proof of some nilpotence results for non-stable K1 –functors discussed in the
previous section; such nilpotence results have been studied for instance by Bak [11] and
Bak–Hazrat–Vavilov [12]. The main result of this section is Theorem 4.4.3 which solves
[12, Problem 6] in a number of cases of interest (see Remark 4.4.4 for more details).
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The approach we pursue has the benefit that it is conceptually simple (modelled on
classical topological results) and applies to rather general isotropic reductive k–groups.
The tradeoff to this generality is that unlike [12] we are forced to restrict attention to
smooth k–algebras with k an infinite field.

We use the following notation/terminology. If (X , x) is a pointed simplicial presheaf
on Smk , we will say that X is Nisnevich-connected if aNisπ0(X ) is trivial and, given
an integer n ≥ 1, we will say that X is Nisnevich n–connected if aNisπi(X , x) is
trivial for i ≤ n.

Now, suppose G is a simplicial presheaf of group-like h–spaces on Smk (h–group for
short) pointed by the identity. In that case, there is an induced morphism G → aNisπ0G ;
this morphism is a morphism of h–groups. Write G 0 for the homotopy fiber of G , so
that there is a homotopy fiber sequence of the form

G 0 −→ G −→ aNisπ0G .

By construction, G 0 is a Nisnevich-connected h–group. Using this notation, we can
adapt arguments of Whitehead [66, Corollary 2.12] to establish an abstract nilpotence
result.

Proposition 4.4.1 Assume k is a Noetherian ring of finite Krull dimension, and
suppose G is a Nisnevich-local simplicial presheaf of h–groups on Smk (pointed by
the identity).

(i) For any X ∈ Smk , there is an exact sequence of groups of the form

1 −→ [X,G 0] −→ [X,G ] −→ aNisπ0(G )(X).

(ii) If X ∈ Smk has Krull dimension ≤ d , then [X,G 0] is nilpotent of class ≤ d .

Proof Point (i) is immediate from the long exact sequence of maps into a homotopy
fiber sequence and the fact that aNisπ0(G ) is 0–truncated.

For Point (ii), it suffices to assume G = G 0 is Nisnevich-connected. In that case, G ∧n

is Nisnevich n–connected. Indeed, this follows from the corresponding connectivity
estimate for smash products of simplicial sets by checking on stalks. Now, a straightfor-
ward obstruction theory argument (see Morel [43, Lemma B.5]) using the connectivity
estimate we just mentioned shows that [X,G ∧n] = ∗ if dim X ≤ n. To conclude, we
simply observe that every n–fold commutator in [X,G ] factors as X → G ∧n → G

(here, we use the assumption that G is an h–group and thus has a strict identity).
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Remark 4.4.2 The result above is rather general. Indeed, as is evident from the proof,
it holds for simplicial h–group objects in the local homotopy theory of simplicial
presheaves on a site for which Postnikov towers converge.

Now, suppose G is an isotropic reductive k–group in the sense of Definition 3.3.5.
Following Petrov and Stavrova [51], for any commutative k–algebra R and any parabolic
k–subgroup P ⊂ G, we define the elementary subgroup EP(R) as the subgroup of
G(R) generated by the R–points of the unipotent radical of P and the R–points of the
unipotent radical of its opposite. A priori EP(R) depends on P and EP(R) need not be a
normal subgroup of G. However, [51, Theorem 1] guarantees that if each semi-simple
normal subgroup of G has rank ≥ 2, then EP(R) is both independent of P and normal
in G(R); under these hypotheses we define E(R) := EP(R) for any choice of proper
parabolic and define KG

1 (R) := G(R)/E(R).

We can also consider G0(R) ⊂ G(R), the subset of G(R) consisting of matrices g for
which there exists g(t) ∈ G(R[t]) with g(0) = 1 and g(1) = g; this subgroup is evidently
normal. By construction EP(R) ⊂ G0(R) and KVG

1 (R) = G(R)/G0(R). Therefore there
is a short exact sequence of groups

1 −→ G0(R)/E(R) −→ KG
1 (R) −→ KVG

1 (R) −→ 1.

Theorem 4.4.3 Suppose k is an infinite field, G is an isotropic reductive k–group in
the sense of Definition 3.3.5 and R is a smooth k–algebra of dimension d .

(i) If for every finitely generated separable extension L/k the Whitehead group
W(L,G) is trivial (abelian), then KVG

1 (R) is (an extension of an abelian group by)
a nilpotent group of class ≤ d .

(ii) If furthermore k is perfect, for every finitely generated separable extension L/k
the Whitehead group W(L,G) is trivial (abelian), and every semi-simple normal
subgroup of G has rank ≥ 2, then KG

1 (R) is (an extension of an abelian group
by) a nilpotent group of class ≤ d .

Proof Let G = RZar SingA
1
G. According to Theorem 4.3.3, the Nisnevich sheaf

aNisπ0(G ) is strongly A1 –invariant. By Proposition 4.3.5 the group of sections
aNisπ0(G )(L) over finitely generated extensions L/k coincides with W(L,G). In
particular, the assumption that W(L,G) is trivial (abelian) for every finitely generated
separable extension L/k implies that the sheaf aNisπ0(G ) is trivial (abelian).

By Theorem 4.3.1 and Proposition 2.1.3, G is Nisnevich-local and KVG
1 (R) =

[Spec R,G ]. Point (i) then follows immediately from Proposition 4.4.1.
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Consider the exact sequence appearing before the statement gives a surjective map
KG

1 (R)→ KVG
1 (R). Under the additional hypotheses in Point (ii), it follows immediately

from a result of Stavrova [59, Theorem 1.3] that this surjection is an isomorphism and
Point (ii) follows from Point (i).

Remark 4.4.4 Combined with known structural results about W(−,G) (viewed as a
functor on the category of finitely generated extensions of the base field), the above
result solves a problem posed by Bak, Hazrat, and Vavilov [12, Problem 6] in a
number of new cases. For example, in [29, Théorème 6.1], Gille summarizes results
of Chernousov–Platonov that detail situations where W(−,G) is trivial for all finitely
generated separable extensions L/k . See Corollary 4.3.6(iii) for hypotheses that
guarantee W(−,G) is an abelian group valued functor on the category of (e.g., if G has
classical type). Furthermore, it has been conjectured that W(−,G) always takes values
in abelian groups.
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Exposés 982–996”, Astérisque 326 (2009) 39–81
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